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Research in database interoperability has primarily

focused on circumventing schematic and semantic in-

compatibility arising from autonomy of the underly-

ing databases. We argue that, while existing inte-

gration strategies might provide satisfactory support

for small or static systems, their inadequacies rapidly

become evident in large-scale interoperable database

systems operating in a dynamic environment. This

paper highlights the problem of receiver heterogene-

ity, scalability, and evolution which have received lit-

tle attention in the literature, provides an overview

of the Context Inter-change approach to interoperabil-

ity, illustrates why this is able to better circumvent

the problems identified, and forges the connections

to other works by suggesting how the context inter-

change framework differs from other integration ap-

proaches in the literature.

1 Introduction

Within the next decade, we wdl witness an increasing

number of organizational forms (e.g., adhocracies and

virtual corporations) which are critically dependent

on the ability to share information across functional

and organizational boundaries [13]. Networking tech-

nology however provides merely physical connectivity:

meaningful data exchange (or logical connectivity) can
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only be realized when agents are able to attribute the

same interpretation to ‘data being exchanged. The

quest for logical connectivity has been a major chal-

lenge for the database research community. there has

been, in the short span of a few years, a prolifera-

tion of proposals for how logical connectivity among

autonomous and heterogeneous databases can be ac-

complished. The body of research describing these en-

deavors have appeared under various headings in dif-

ferent places: for instance, “heterogeneous database

systems” [15], “federated database systems” [20], and

“multidatabase systems” [3]. In this paper, we use
the generic phrase “interoperable database systems”
to encompass all of these usage in referring to a collec-
tion of database systems (called component database

systems) which are cooperating to achieve various de-

grees of integration while preserving the autonomy of

each component system.

Despite the large body of research literature on

interoperable databases, the bulk of the work has fo-

cused on how schematic and semantic conflicts can be

resolved. A key tenet of this paper is that a viable in-

tegration strategy must take into account additional

issues brought about by large-scale and dynamic sys-

tems. For example, in the case of the Integrated

Weapons Systems Data Base (IWSDB) [24], more

than 50 databases (containing information on techni-

cal specifications, design, manufacturing, and opera-

tional logistics) have been identified as of 1993 and

many more are expected to be added over a period of

five decades. This has three major irnphcations: (1)

frequent entry and exit of interoperating data sources

and receivers renders “frozen” interfaces (e.g., shared

schem=) impractical and moreover results in greater

diversity of data requirements, (2) scalabihty of the

integration strategy becomes an issue, and (3) the

longer-life-span of such systems demands that the in-

tegration strategy be able to deal with the evolution

of the system as a whole as well as the semantics of

data contained therein.

The rest of this paper is organized as follows. Sec-

tion 2 lays the foundation for subsequent discussion

by examining both the classical concerns (i.e., over

schematic and semantic heterogeneities) and the var-

ious strategies for addressing them, Section 3 presents
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Database 1

(Based on actual realti,ne feed from a financial
services provider)

Date

13 Jan 94
13 Jan 94
13 Jan 94
13 Jan 94
13 Jan 94

13 Jan 94

13 Jan 94

StkCode
IBM
TX

LVNI. O
SAPG,F

RENA PA
NATO

BMO.M

Exchauge

NYS
NYS
OTC
FRA
PAR

TOR

MON

TradePrice

58~
65*O3
5\05

1790,00
2380

‘1

PE

15.15

11.39

11.53

Database 2

(Hypothetical database for a US investor)

m
Figure 1: Examples of conflicts arising from semantic heterogeneity

the issues Dertinent to large-scale and dvnamic in- disparate representations of fractional dollar values in. .
teroperable systems. Section 4 describes the context

interchange framework, discusses the rationale under-

lying its design, and contrasts it with other competing

int egrat ion strategies. Section 5 summarizes our con-

tribution and describes work in progress.

2 Interoperable Database Systems: Current
Issues and Strategies

2.1 Schematic and Semantic Heterogeneities

Conflicts arising from schematic heterogeneity have

been extensively documented in Kim and Seo [8].

Two types of conflicts are frequently cited as belong-

ing to this category. Naming conflicts ,such as syn-

onyms (different attributes names referring to the

same thing) and homonymns (the same attribute name

having different meanings) arise from the uncoordi-

nated assignment of names in a database schema.

Structural conflicts come about because the same piece

of information may be modeled as a relation name,

an attribute name, or a value in a tuple, An excellent

discussion of structural conflicts can be found in [9].

Conflicts arising from semantic heterogeneity are

more interesting and are less well understood [19].

Figure 1 illustrates some examples of semantic con-

flicts. The reader is encouraged to consider what

knowledge is needed to determine how much money

the investor (Database 2) made as of Janumy 13,

1994, using the information from the two databases

shown. A few of the problems are discussed below.

Naming conflicts similar to those corresponding

to schematic heterogeneity can occur at the seman-

tic level: in this case, we can have homonymns and

synonyms of values associated with attributes. For

example, different databases in Figure 1 might as-

sociate a different stock code with the same stock

(e.g., SAPG.F versus SAP AG). Measurement con-

flicts arise from data being represented in different

units or scales: for example, stock prices may be

reported in different currencies (e.g., US Dollars or

marks) depending on the stock exchange on which

a stock trade occurs. Representation conflicts arise

from different ways in representing values, such as the

Database 1 (e.g., 5\05 on the OTC Exchange actually

mean 5& or 5.3125), Computational conflicts arise

from alternative ways to compute data. For example,

although “Price-to-Earnings Ratio” (PE) should just

mean “Price” divided by “Earnings”, it is not always

clear what interpretation of “Price” and “Earnings”

are used. (Interestingly, this information provider

does not report the PE-value when “Earnings” are

negative. ) Confounding conflicts may result from hav-

ing different meanings assigned to a single concept.

For example, the price of a stock may be the ‘lat-

est closing price” or ‘[latest, trade price” depending

on the exchange or the time of day. Finally, granular-

ity confZicts occur when data are reported at different

levels of abstraction or granularity. For example, the

values corresponding to a location (say, of the stock

exchange) may be reported to be a country or a city.

2.2 Classical Strategies for Database Integra-
tion

Interoperation of disparate information sources has

received considerable attention in the database re-

search community in the recent years. We provide

a brief tour of this literature by highlighting two dis-

tinct approaches for achieving logical connectivity [20].

1. In the tight-coupling approach, conflicts between

multiple database systems are reconciled a pri-

ori in one or more shared (federated) schemas.

Where there is exactly one federated schema,

this is sometimes referred to as a global schema

multidatabase system; otherwise, it is called a

federated database system. In this framework,

users are only allowed to interact with one or

more federated schemas which mediate access

to the underlying component databases. One

early example of systems adopting this strategy

is Multibase [10]. More recent implementations

advocating the adoption of an object-oriented

data model as a basis for integration include Pe-

gasus [1], and several others (see [4] for a recent

survey).



2. In the loose-coupling approach, users interact

with constituent databases directlv instead of

being constrained to querying sha~ed schemas

exclusively. Semantic interoperability is accom-

plished in this framework with the provision of a

multz-database manipulation language, rich

enough so that users may easily devise ways

of circumventing conflicts inherent in multiple

databases. For example, MRDSM [11] allows

users to include in their query, specifications

(e.g., conversion rules) which dictate how data

can be mapped from one representation to an-

other.

From one perspective, the tradeoff between the tight-

and loose-coupling approaches can be understood as

that of ease-of-use versus flexibility. By reconciling

semantic conflicts up-front and encapsulating these

in a shared schema, the tight-coupling approach al-

lows data to be delivered to users without them be-

ing ever aware of its disparate origins. Unfortunately,

this also leave users with little prerogative in deter-

mining which databases should be queried and how

data should be transformed. Moreover, changes to

the shared schema is likely to be unwieldy. The loose-

coupling approach, on the other hand, requires no

pre-integration and allows users unrestrained access

to all available information sources. Unfortunately, it

provides little or no support for identifying semantic

conflicts and delegates all responsibilities for conflict

resolution to the users. Thus, neither of these ap-

proaches constitutes a viable strategy for large-scale

interoperable systems. The inherent complexity of

schema integration suggests that adoption of the tight-

coupling strategy is likely to result in systems which

are unresponsive to changes, whether due to changes

in user requirements or data sources. The loose-

coupling approach on the other hand places too much

of a burden on users to understand semantic differ-

ences: this is an unrealistic expectation given the

large number of data sources cur~ently ava~able and

the often subtle semantic differences.

More recently, a new approach for database in-

tegration using a knowledge representation (KR) ap-

proach has been suggested. Two such attempts are

the Carnot project [5] which employs the Cyc knowl-

edge base as the underlying knowledge substrate, and

the SIMS project [2] which uses Loom (a derivative

of KL-ONE) as the underlying knowledge representa-

tion language. Integration in these KR multzdatabase
systems is achieved via the construction of a global se-

mantic model unifying the disparate representations

and interpretations in the underlying databases and

hence is analogous to global schema systems, except

that the richness of the representation language al-

lows not just the schematic details but the underlying

semantics to be represented. One advantage of this

approach is that data integration can be achieved cm

a piece-meal basis by “hooking” up each component

system independently to the semantic model, thus cir-

cumventing the combinatorial complexity inherent in

schema integration.

3 Beyond Schematic and Semantic Hetero-
geneities

In this section, we examine the issues of receiver het-

erogenedy, scalabdity, and evolution which have re-

ceived comparatively little attention in the literature.

We posit that these are important considerations in

formulating a viable integration strategy for large-

scale, dynamically evolving interoperable systems.

3.1 Receiver Heterogeneity

Previous research in interoperable database systems is

largely motivated by the constraint that data sources

(databases, data feeds, or even applications furnishing

data) in such a system are autonomous (i.e., sovereign)

and any strategy for achieving interoperability must

be non-intrusive [15]: i.e., interoperability must be

accomplished in ways other than modifying the struc-

ture or semantics of existing databases to comply with

some standard. Ironically, comparative little atten-

tion has been given to the symmetrical problem of re-

cewer heterogeneity and sovereignty of data recezvers

(i.e., users and applications retrieving data from one

or more source databases). In actual fact, receivers

differ widely in their conceptual interpretation of and

preference for data and are equally unlikely to change

their interpretations or preferences.

Heterogeneity in conceptual models. Different users

and applications in an interoperable database sys-

tem, being themselves situated in different real world

contexts, have different “conceptual models” of the

worldl. These different views of the world lead users

to apply different assumptions in interpreting data

presented to them by the system. For example, a

study of a major insurance company revealed that

the notion of “net written premium” (which is their

primary measure of sales) can have a dozen or more

definitions depending on the user department (e.g.,

underwriters, reinsurers, etc). These differences can

be “operational” in addition to being “definitional”:

e.g., when converting from a foreign currency, two

users may have a common definition for that cur-

rency but may differ in their choice of the conversion

method (say, using the latest exchange rate, or using

a policy-dictated exchange rate).

Heterogeneity in judgment and preferences. In addi-

tion to having different mental models of the world,

users also frequently differ in their judgment and pref-

erences. For example, users might differ in their choice

of what databases to search to satisfy their query: this

might be due to the fact that one database provides

better (e.g., more up-to-date) data than another, but

is more costly (in real dollars) to search. The choice

of which database to query is not apparent and de-

pends on a user’s needs and budget. Users might

also differ in their judgment as to which databases

are more credible compared to the others. Instead of

~evident in the adoption of eztemal vzews in the

ANSI/SPARC DBMS architecture.
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searching all databases having overlapping informa-

tion content, users might prefer to query one or more

databases which are deemed to be most promising

before attempting other less promising ones.

Consider the global schema approach as an illus-

tration of why receiver heterogeneity is a real concern.

With the global schema approach, disparate data rep-

resentations are reconciled in a shared schema. For

inst ante, consider the following granularity conflict

for student grades reported by two databases [1]: the

first database represents student grades using letter

grades, and the second represents the same as points

m the range of O to 100. In the Pegasus system, this

integration is accomplished by introducing a super-

type which subsumes the two student types, and al-

lowing alI attributes of the subtypes to be “upward

inherited, while providing the necessary conversion

functions (in this case, Mapl and Map2) to effect the

translation to a “canonical” representation:

create supertype Student of Studentl, Student2;

crest e function Score (Student x) ->

real r as

if Student 1 (x) then Mapl (Grade(x))

else if Student then Map2(Points(x))

else error;

The problem with this approach is that it implicitly

assumes that all data receivers are perfectly happy

with the canonical representation. If this is not the

case, they will then have to further convert the canon-

ical represent at ion into their preferred interpretation.

This is not only inefficient (e.g., if the original let-

ter grade representation is what a user wanted) but

poses problem when conversion to the canonical form

is not lossIess (e. g., if the canonical form were ‘(letter

grades” and a user had wanted the raw score).

3.2 Scale

A large-scale interoperable database environment (e.g.,

one with three hundred component databases as op-

posed to three) presents additional problems which

can have serious implications for the viability of an

integration strategy. We suggest that the impact of

scale can be felt in at least three areas: system de-

velopment, query processing, and system evolution.

The first two issues are described in this subsection

and the last is postponed to the next.

System development. From the cognitive standpoint,
human bounded rationality dictates that we simply

cannot cope with the complexity associated with hun-

dreds of disparate systems each having their own rep-

resentation and interpretation of data. Integration

strategies which rely on the brute-force resolution of

conflicts simply will not work. The federated systems

approach attempts to mitigate this by having multi-

ple shared schemas (presumably each encompassing

a smaller set of data sources). Notwithstanding this,

designing a shared schema involving n different sys-

tems entails reconciling an order of nz possibly con-

flicting representations. Such activities are time con-

suming and are aggravated by the idiosyncratic na-

ture of different database schemas which provide lit-

tle opportunity for abstraction or reuse of previous

integration efforts.

Multidatabaae language systems represent the

other extreme since there are no attempts at resolv-

ing any of the data conflicts a priori. However, it

appears that the problem did not simply go away but

is instead being passed on to the users of the system,

Instead of attempting to reconcile all conflicts a pri-

ori in a shared schema, the multidatabaae language

approach delegates completely the task of conflict de-

tection and resolution to the user. The problem then

becomes more pronounced since users do not neces-

sarily have access to underlying data semantics nor

do they necessarily have the time and resources to

identify and resolve conflict ing data semantics.

QueTy-processing. A key concern for databases has

always been that of efficient query processing. Large-

scale interoperable database systems have the poten-

tial of amplifying poor query responses in a num-

ber of ways. In a small and controlled environment,

it is often possible for “canned” queries to be care-

fully handcrafted and optimized. Such an approach

again would be impractical in large (and especially,

dynamic) environments. In addition, large-scale sys-

tems tend also to be more diverse and this is certain to

lead to greater data heterogeneity. This implies that

conversions from one data representation to another

will have to be frequently performed. In those m-

instances where integration is achieved by having each

component database system mapped to a canonical

representation which may then be converted to the

represent ation expected by the receiver, this entails a

great deal of redundant work which may lead to per-

formance degradation. In addition, the encapsulation

of data semantics in these conversion functions means

that they will remain inaccessible for tasks such as se-

mantic query optimization

3.3 System Evolution

Changes in an interoperable database system can come

in two forms: changes in the network organization

(i.e., when a new component database is added or

an old one removed from the system) and changes in

semantics (of a component database or receiver),

Strwciund changes. For integration strategies relying

on shared schemas, frequent structural changes can

have an adverse effect on the system since changes

entail modifications to the shared schema. As we have

pointed out earlier, tbe design of a shared schema is a

difficult task especially when there is a large number

of component systems. Modifications to the shared

schema suffers from the same difficulties as in system

development, and m some cases, more so because the

system may have to remain online and accessible to

geographically dispersed users throughout the day.

Domain evolution. Changes in data semantics have

a more subtle effect on the system, Ventrone and
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Heiler [23] referred to this as domain evolution and

have documented a number of examples why this may

occur. Since we expect these changes to be infre-

quent (at least with respect to a single database),

the impact of domain evolution on small or stable

interoperable database systems is likely to be insignif-

icant. This however is no longer true for large-scale

systems, since large numbers of infrequent changes

in individual databases adds up to formidable recur-

ring events at the system level. For example, as-

suming an average of one change in three years for

any given database, an interoperable database system

with three hundred databases will have to contend

with 100 changes every year, which translates to two

changes every week! Domain evolution has significant

impact for integration strategies which rely on prior

resolution of semantic conflicts (e.g., object-oriented

multidatabase systems) since semantic changes en-

tail modifying definitions of types (and corresponding

conversion functions embedded in them). Consider

for instance, when databases reporting monetary val-

ues in French francs are required to switch to Euro-

pean Currency Units (ECUs). This change will re-

quire modifying all type definitions which have an at-

tribute whose domain (in some component databases)

is a monetary value reported in French francs. Since

there might be several hundreds of attributes hav-

ing monetary value as its domain, it is not hard to

imagine why a change like this would have dire ccm-

sequences on the availability and integrity of the sys-

tem.

4 The Context Interchange Framework

The key to the context interchange approach to achiev-

ing interoperability is the notion of context. We use

the word “context” to refer to the (implicit) assump-

tions underlying the way in which an interoperating

agent routinely represents or interprets data. Data

contexts, like event scripts [18], are abstraction mech-

anisms which allow us to cope with the complexities

of life. For example, in the US, a date string such

is “12/1/94” is unambiguously interpreted to mean

“December 1, 1994” and not “January 12, 1994” (and

certainly not “December 1, 2094”). Given sufficient

time, groups of individuals will tend to develop shared

assumptions with respect to how one should inter-

pret the data generated and owned by the group.

These shared assumptions are desirable because it re-

duces the cost of communication among members of

the group. In the same way, applications and indi-

vidual issuing queries to a data repository all have

their own assumptions as to how data should be rou-

tinely represented or interpreted. All is well when

these assumptions do not conflict with one another,

as is usually the case if databases, applications, and

individuals are situated in the same social context.

When multiple databases, applications, and individ-

uals transcending organizational or functional bound-
aries are brought together in an interoperable system,

the disparate data contexts each brings to the system

result in both schematic and semantic conflicts.

..........................

r- “’””~T\ Ontologies
............................

I

Data
Source

Figure 2: Context mediation in a simple

source-receiver system.

4.1 Context Interchange in Source-Receiver
Systems

We will first exemplify the key notions underlying the

context interchange strategy as depicted in Figure 2

with a simple scenario where there is only one data

source (i.e., a database or some other data repository)

and one data receiver (an application or user request-

ing for data) [21,22]. To allow data exchange between

the data source and data receiver to be meaningful,

data contexts specific to both are captured in an ez-

por-t contezt and an import contezt respectively: i.e.,
the export context captures those assumptions inte-
gral to the “production” of data in the data source,
and the import context captures those assumptions
which the data receiver will employ in interpreting
the data. The export and import contexts are de-
fined with respect to a collection of shared orztolo-
gies [6] which constitutes a shared vocabulary for con-

text definition. Intuitively, the shared ontologies are

needed because the only way disparity can be iden-

tified is when we have consensus for mapping real

world semantics to syntactic tokens in a consistent

manner. In this framework, data transmitted from

the data source to the data receiver undergo con-

text transformation supervised by a context media-

tor. The context mediator detects the presence of

semantic conflicts (if any) between data supplied by

the data source and data expected by the data re-

ceiver by comparing the export and import contexts,

and calls upon conversion functions (if available) to

reconcile these disparities.

To make the discussion more concrete, suppose the

data source is a database containing information on

stocks traded at the New York Stock Exchange and

the data receiver is a stock broker in Tokyo. The NYS

database reports the ‘[latest closing price” of each

stock in US dollars; the stock broker however might

be expecting to see the “latest trade price” in Yen.

Both sets of assumptions can be explicitly captured in

the export and import contexts, and the context me-

diator will be responsible for detecting any conflicts
between data provided by the source and the interpre-

tation expected by the receiver. When such a conflict

does occur (as in this case), the context mediator will
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attempt to reconcile the conflict by automatically ap-

plying the necessary conversion functions (e.g., con-

verting from US dollars to Yen). When relevant con-

version functions do not exist (e.g., from “latest clos-

ing price” to “latest trade price”), data retrieved can

still be forwarded to the data receiver but the system

will signal the anomaly. If the receiver is indifferent to

whether prices are “latest closing” or “latest trade”,

the disparity disappears and both types of prices will

be received by the receiver without any distinction.

Instead of passively defining the assumptions under-

lying their interpretation of data, receivers have also

the option of defining customized conversion functions

for reconciling semantic conflicts. For example, a user

might have reason to believe that exchange rates be-

tween two currencies should be something other than

what is currently available to the system and might

therefore choose to define his own conversion routines

as part of his import context.

4.2 Context Interchange with Multiple Sources
and Receivers

The strategy for achieving interoperability in a source-

receiver system can be generalized to the scenario

where there are multiple data sources and receivers.

Figure 3 illustrates what the architecture of such a

system might look like.

This architecture differs from the source-receiver

framework presented in Figure 2 in two significant

ways. First, because we now have multiple data sour-

ces and receivers, it is conceivable that groups of inter-

operating agents may be situated in similar social con-

texts embodying a large number of common assump-

tions. We exploit this fact by allowing commonly-

held assumptions to be shared among distinct inter-

operating agents in a supra- contezt, while allowing

the representation of idiosyncratic assumptions (i.e.,

those peculiar to a particular data source or receiver)

in individual macro-contexts. The export or import

context of each agent is therefore obtained by the

summation of assumptions asserted in the supra- and

micro-contexts. This nesting of one data context in

another forms a contezt bier-archy which, in theory,

may be of arbitrary depth.

Second, we need to consider how a user might for-

mulate a query spanning multiple data sources. As

noted earlier, two distinct modes have been identified

in the literature: data sources may be pre-integrated

to form a federated schema, on which one or more

external views may be defined and made available to

users, or, users may query the component databases

directly using their export schemas. We are convinced

that neither approach is appropriate all the time and

have committed to supporting both types of inter-

actions in the proposed architecture. In each case,

however, the context mediator continues to facilitate

interoperability by performing the necessary context

mediation.

4.3 Advantages Over Existing Integration Strate-
gies

We posit that a distinguishing feature of the context

interchange approach is its focus on the representa-

tion of disparate data semantics as opposed to the a

prior-t resolution of semantic conflicts (a characteris-

tic of tightly-coupled systems). This allows conflict

resolution to be (1) automated by a context media-

tor, and (2) deferred to the time when data IS actually

retrieved. We claim that this brings about a number

of features which are novel and advantageous over ex-

isting integration strategies.

Feature 1: Expliczt representation of and access to

semantzcs m data source

As we have illustrated via the example in Section 3.I,

the tight-coupling approach achieves integration by

encapsulating the semantics of data from disparate

sources in their mappings to the shared schema. One

disadvantage of this is that the “original” meaning of

the data is often unavailable to a user. For example,

the question ‘[how are student scores reported in the

source databases?” cannot be easily ascertained. Em-

bedding data semantics implicitly in this way poses a

number of problems. First, as was noted earlier, this

assumes a commitment to a canonical representation.

Second, because data semantics are not readily avail-

able, conflict resolution can only be done statically

as opposed to being performed on demand (see Fea-

ture 4). Third, since data semantics are defined with

respect to some shared schema, knowledge of data se-

mantics cannot be reused readily. For example, the

mapping function (e.g., Mapl) created for one fed-

erated schema will only be useful if the same exact

canonical representation is chosen for a second fed-

erated schema involving this database. Finally, this

approach suggests that the shared schema needs to be

constantly modified in response to changes in the sys-

tem (as new systems come on-line and existing ones

are retired) as well as changes in underlying data se-

mantics (e.g., when one system changes its represen-

tation of student grades). The last two points will be

further elaborated in the discussion under Feature 6.

Feature 2: Explicit representation of and access to

semantics underlying het erogenous recevuers

Another important distinction of the context inter-

change approach lies with its commitment to receiver

heterogeneity. We recognize that both data sources
and data receivers are autonomous and sovereign

agents and hence any strategy for achieving interop-

erability must be non-intrusive with respect to both.

Hence, instead of requiring data receivers to commit

to a canonical representation (as in classicaI integra-

tion strategies), we provide data receivers with the

flexibility of capturing the “routine” interpretation of

data in an import context. Unlike the use of external

views, the import context can be altered by users in

the query process and is not immutable. For exam-

ple, the import context of the aforementioned stock
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Figure 3: Context interchange with multiple data sources and data receivers.

broker can alter the import context of his query to re-

port in US Dollars using an extension of SQL (called

Contezt-SQL [16]:

select stkCode

from NYS

where stkPrice > 10

incontext stkPrice. currency = “US Dollars”;

Such a query might be useful if the stockbroker is
interested in seeing the raw data instead of the pro-
cessed data (which might introduce errors or unwar-
ranted assumptions). More generally, this ability to
alter one’s assumptions about how data should be in-
terpreted is often useful in response for complex de-
cision processes.

Feat ure 3: Support for both tight- and loose-coupling

integration strategies

Given that users frequently differ in their judgment

and preferences for data, the use of shared schemas

is not always appropriate since this presumes that

users’ requirements can be “frozen” in a schema. The

truth is, users rarely commit to a single conception of

the world and often change their behavior or assump-

tions as new data are being obtained. For example,

after receiving answers from a “cheap” but out-dated

database, a user might decide that the additional cost

of getting more up-to-date data is justifiable. These

observations suggest that users need to retain the pre-

rogative in selecting data sources from which data are

to be retrieved. On the other hand, shared schemas

are sometimes advantageous in that it helps achieve

resource transparency. The context interchange strat-

egy resolves this dilemma by supporting both the

tight- and loose-coupling approaches: hence, a query

can be formulated against a shared schema or against

multiple component schemas.

Feature 4: Automatic recognition and resolution (e.g.,
conversion) of semantic conflicts

A principal goal of the context interchange strategy is
to promote context t~ansparency: i.e., data receivers

are able to retrieve data from multiple data sources

situated in different contexts without having to worry

about how conflicts are resolved. Through the explicit

representation of data semantics in the export and

import contexts, detection and resolution of seman-

tic conflicts can be automated by a context mediator

which supervises context mediation only on demand:

i.e., in response to a query. This form of lazy eval-

uation provides data receivers with greater flexibil-

ity in defining their import context (i.e., the meaning

of data they expect, and even conversion functions

which are to be applied to resolve conflicts) and fa-

cilit at es more efficient query evaluation. A more in-

depth discussion on how data conversions take place

is found in [17].

Feature 5: Improved query optimization with con-

version considerations

As a natural consequence of “lazy evaluation” of data

conflicts, it becomes feasible to consider how a query

might be optimized by taking into consideration dif-
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ferent processing costs resulting from different sequ-

encing of conversion functions. Following the stock

example in Section 4.1, the query

select stkCode

from NYS where stkPrice > 1000;

issued by a Tokyo trader may be evaluated in two

ways2: (1) convert all prices in the NYS database to

Yen before performing the selectlon; or (2) convert

1000 Yen to its equivalent in US Dollars such that

the query can be directly evaluated by the DBMS

at NYS The latter query plan is obviously far more

superior. (Once again, a simple example is chosen

here for pedagogical reason; more complex conversion

sequences can be easily visualized. ) The point is that

performance gains through such optimization is likely

to be pronounced.

Feature 6: Improved scalability with loosely-coupled
system components and reusable semanttc knowledge

While both shared schemas and shared ontologies play

similar roles in providing a frame of reference for defin-

ing data semantics, the latter represents a much bet-

ter approach for a number of reasons. First, shared

schemas are often designed around the idiosyncratic

data requirements of specific tasks. The shared schema

designed for a particular integration tasks will often

not be reusable in a different cent ext. Shared ontolo-

gies, on the other hand, are intended to be domain-

dependent but context-independent: e.g., an ontology

for the world of “stock trades” is a good basis for un-

derstanding the meanings of trade data in a large va-

riety of systems. Second, while comprehensive shared

ontologies might be more difficult to construct, being

sharable and reusable means that exerting a greater

level of effort in its design is probably justifiable. This

notion is consistent with the endeavor of the Knowl-

edge Sharing Effort [6, 14], where it is envisioned that

opportunities exist for establishing a library of shared

ontologies which will allow existing systems to inter-

operate in a meaningful way. Third, by capturing the

semantics of data in local data contexts in a dispersed

manner (as opposed to doing so centrally in the def-

inition of a shared schema), component systems re-

main only loosely-coupled to one another, suggesting

that system evolution is less of a problem. Finally,

the use of the “context” mechanism allows semantic

definitions to be shared: for example, the reporting

of calendar dates in the US follows a MM-DD-YY

format by convention. By capturing and represent-

ing shared assumptions such as these, (1) adding a

new system or data element becomes easier since they

can simply inherit previous specifications (say, m the

supra-context), and (2) changes are easily accommo-

dated when they occur since only the assertion in the

relevant supra-context needs to be changed,

2Assurning that stock prices in the NYS database is
represented in US Dollars and the Tokyo trader is expecting

prices in Yen

Table 1 presents a comparison of the context inter-

change approach with other existing dominant strate-

gies along with the feat ures we have identified above.

We should point out that the assessment of each strat-

egy is based on adherence to the spwzt of the integra-

tion approach and thus are not sweeping statements

about particular implementations. This is inevitable

since there is a wide spectrum of implementations m

each category of systems, not all of which are well

described in the literature.

5 Conclusion

We have presented a new approach to interoperable

database systems based on the notion of context inter-

change. Unlike existing integration strategies which

focus on resolving schematic and semantic conflicts,

we have suggested that conflict resolution should be

secondary to the explicit representation of disparate

data semantics. This is achieved in our framework

by representing the assumptions underlying the in-

terpretations (attributed to data) in both export and

import contexts described with reference to a suite

of shared ontologies. By decoupling the resolution of

heterogeneity from its representation, we now have

a more flexible framework for efficient system imple-

mentations and graceful evolution especially critical

in large-scale dynamic environments.

The richness of this integration model has opened

up a wide range of research opportunist ies. First, we

recognize that the design of a shared ontology is a

complex task and there is a need for a well-defined

methodology for accomplishing this [7]. This prob-

lem manifests itself in other ways even after we have

a stock of ontologies for different domains. For ex-

ample, we would need to consider how different on-

tologies can be additively combined and how conflicts

should be resolved. Second, the deferment of con-

flict resolution to the time when a query is submitted

(as opposed to resolving this a priori in some shared

schema) presents new challenges for identifying new

query optimization strategies which are qualitatively

different from classical distributed query optimiza-

tion [12]. Another challenge lies with the design of a

suitable language for representing and querying data

and knowledge embodied in the system. Context-

SQL [16] provides an excellent vehicle for users who

might be interested in modifying their import con-

texts dynamically as queries are formulated. More

sophisticated languages and interactions are needed

to support users in querying the ontology and in iden-

tifying the information resources needed.

A prototype of a context interchange system is

currently being implemented in pursuit of these is-

sues. The current implementation uses Loom for the

representation of ontological and contextual knowl-

edge, and includes a conversion-based query optimizer.

This prototype is currently being applied to the inte-

gration of ten (real-world) financial databases which

provide a rich array of test cases.
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