
Group Formation Mechanisms for Transactions in Isis

Neel K. Jain

Department of Computer Science

Cornell University

IthaLca, NY 14853

jain(lcs.cornell.edu

Abstract

Distributed toolkits like Isis provide means of replicating

data but not means for making it persistent. This malkes
the use of transactions desirable, even in non-database ap-
plications. Using Isis can alleviate the programming cost of

distributed transaction processing and multi-phase commit

protocols. Using the Isis transaction tool, however, imposes
additional cost, and we examine the effect of group fornla-
tion strategies on the overhead. The paper presents three

different group formation mechanisms in Isis and compares
the costs associated with them.

1 Introduction

A fundamental property of transactions is failure atomic-

ity: transactions should leave a permanent effect if and

only if they terminate normally (are committed) [2]. This

property makes transactions appealhg in both database and

non-database applications, and many developers of general

purpose operating systems advocate the use of transactional

mechanisms in non-database contexts. However, multi-phase

termination protocols used to implement atomicity can add

significant programming and run-time overhead to distri-

buted applications, requiring programming effort and com-

putation and communication time. The two-phase commit

protocol is often used to guarantee consistency in ternni-

nation, but without a consistent timeout/failure-detection

mechanism it can not guarantee progress if omission or crash

failures occur. Moreover, in situations where data is repli-

cated (notably in Isis, where data is replicated in process

groups) serialization of transactions with respect to failure

notification (as discussed in chapter 8 of [2]) is a potentially

complex task.

The task of terminating a distributed transaction with a

multi-phase commit protocol is made easier with the use of

a distributed toolkit like Isis. The toolkit provides a collec-
tion of higher-level mechanisms for forming and managing
process groups under an execution model called vin!urd syn-

chTony [4]. Virtually synchronous execution can be used to
guarantee serializability, even in the presence of failures [7].

Permission to co y vdthout fee all or part of this material is
Rgranted provided t at the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
CIKM ’94- 11/94 Gaitherburg MD USA
@ 1994 ACM 0-89791-674-3/94/001 1.,$3.50

Isis also provides a transaction tool for facilitating trans-
actions. The perforrmmce of transaction processing in Isis,
however, is limited by the suitability of Isis for implementing

transactional commit, the key issue being the run-t ime cost.
The current implementation of the Isis transaction tool uses

a powerful, general purpose group formation mechanism to
form a group of processes involved in the termination pro-

tocol, and this mechanism is one reason for the high cost

of using the transaction tool. A group created solely to
help terminate a transaction need not be created through

this mechanism, and we examine two alternate strategies
below, both of which show significant performance improve-
ment over the original without sacrificing any consistency or
progress guarantees.

1.1 Transactions and two-phase commit

A two-phase commit protocol can be used to terminate trans-
actions atomically. The commit phase of such a transaction
is divided into two phases (hence the name). In the first
phase, the coordinator asks all participants to prepare to

commit. All participants respond by returning a vote on
whether the transaction should be committed. The coordi-
nator decides that the transaction is to be committed if and

only if it receives “yes” votes from all participants. In the
second phase, the coordinator sends out its decision to all

participants, which commit or abort their local transaction.
The commit protocol guarantees that a transaction will

be committed only if all participants vote to commit, and
that no participant will abort if another has committed (and
vice-versa). Undetected failures may, however, inhibit the
progress of one or more participants.

The undetected failure of the coordinator, for instance,
may mean that a vote is never called, and leaves the partic-
ipants waiting. The failure of a participant, if undetected,

may leave the coordinator waiting for its vote. Communica-

tion failure can lead to the same situations. Below, we see
how Isis, which provides reliable communication and fail-

ure detection, can be used to terminate a transaction in a
consistent manner and prevent these situations.

1.2 Isis

Isis is a toolkit for building distributed fault-tolerant appli-
cations. It provides reliable communication, process mon-
itoring and atomic multicast. Processes can be organized
into pTocess groups. The membership of an Isis group is
available to any member, and all changes to the member-
ship are ordered with respect to message delivery. Thus a

203

http://crossmark.crossref.org/dialog/?doi=10.1145%2F191246.191280&domain=pdf&date_stamp=1994-11-29

message is received in the same group view by all recipients.

Isis groups are normally formed by processes joining them

by calling pg.join. When a process requests to join a group

in this manner, the oldest member calls a jlush, ensuring

that all messages outstanding in the group are received by

aIl (existing) members. Then an updated group view, with

the new member, is sent out to the enlarged group. The

flush algorithm and other Isis protocols are discussed in [3].

A group may also be formed from a list of process ad-

dresses by calling pg.c~eate. The call creates the entire group

and notifies the members. This mechanism is cheaper than
repeated calls to pg_join, but requires that the membership
be known in advance.

Isis provides several atomic multicaat primitives. An Isis

cbcast is a causally ordered multicast. A beasts are totally
ordered with respect to each other, and gbcasts are totally

ordered with respect to all messages (and so, can be used

to flush messages). Isis also provides a reply mechanism
for each of these multicasts. The Isis manual [6] provides

detailed information on Isis.

1.3 Transactions in Isis

Isis applications often use process groups to replicate data.
Isis multicasts may be used to implement atomicity of up-

dates, but not persistence of data, a need transactions can be
used to fulfill. Implementing transactions in Isis is straight-
forward, since virtual synchrony may be used to provide
serializability y, and a multi-phase commit, at omicit y.

The set of participants in a transaction is a natural can-
didate for an Isis group. The two-phaae commit protocol

can be implemented as two cbcasts in Isis. The first cbcaat
is a notice to participants to prepare to commit, and partic-
ipant votes are sent as replies to this. The second cbcaat is
the decision to commit or abort.

Locldng for transactions may be implemented using Isis
abcasts, or with the use of the Isis token tool.

There are other benefits to using Isis groups for trans-

actions as well: the failure of a participant can be detected
using monitors, the list of participants is readily available (if
needed), the coordinator may be replicated, and outcomes

of transactions logged by Isis.
Isis also provides a tool for marking the start of a trans-

action: the activity ID. Such IDs are unique and last until
a new one is generated. A message sent under an ID col-
ors the receiver so that the receiving thread takes on the

ID as well, that is, sends all future messages under this ID
(figure 1). This frees the user from the requirement of ex-
plicitly marking every event in a transaction; any event that

causally “happens after” the ID generation can be part of
the transaction, and every process that has taken on the
ID is, potentially, a participant. In fact, all potential par-

ticipants take on the ID because every event causally after
the ID generation is performed under that ID. However, the
application is free to decide which of these processes should
participate in the termination protocol. An interesting and
useful feature of this mechanism is that the application need
not keep track of which processes are involved in the trans-

action, or even who is coordinating the transaction. It need
only decide when a transaction starts and when it ends, and
whether a potential participant should participate in the
tern& ation protocol. Isis can take on the responsibility of
forming the “transaction group”, the group of participants
in the transaction that will take part in the termination pro-

cess. When the user-application decides that the transaction
can be terminated it can issue a cbcazt to this transaction

group to prepare to commit, receive votes (as replies) and
then, cbcast the decision to commit or abort.

2 The current transaction tool: using pg.join

It is not clear, however, how the transaction groups “should

be formed. Isis provides a transaction tool, and it uses activ-
ity IDs to mark transactions and to generate the name of the
transaction group. On the receipt of a transaction-related
message, the recipient of a message can use the activity ID

to find the name of the transaction group, and join it, if it
wishes, by calling pg-join. When the transaction is t ermi-
nat ed, the coordinator broadcasts to this group, asking it to
prepare to commit.

This approach is the most flexible and powerful of those

discussed here. The list of participants in the transaction is
available to all members and any changes in the groups can

be observed by all participants at any point in the transac-

tion.
This is an outline of the transaction’s progress using this

approach, and is shown in figure 2:

1. Transaction starts with a new identifier.

2. Participant notices that the transaction has started

and joins the transaction group identified by the ac-
tivity ID. The group can be monitored for the failure
of the coordinator.

3. Coordinator decides that the transaction has completed.
It calls for votes and checks replies to make certain that

all participants have replied and that no one has voted
to abort.

4. Coordinator sends out the outcome of the transaction.
All monitors are cancelled and the group deleted.

This approach is the costliest of the three approaches

studied. The high cost comes from the individual calls to

pg-join made by each participant. The join requests are
made almost concurrently, but have to be performed sequen-
tially, and each involves a flush. This is expensive, and the
performance of the transaction tool suffers.

Two variations have been suggested in an attempt to
reduce this cost, and are described below.

3 The lightweight group mechanism

Patterns of group membership often recur in an Isis environ-
ment, and are very likely to recur in transactions. The light-
weight group facility [5] takes advantage of this recurrence
by side-stepping the expensive joins and leaves of heavy-

weight groups. A lightweight group, in Isis, is a veneer over
a superset heavyweight group. Messages to the lightweight
group are delivered to this heavyweight group and discarded
at processes that do not belong to the lightweight group.
Changes to the membership of a lightweight group may r-

quire that the underlying heavyweight group be replaced
(if the joining member does not belong to the heavyweight
group or the lightweight group becomes too small to use the

heavyweight group efficiently), or even that a new one be

created (if no suitable replacement can be found). If group
membership patterns recur with regularity, a stable core of
heavyweight groups will be created and members cam be

added to or removed from lightweight groups cheaply. After
the system has stabilized, changes to the underlying set of
heavyweight groups will be infrequent, even if the member-
ship of the lightweight group changes frequently.

204

A B c

,, I
,
I I
1
t I
$
, I

A generates a new activity ID and sends a message to B.

\
,
I The receiving thread at B takes on the activity ID generated

N
by A. B sends a message to C.

i

On receipt of B’s message, C takes on the activity ID as well.

Figure 1: The transmission of Activity IDs in Isis. The solid line marks a thread colored with the new activity ID generated
by A.

A lightweight group has all the functionality of a heavy-

weight group and a transaction tool based on lightweights

groups will look similar to the Isis transaction tool. The

membership is still available for any process to inspect and

changes to it are ordered. One disadvantage to this ap-

proach, however, is that the cost of using lightweight groups

depends heavily on the regularity of the recurrence of group

membership patterns. If group membership patterns vawy

greatly, performance can drop to the level of that of regulh.r

groups, or even lower.

The outline of a transaction is exactly the same as in the

previous case.

4 The lazy group formation mechanism

Both options considered so far maintain and can provide in-

formation about the membership of the transaction group

at all times. Not all applications, however, n~d this infor-

mation. Applications in which a participant does not need

to know the list of co-participants, or does not need the list

until voting has started, can use a third option: lazy group

crest ion.

This variation is useful when a group is not needed until

the coordinator enters the commit phase. Instead of doing

a pg_join themselves, participants can send their address to

the coordinator, which can form a list of addresses and cre-

ate a group out of them at commit time, using the pg.creaie

primitive.

The participants can monitor the coordinator for failure
and abort the transaction if its failure is observed before the

commit phase ends, that is, before the decision to commit

or abort is sent out by the coordinator.
Thk is an outline of the transaction’s progress using this

approach (figure 3:

1. Transaction starts. Coordinator uses the transaction

ID to generate a group name and joins this group. This
group serves to identify the coordinator.

2. Participant notices that the transaction haa started
and sends address to the coordinator (via the group

3.

4.

5.

the coordinator has just created). Starts monitoring
coordinator.

Coordinator collects all addresses and forms a group
from them at commit time. Compares group size to
list to check if any participants have failed (in which
case the transaction is aborted).

Coordinator calls for votes and counts replies to make

certain that all participants have replied and that no
one has voted to abort.

Coordinator sends out the outcome of the transaction.

Monitors are crmcelled and the two groups created for
the transaction are deleted.

The approach uses two groups for eaeh transaction. The
first group is used for replying to the coordhator and moni-
toring it for failure. Although this adds to the cost of a trans-
action, it allows more than one transaction to proceed in the

system, each transaction with its own, uniquely named, co

ordhator.
A disadvantage to the lazy group creation approach is

that the failure of a participant is not detected until commit
time. Thus, this approach may take longer than the original
if a failure occurs.

5 Dealing with Failures

One of the attractions of Isis is its suite of failure-detection
and monitoring mechanisms [6]. Handling failures during
transactions is relatively straightforward, given the guar-
antees that Isis mechanisms provide and the “virtual syn-

chrony” model of execution.
The easiest failure case to handle is the one in which only

participants fail during a transaction. Handling the failure

of the coordhator is slightly more difficult. The hardeat
case to handle is when participants fail with the coordinator,
after votes have been cast but before the result has been
announced to all participant. We discuss the various failure
cases below. The actions suggested are not offered as the

205

A B c D

/ -

------ ------
.req

>

)

)

Coordinator (A) creates the transaction group.
Messages are sent out in the context of the
transaction.

B, C and D call pgjoin (or IwgJoin). Isis sends
a join request to the oldest member, A. The
caller is then added to the group. Details of the
join protocol are not shown.

The group is now complete.

A starts the termination protocol by asking for
votes (by a cbcast to the group). The votes
are sent as replies.

A can now cbcast the result (and ask for
acknowledgements if it so wishes).

A deletes the group. Isis sends a notification
to the members of the group.

pg~oin and ligh~eight group mechanisms

Figure 2: Transactions using the pg.join or lightweight group mechanism. The ovals represent Isis groups.

206

A B c D

(

(

(

(

(

9

I=

)

)

)

Coordinator creates an identifying group.
Messages are sent out in the context of the
transaction.

B, C and D send their addresses to the
coordinator, A.

A creates the transaction group from the
addresses received.

A starts the termination protocol by asking for
votes (by a cbcast to the group). The votes
are sent as replies.

A can now cbcast the result (and ask for
acknowledgements if it so wishes).

A deletes the group. Isis sends a notification
to the members of the group.

lazy group creation

Figure 3: Transactions using the lazy group creation mechanism. The ovals represent Isis groups.

207

only, nor as the most efficient, course that can be taken on

noticing a failure; they merely illustrate one of the several

consist ent ways to handle failures.

5.1 Before voting starts

As long as the coordinator does not fail, it can provide a

canonical view of the transaction, no matter which approach

we take to group formation. For this reason, participants

need only monitor the coordinator, and abort the trans-

action if the coordinator fails before all participants have

voted. Participants in the pg.join and LWG approaches

monitor the transact ion group as soon as they join it. If

the coordinator fails, another process finds itself the oldest

member of the group (this can also happen as soon as the

process joins the group). This process can then abort the

transaction and delete the group. Any process joining the

group after this will find itself the oldest member and do the

same.

Participants in the lazy group creation approach monitor

the coordinator explicitly. This monitor, however, does not

provide strong ordering guarantees, not having been set up

in the context of a group, so if participants are informed of

the coordinator’s failure, they need to check if the transac-

tion group has been formed, and flush it if it does (to check

if a call for votes had been issued, in which case they can

try to salvage the transaction as discussed below).

Once a call for votes has been issued in any of the three

approaches, a transaction group exists, and failure detection

and handling is identical in all three cases.

5.2 Once voting starts

Before the coordinator issues a cbcast for votes, it knows

,, how many votes it expects to get, and can send this num-

ber with its request for votes. If it receives fewer than this

number of votes as a result of the cbcast, it can abort the

transaction. If ail votes are received, the coordinator can

examine them, send a message with the result, and ask for

replies. If it receives fewer replies than wanted, it can log t he

outcome of the transaction (using a presumed-commit /abort

strategy if it likes).

If the coordinator fails after it has asked for votes, the

oldest surviving participant can take over and try to re-

collect votes (this assumes that the coordinator was in favor

of committing if it asked for votes). If the new coordinator

can collect the required number of votes, it can ask the group

to commit or abort. Of course, any member that had not

returned a vote in response to the original call can now send

a vote to abort, allowing the new coordinator to abort the

transaction. In case the new coordinator cannot muster the

required number of vot es, and no participant votes to abort,

the group must block.

This is the case where the coordinator and at least one

more participant have crashed and the remaining members

are unable to tell if (and how) this participant had voted.

Worse, this participant could have received the outcome

from the coordinator and acted on it. In this case, blocking

is the only choice available to the survivors.

5.3 Non-blocking strategies

Two-phase commit protocols cannot guarantee that they

will not block [2]. However, there is a (hidden but usable)

third phase to our termination protocol: the coordinator

deletes the group at the end of the transaction by calling

pg.delete. The deletion notification is ordered with respect

to all messages. If the coordinator waits for the completion

of the cbcast that sends the outcome to the group (by any of

several Isis mechanisms, including asking for replies) before

it calls pg-delete, a non-blocking protocol can be fashioned

by modifying the protocol above.

The protocol is identical to the one already discussed up

to the point that the outcome is received. The participants

receive the outcome but do not act on it until they are in-

formed of either the deletion of the group, or the failure

of the coordinator. If they are notified of the group dele-

tion first, they are free to act on the outcome and cancel

out standing watches and monitors. If they notice the co-

ordinator crash before observing the delete, they cbcaat the

out come to the group, aaking for acknowledgments, then act

on the outcome. This ensures that every surviving member

of the group has seen the outcome before any of them acts

on it.

6 The implementation

The implementation studied was a no-frills implementation,

with no logging or recovery mechanisms. There was no

transaction to speak o~ once the group was formed, the

coordinator started the voting process. The goal of the im-

plementation was to highlight the differences between the

group formation mechanisms, so no attempt was made to

include logging or recovery mechanisms.

All processes started by joining a large, main group. The

coordinator started a transaction by a cbcast to the group

and waited for replies. In the case of the regular group

mechanism the receivers joined the transaction group before

replying to the coordinator. In the lazy group creation case,

the receiver replied to the cbcast with its address. Monitors

were set up before replies were sent.

Next, the coordinator started the voting process by a cb-

caat to the transaction group (creating the group first, in the

lazy case). The recipients replied with their vote (the ones

in the lazy case first changing the monitor from a process

monitor to a group monitor with stronger guarantees).

The coordinator then tallied the votes and cbcasted the

results. Monitors were cancelled on the receipt of the tally.

The group was deleted by the coordinator on the comple-

tion of the cbcast, and data structures relating to the last

transaction removed.

The coordinator was run on a site by itself. For the light-

weight group case, we also ran the gvmgr process (which

provides group view services for the lightweight group im-

plementation used) on the same site. We then ran one par-

ticipant on each of two remote sites, one participant on each

of four remote sites, two participants on each of three re-

mote sites and two participants on each of four remote sites.

Each of these sites had Isis running locally.

6.1 The results

The lazy group creation approach proved to be the cheapest

of all three approaches for group sizes of six or more. The

light weight group approach was slightly more expensive for

large groups, but cheaper for smaller ones. The regular,

pg-join approach waa far more expensive.
For group sizes of three (the coordinator and two other

participant s), and five (coordinator and four other partici-

pants) the lightweight group mechanism was cheaper than

the create mechanism. This is likely a result of the small

number of processes involved (less book-keeping overhead),

and the advantage disappears as the group size increases.

208

‘“8~ 1 # 1

.,~ I 1 1
“. ,

2 3 4 5 6 7 8
Number of participants, excluding coordinator

Figure 4: A comparison of average time for transactions with 2, 4, 6 and 8 participants, in addition to the coordinator. Times

are averaged over 1000 transact ions.

The lazy group creation approach is hindered by having to

create two groups for each transaction, but the significance

of this extra cost decreases with the size of the group. As the

group size increases to seven and nine, we see that the lazy

crest ion approach gains an advantage over the light weig,ht

group mechanism. Average times for the three approaches

are compared in figure 4.

7 Related Work

The paper’s discussion and results have, so far, centered (on

Isis. Other distributed computation toolkits, notably Tran-

sis [1], also provide group mechanisms and reliable commun-

ication. The Transis approach differs from that of Isis in

some respects, but it provides all the functionality requirled

for distributed transaction processing. Transis also provides

virtual synchrony, assuring that the execution model is poTw-

erful and sound.

A feature of Transis not available in Isis is safe messages.

Such messages are delivered to a recipient only when the

message has been received (but not necessarily delivered) at

all other recipients. A non-blocking protocol Cm be desigm:d

using safe messages to announce the coordinator’s decision

to commit or abort.

8 Conclusion

Transactional mechanisms guarantee serializability and fail-

ure atornicit y, and so, address the needs of even non-databaee

applications that require persiatent data. Applications usi-

ng dk.tribut ed environments like Isis, where data may be

replicated, but only in a volatile manner, find it useful to

implement transact ions.

When data ia replicated, or the transaction is distributed

across several processes, aeritilzability and atomicity are dif-

ficult to implement. Isis provides a framework for consistent

handling of both issues. Implementations for distributed

transaction processing in Isis can use a transaction group to

keep track of processes involved in a transaction. The t ask of

forming the transaction group and terminating the transac-

tion is simplified by the mechanism provided in Isis, but the

cost of using the Isis transaction tool may be prohibitively

high. One of the reasons behind this high cost seems to be

the group formation mechanism used by the tool, and we

have studied two alternativea to this mechanism, each with

its own strengths and weaknesses.

The current pg.join approach is the most flexible and

powerful, but also the slowest. The lightweight group ap-

proach is also flexible and powerful, and significantly faater

than the pg.join approach for recurring group patterns. The

third approach, lazy group creation, is the fastest for large

group aizea, but sacrifices some flexibility. We have seen,

however, that any of the three approaches is sufficient to

handle transactions with little effort. An application should

consider its transaction pat terns and requirements to choose

between these mechanisms.

9 Acknowledgments

Ken Birman and Brad Glade provided invaluable comments

on drafts of this paper, Brad Glade also assisted with Isis.

Robert Cooper provided the implementation of, and help

wit h, lightweight groups. Thomas Yan provided comments

209

on an early draft.

Research on Isis was supported by the Department of

Defense under ARPA/ONR grant NOO014-92-J-1866. The

work reported in this paper was motivated during a summer

internship with the Open 00DB Project at Texas Instru-

ments’ Computer Sciences Laboratory, Dallas, Texas.

References

[1} Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia

Malki. Transis: A communication sub-system for high

availability. In Proceedings of the Twenty-Second In-

ternational Symposium on Fault-Tolerant Computing,

pages 76–84, Boston, Massachusetts, July 1992. IEEE.

[2] Philip A. Bernstein, Vassos Hadzilacos, and Nathan

Goodman. Concurrency Control and Recovery m
Database Systems. Addison-Wesley Publishing Com-

pany, 1987.

[3] Ken Birman, Andre Schiper, and Pat Stephenson.

Lightweight causal and atomic group multicast. Trans-

actions on ComputeT Systems, pages 272–314, August

1991.

[4] Kenneth Birman. The process group approach to reliable

distributed computing. Communications of the ACM,

pages 37–53, December 1993.

[5] Bradford B. Glade, Kenneth P. Birman, Robert C. B.

Cooper, and Robbert van Renesse. Light-weight process

groups in the Isis system. Distributed Systems Engineer-

ing, pages 29–36, .July 1993.

[6] The Isis Group. The Isis Distributed Toolkit Venion

3.0 User Reference Manual. Department of Computer

Science, Cornell University, 1991.

[7] T. Joseph and K. Birman. Low cost management of

replicated data in fault-tolerant distributed systems.

Transactions on Computer Systems, 4(1):54–70, Febru-

ary 1986.

210

