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An Optimal Iterative Solver for Symmetric Indefinite Systems
Stemming from Mixed Approximation

DAVID J. SILVESTER, University of Manchester
VALERIA SIMONCINI, Università di Bologna

We discuss the design and implementation of a suite of functions for solving symmetric indefinite linear
systems associated with mixed approximation of systems of PDEs. The novel feature of our iterative solver is
the incorporation of error control in the natural “energy” norm in combination with an a posteriori estimator
for the PDE approximation error. This leads to a robust and optimally efficient stopping criterion: the
iteration is terminated as soon as the algebraic error is insignificant compared to the approximation error.
We describe a “proof of concept” MATLAB implementation of this algorithm, which we call EST MINRES,
and we illustrate its effectiveness when integrated into the Incompressible Flow Iterative Solution Software
(IFISS) package (cf. ACM Transactions on Mathematical Software 33, Article 14, 2007).
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1. INTRODUCTION

This article describes a novel algorithm for solving symmetric linear systems asso-
ciated with mixed approximation of systems of PDEs. Our approach has three key
ingredients: first, a block preconditioning strategy that engenders convergence with a
rate that is independent of the problem parameters; second, an effective adaptation of
the MINRES algorithm of Paige and Saunders [1975] which enables convergence in a
computable monotonically decreasing norm that is equivalent to the natural norm for
error estimation of the discrete solution; and third, the incorporation of a posteriori er-
ror estimation functionality which enables us to formulate a precise stopping criterion
for the linear solver so as to balance the algebraic error with the PDE approximation
error. In this sense our iterative method is optimal.
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To put this work into context, significant efforts have been put into the derivation of
estimates for the error norm for Krylov subspace solvers applied to symmetric and pos-
itive definite matrices—see, for example, Strakoš and Tichý [2002], Meurant [2005],
Meurant and Strakoš [2006], Golub and Meurant [1997]—which have in turn led to the
development of stopping criteria in the conjugate gradient method (CG) based on the
algebraic error norm. We note, however, that in these works there is the necessity of
estimating the unobservable quantity—the energy error—that is actually minimized
by the CG method. In the case of MINRES, the quantity that is minimized is the resid-
ual Euclidean norm—which is readily available. Thus from an algebraic point of view
no further estimates need to be determined. As we will see later, it is only when we
look into the origin of the algebraic system that the relevance of a “natural” norm be-
comes apparent. Further motivation for this philosophy can be found in Wathen [2007]
and, specifically for the class of problems considered here, in the work of Mardal and
Winther [2010]. The prominent role of the discretization error in the determination of
the algebraic stopping tolerance has also been recognized by other researchers; see, for
example, Arioli et al. [2005], Arioli and Loghin [2008], and Jiránek et al. [2010]. Our
article extends previous work in that the norm-equivalence constants that arise in the
stopping test are dynamically estimated in our algorithm. In contrast, constants need
to be estimated a priori in the approach of Arioli and Loghin [2008].

The remainder of the article is organised as follows. Section 2 sets up the governing
PDE framework. Two representative saddle point problems are identified, and ap-
proximation and error estimation are discussed. The block diagonal preconditioning
framework that is at the heart of the solver methodology is reviewed in Section 3. The
design of the stopping criterion is described in Section 4, and practical implementation
issues are discussed in Section 5.

2. SADDLE POINT PROBLEMS

Our aim is to design an optimal solver for discretized saddle point problems. These are
symmetric indefinite linear algebra systems[

A BT

B 0

] [
u
p

]
=

[
f
g

]
, (1)

which are associated with the finite-dimensional approximation of the following vari-
ational problem: find (u, p) ∈ V × Q such that

a(u, v) + b (v, p) = f (v), ∀v ∈ V, (2)
b (u, q) = g(q), ∀q ∈ Q. (3)

Here, V and Q represent Hilbert spaces; a : V×V → R is a symmetric bounded bilinear
form, b : V × Q → R is also a bounded bilinear form and f : V → R, g : Q → R are
linear functionals. Note that the fact that the two spaces V and Q are approximated
independently leads to the nomenclature mixed approximation.

Energy arguments lead to a natural norm for measuring the quality of approxima-
tion for functions in the space V × Q,∥∥(u, p)

∥∥
V×Q = ‖u‖V + ‖p‖Q .

This measure is referred to as the energy norm in the sequel.
In Section 3 we will follow the philosophy of Mardal and Winther [2010] for con-

structing a generic preconditioner for the saddle point system (1). To this end, we
define the dual spaces V∗ and Q∗, respectively, and introduce the duality pairing 〈·, ·〉.
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Then, if we associate the bilinear forms a and b with operators A : V → V∗ and
B : V → Q∗ so that

〈Au, v〉 = a(u, v) = 〈u,Av〉 and 〈Bu, q〉 = b (u, q) = 〈u,B∗q〉,
the problem (2)–(3) can be expressed in the “saddle point” form(

A B∗

B 0

) (
u
p

)
=

(
f
g

)
. (4)

A suitable preconditioner for (1) can then be defined by first identifying a precondi-
tioner for the associated continuous problem, and second, by ensuring that the dis-
cretization of the continuous problem is stable. Details are given later.

Systems of the form (2)–(3) arise when modeling elliptic or parabolic PDE problems
that are associated with constraints. Examples include linear elasticity (Navier-Lamé
equations), steady fluid flow (Stokes equations), and electromagnetism (Maxwell equa-
tions). See Brezzi and Fortin [1991] for a thorough overview of the approximation as-
pects and Benzi et al. [2005], pp. 9–20, for a detailed discussion of the properties of
the discretized system (1). The two PDE problems considered below are naturally self-
adjoint, and so give rise to symmetric linear systems if appropriately discretized. More
generally, saddle point problems can also be found in optimal control when minimizing
a cost functional with a non-self-adjoint PDE problem (e.g., the Navier-Stokes equa-
tions) as a constraint. This is a frontier topic of numerical analysis and we hope that
our “optimal solver” strategy will help stimulate research in this rapidly developing
field.

2.1 The Stokes Equations

The Stokes equations, given by

−∇2 
u + ∇ p = 
0, (5)
∇ · 
u = 0, (6)

on some domain � ⊂ R
n, together with boundary conditions


u = 
w on ∂�D,
∂ 
u
∂n

− 
np = 
0 on ∂�N, (7)

are a fundamental model for steady-state viscous flow. The variable 
u is a vector-
valued function representing the velocity of the fluid, and the scalar function p repre-
sents the pressure. Equation (5) represents conservation of the momentum of the fluid
and Equation (6) enforces conservation of mass. The crucial modeling assumption
is that the flow is low speed, so that convection effects can be neglected. Introduc-
ing vector-valued velocity functions 
v ∈ V := (H1

0(�))d and scalar pressure functions
q ∈ Q := L2(�), a variational formulation of (5)–(7) is given by

(∇ 
u,∇ 
v) − (p,∇ · 
v) = f (
v), ∀
v ∈ V, (8)
(q,∇ · 
v) = g(q), ∀q ∈ Q, (9)

where f , g incorporate the nonhomogeneous boundary data 
w on ∂�D, and (·, ·) repre-
sents the standard (either scalar or vector-valued) L2–inner product.1

1In our notation, the space H1
0(�) consists of functions whose trace is zero on ∂�D . We implicitly assume

that
∫
∂�N

ds > 0 so that p satisfying (5)–(7) is uniquely defined.
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Fig. 1. Q2–P−1 element (• velocity node; ◦ pressure;
↑→ pressure derivative).

To get to the representation (4), we identify the dual spaces V∗ := (H−1(�))d and
Q∗ := L2(�), respectively, and define operators A : V → V∗ and B : V → Q∗ so that

〈A 
u, 
v〉 = (∇ 
u,∇ 
v) and 〈B 
u, q〉 = −(∇ · 
u, q).

With these definitions, the problem (5)–(7) can be expressed in the form (4). Moreover
the coefficient matrix in (4), (

A B∗

B 0

)
=

(
−∇2 −∇

∇· 0

)
,

represents a mapping from V × Q onto V∗ × Q∗.
The discrete version of the Stokes problem (8)–(9) is immediate: given approxima-

tion spaces Vh ⊂ V and Qh ⊂ Q our aim is to compute (
uh, ph) ∈ Vh × Qh satisfying(
A B∗

B 0

) (

uh

ph

)
=

(
fh

gh

)
. (10)

Mixed finite-element approximation entails defining appropriate bases for the veloc-
ity and pressure finite-element spaces Vh and Qh, respectively, and constructing the
associated linear algebra system (1) for the coefficients in the basis expansion. This
system will have dimension nu + np, where nu and np, are the numbers of velocity and
pressure basis functions, respectively. We also note that in the linear algebra system
(1) the matrix A is a d× d block diagonal matrix with scalar Laplacian matrices defin-
ing the diagonal blocks; the matrix B is an np × nu rectangular matrix that represents
a discrete (negative–)divergence operator.

If the discretized problem (10), or equivalently (1), is to properly represent a
continuous Stokes problem, then the component approximation spaces Vh and Qh
need to be compatible. For example, if there are more pressure basis functions than
velocity basis functions then the associated linear algebra problem is necessarily
singular! It is well known that once the velocity approximation is fixed, then the
validity of a corresponding set of pressure basis functions is determined by whether
or not an inf-sup stability condition can be established.2 Low-order approximation
schemes are generally unstable. The stable methods that are built into IFISS are the
Q2–P−1 approximation, which has local degrees of freedom shown in Figure 1 and
the Taylor-Hood Q2–Q1 approximation, which is shown in Figure 2. The Q2–P−1
approximation combines continuous biquadratic approximation (Q2) for velocity
together with a discontinuous linear (P−1) pressure, and is widely regarded as being
the most cost-effective discretization approach for solving (Navier–)Stokes problems
in R

2. The Q2–Q1 method is stable but is less accurate than Q2–P−1: local mass
conservation is compromised because of the C0 pressure approximation.

An important ingredient in our optimal solution algorithm is the need to compute an
a posteriori error estimate for discrete solutions in the energy norm. That is, given a

2For an accessible discussion of inf-sup stability see Elman et al. [2005], Section 5.3.1.
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Fig. 2. Q2–Q1 element (• two velocity components; ◦ pressure).

candidate solution ( 
uh, ph) ∈ Vh × Qh (not necessarily the Galerkin solution satisfying
(10)), we want to compute an estimate η which is equivalent to the exact error in the
sense that

c η ≤ ∥∥∇( 
u − 
uh)
∥∥ + ‖p − ph‖ ≤ C η, (11)

with C/c ∼ O(1). There are a number of possible approaches. The specific strategy
that is built into the IFISS package is based on solving local Poisson problems for each
velocity component over a suitably enlarged approximation space 
QT . The approach
is discussed in detail in Elman et al. [2005], Section 5.4.2. Having computed element
interior residuals 
RT := {∇2 
uh − ∇ ph}|T and RT := {∇ · 
uh}|T , and edge residuals
(equidistributed stress jumps) 
RE := 1

2 [[∇ 
uh − ph
I ]], a velocity error estimate 
eT ∈ 
QT
is computed satisfying

(∇
eT,∇ 
v)T = ( 
RT, 
v)T −
∑

E∈E(T)

〈 
RE, 
v〉E, ∀
v ∈ 
QT, (12)

for every element in the grid. A local error estimator is then given by the combination
of the “energy norm” of the velocity error and the L2 norm of the element divergence
error, that is,

η2
T :=

∥∥∇
eT
∥∥2

T + ‖RT‖2
T . (13)

The global error estimator is η :=
(∑

T∈Th
η2

T

)1/2. This style of error estimation was
introduced for the lowest-order stabilized P1–P0 approximation by Kay and Silvester
[1999] and is a refinement of the methodology introduced by Ainsworth and Oden
[1997]. Regarding the effectiveness of the estimator in the sense of (11), numerical
results obtained in Liao and Silvester [2010] using the Q2–P−1 approximation suggest
that the equivalence is tight if (
uh, ph) also solves (10). Note that Galerkin orthogonal-
ity is not used in the analysis in Liao and Silvester [2010]—this means that the bound
(11) is valid for any function in the approximation space. We will come back to this
issue in Section 4.2.

2.2 Potential Flow Equations

Our second example is an idealized model of incompressible flow:

−
u + ∇ p = 
0, (14)
∇ · 
u = 0, (15)

on some domain � ⊂ R
n, together with boundary conditions


u · 
n = 0 on ∂�N, p = s on ∂�D. (16)

The additional modeling assumption in this case is that the flow is irrotational
∇ × 
u = 
0, so that viscous effects can be neglected. Introducing vector-valued

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 42, Publication date: February 2011.
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Fig. 3. RT0 element (• normal velocity component; ◦ pressure).

velocity functions 
v ∈ V := H0(div,�) and scalar pressure functions q ∈ Q := L2(�), a
standard variational formulation of (14)–(16) is given by

( 
u, 
v) + (p,∇ · 
v) = f (
v), ∀
v ∈ V, (17)
(q,∇ · 
v) = 0, ∀q ∈ Q, (18)

where f incorporates the nonhomogeneous boundary data on ∂�D. The space
H0(div,�) consists of all vector fields in (L2(�))d with divergence in L2(�) and which
have vanishing normal component on ∂�N.

To get to the representation (4), we identify the dual spaces V∗ := H0(div,�)∗ and
Q∗ := L2(�), respectively, and define operators A : V → V∗ and B : V → Q∗ so that

〈A 
u, 
v〉 = ( 
u, 
v) and 〈B 
u, q〉 = (∇ · 
u, q).

In this case V × Q is mapped onto V∗ × Q∗ by the matrix operator(
A B∗

B 0

)
=

(
I −∇

∇· 0

)
. (19)

A different representation of the original problem can be obtained by integrating
the pressure terms in (17)–(18) by parts. Appropriate solution spaces are then 
v ∈
V := (L2(�))d and Q := H1

0(�) and the variational formulation of (14)–(16) is given by

( 
u, 
v) − (∇ p, 
v) = f (
v), ∀
v ∈ V, (20)
(∇q, 
v) = 0, ∀q ∈ Q, (21)

where f again incorporates the nonhomogeneous boundary data on ∂�D. In this case
we can define operators A : V → V∗ and B : V → Q∗ so that

〈A 
u, 
v〉 = ( 
u, 
v) and 〈B∗ p, 
v〉 = −(∇ p, 
v) = 〈p,B 
v〉,
and we see that the alternatively defined space V × Q is also mapped onto its dual

V∗ × Q∗ by the very same matrix operator as in (19).
As in the Stokes case, mixed finite-element approximation entails defining appropri-

ate bases for the velocity and pressure finite-element spaces Vh and Qh, respectively,
and then constructing the system (1) for the coefficients in the basis expansion. The
simplest choice of basis functions which leads to a stable approximation is the Raviart-
Thomas flux approximation (normal components of velocity defined on the edges of
triangles or rectangles in R

2) together with a piecewise constant pressure. The local
degrees of freedom for a triangular RT0 element are shown in Figure 3.

Using this mixed approximation, the linear algebra system (1) will have dimension
nu +np, where nu is the number of element edges (excluding ∂�N) and np is the number
of elements. Morever the matrix A is just a Grammian matrix (approximating the
identity) and the matrix B is an np × nu rectangular matrix that represents a discrete
(positive–)divergence operator.

3. PRECONDITIONING FRAMEWORK

Working in the framework of Mardal and Winther [2010], generic preconditioners for
(1) naturally arise if we have a suitable preconditioner for the associated continuous

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 42, Publication date: February 2011.
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problem (4). Specifically, having identified a suitable function space setting, then a
canonical preconditioner for the saddle point problem (4) is the 2 × 2 block diagonal
matrix operator that maps the dual space V∗ × Q∗ back into the original space V × Q.
Running through our examples:

— Stokes preconditioning. In this case, we require a block matrix operator taking
(H−1(�))d to (H1

0(�))d and a scalar operator that takes L2(�) to itself. The canonical
preconditioning operator is thus

M =

(
(−∇2)−1 0

0 I−1

)
. (22)

This approach was originally suggested by Rusten and Winther [1992] and devel-
oped by Silvester and Wathen [1994]. An alternative justification was given in El-
man et al. [2005], Section 6.2.

— Potential flow preconditioning. In this case, the matrix coefficient operator maps
H0(div,�)×L2(�) onto its dual space. The canonical preconditioning operator turns
out to be

M =

(
(I − grad div)−1 0

0 I−1

)
. (23)

This approach was introduced by Arnold et al. [1997].
— Alternative potential flow preconditioning. As discussed above, the matrix coeffi-

cient operator also maps V := (L2(�))d and Q := H1
0(�) onto their dual spaces. The

generic preconditioning operator is thus

M =

(
I−1 0
0 (−∇2)−1

)
. (24)

For a practical solution algorithm, if the linear algebra system (1) to be solved has
dimension n, then the action of a discrete version of M needs to be effected in O(n)
work. That is, the component blocks appearing in (22)–(24) must be replaced by cost-
effective operators with equivalent mapping properties:

— mass matrix preconditioning (I−1 operator);
— negative Laplacian preconditioning ((−∇2)−1 operator);
— H(div) preconditioning ((I − grad div)−1 operator).

Implementation of the first two of these operators is (essentially) independent of
the spatial discretization. We discuss these components in more detail below. The
H(div) operator is more difficult to implement in a “black-box” setting since standard
(elliptic–) multigrid algorithms are not applicable. Typically, special smoothers are
needed, possibly in combination with a geometric grid hierarchy. Efficient algorithms
were given by Arnold et al. [2000] and Hiptmair and Xu [2007].

3.1 Mass Matrix Preconditioning

Using a discontinuous finite-element approximation space (e.g., the Q2–P−1 approx-
imation for Stokes flow, so that Qh = span{φk}np

k=1), the associated Grammian matrix
Iij := (φ j, φi) is diagonal. In such cases, the action of I

−1 can be explicitly computed
with np division operations. If the approximation is C0 however (e.g., using the Q2–Q1
approximation for Stokes flow (or RT0 velocity approximation)), then the best strategy

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 42, Publication date: February 2011.
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Table I. Spectral Bounds for Q1 Mass Matrix Preconditioner

its 5 10 20

grid θ � θ � θ �

Uniform 16 × 16 0.883 1.234 0.986 1.003 1.000 1.000
Uniform 64 × 64 0.883 1.234 0.986 1.003 1.000 1.000

Stretched 64 × 64 0.883 1.234 0.986 1.003 1.000 1.000

Table II. Spectral Bounds for RT0 Mass Matrix Preconditioner

its 3 5 10

# elments θ � θ � θ �

585 triangles 0.852 1.118 0.971 1.034 0.999 1.001
980 triangles 0.852 1.118 0.971 1.034 0.999 1.000

is to perform a fixed (and small) number of Jacobi iterations with Chebyshev acceler-
ation; see Wathen and Rees [2009].3 The quality of the approximation is determined
by its, the number of Chebyshev iterations performed. This is shown by the spectral
bounds in Table I. Here θ and � are the extremal eigenvalues satisfying

θ ≤ pT
I p

pTI∗ p
≤ �, (25)

where I is the Q1 mass matrix and I∗ is the inverse of the matrix operator com-
puted by applying our Chebyshev semi-iteration successively to the canonical vectors
e1, . . . , enp . In all cases, the domain � is (−1, 1) × (−1, 1). The 64 × 64 stretched grid
is refined next to the sides of the square and the element aspect ratios vary from 1:1
at the corners to 18:1 at the midsides. Looking at these results, it is evident that the
action of I

−1 is efficiently computed by our preconditioner, independently of the grid
resolution and the stretching of the grid.

Similarly encouraging results for RT0 approximation are given in Table II. Here θ
and � are the extremal eigenvalues satisfying (25), where I is the RT0 velocity approx-
imation mass matrix. Results are given for two nonuniform triangular meshes. These
are associated with discretization of problems P1 and P3 from the PIFISS toolbox, and
are described in Silvester and Powell [2007].

3.2 Negative Laplacian Preconditioning

A standard “black-box” approach is to approximate the inverse Laplacian by a fixed
number of algebraic multigrid (AMG) V–cycles.4 The quality of the approximation is
typically determined by nv, the number of V cycles performed. This is shown by the
spectral bounds in Table III. Here λ and 	 are the extremal eigenvalues satisfying the
Rayleigh quotient bounds

λ ≤ uT
Au

uTA∗u
≤ 	, (26)

where A is the scalar Q2 stiffness matrix and A∗ is the AMG approximation to the
inverse of the matrix operator. For comparison, the Q2 grids have the same number
of degrees of freedom as the Q1 grids in Table I. For the 64 × 64 stretched grid, the
element aspect ratios vary from 1:1 at the corners to 16:1 at the midsides. Athough
the AMG effectiveness does deteriorate with increasing aspect ratio, we are happy to

3Our implementation of this algorithm is the function m masscheb.m in release 3.1 of IFISS.
4Our implementation of this algorithm is the function m amgzz.m in release 3.1 of IFISS.
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Table III. Spectral Bounds for Negative Laplacian Matrix Preconditioner

nv 1 2 4

grid λ 	 λ 	 λ 	

Uniform 8 × 8 0.864 1.000 0.981 1.000 1.000 1.000
Uniform 32 × 32 0.831 1.000 0.971 1.000 0.999 1.000

Stretched 32 × 32 0.447 1.000 0.694 1.000 0.906 1.000

see that the spectral bounds remain independent of the grid dimension if the aspect
ratio is kept fixed under refinement.

4. OPTIMAL STOPPING CRITERIA

Our target saddle point system (1) is to be solved using EST MINRES, a specially
tailored version of MINRES.5 There are two novel features in the algorithm: the es-
timation of the algebraic error, and the inclusion of an estimate of the discretization
error. These two features are discussed in turn.

4.1 Algebraic Error Estimation

Expressing the target system (1) in the standard form Kx = b and given a zero initial
vector x(0) = 0, MINRES computes a sequence of iterates x(1), x(2), x(3), . . . with the
property that the 
2-norm of the mth residual

‖r(m)‖ = ‖b − Kx(m)‖ = ‖K(x − x(m))‖
is minimized over the Krylov space

Km(K, b) = span {b, Kb, . . . , Km−1b}.
If the iteration is preconditioned by a positive definite and symmetric matrix operator
M = HT H (corresponding to a discrete version of M above) then the preconditioned
residual norm

‖Hr(m)‖ = ‖r(m)‖M (27)

is correspondingly minimized over the Krylov space H Km(KM, b). This means that
the reduction of the residual error in the EST MINRES algorithm is with respect to a
discrete norm that explicitly involves the preconditioner M. This reinforces the point
that the choice of preconditioner is crucially important.

If the mininimization process (27) is interpreted in the underlying function space
setting, then the motive for choosing M to be a discrete version of the operator M in
Section 3 is clear. Since residuals from the dual space V∗ × Q∗ are mapped by M
into approximations in the original space, we anticipate that a monotonic reduction of
residual errors in the range of the preconditioner will lead to monotonic convergence
in the error norm associated with V × Q. In terms of linear algebra, a more precise
characterization is the following: given an error vector e(m) = x−x(m) with an associated
residual vector r(m) = Ke(m), we hope to find constants c and C (independent of the
dimension of the linear algebra system) such that

c ‖e(m)‖E ≤ ‖r(m)‖M ≤ C ‖e(m)‖E, (28)

where M = E−1, with E the block diagonal matrix representing the norms associated
with the underlying space V × Q; see Mardal and Winther [2010], Section 6. This
characterization will inevitably be application specific—for example, the upper bound

5Our implementation is encoded in the function est minres.m in release 3.1 of IFISS.
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C is inherited from the boundedness of the bilinear forms a and b appearing in the
underlying variational formulation. The lower bound c in (28) is even harder to pin
down since it typically depends on the inf-sup stability constant(s) associated with the
discretization of V and Q. Estimation of such stability constants was discussed by
Elman et al. [2005], Chapter 6, and Powell and Silvester [2004] for Stokes flow and
potential flow, respectively. We summarize the key results below.

We discuss Stokes flow first. To connect with the notation in Elman et al. [2005], we
let A represent the d × d discrete vector Laplacian with diagonal block A, and let Q
represent the pressure mass matrix I. Thus our matrix operators take the form

K =

[
A BT

B 0

]
, E =

[
A 0
0 Q

]
, and M =

[
A−1 0

0 Q−1

]
. (29)

The inf-sup stability of the Stokes mixed approximation is associated with the pres-
sure Schur complement equivalence

γ 2 ≤ qT BA−1 BTq
qT Qq

≤ �2 ≤ d, (30)

where γ is the inf-sup constant and d is the spatial dimension. If we assume that the
discretization is stable in the sense of (30), then bounds (28) can be readily established
(Elman et al. [2005], Theorem 6.9, with δ = � = 1 and θ = � = 1) with constants
given by

c2 = γ 2
(

1 + 1/2 γ 2 −
√

1 + 1/4 γ 4

)
and C2 = max

{
2 + �2, 2�2} .

Making the asymptotic simplification (1+x)1/2 = 1+ 1/2 x gives c2 ∼ 1/2γ 4, and inverting
(28) then leads to the heuristic

‖e(m)‖E ≤
√

2
γ 2 ‖r(m)‖M, (31)

which gives us a criterion for stopping the EST MINRES iteration; see later. To illus-
trate the utility of the heuristic (31), Figure 4 shows the evolution of the errors ‖r‖M
and ‖e‖E when ideally preconditioned MINRES is applied to a representative flow
problem6 discretized using Q2–P−1 mixed approximation on a uniform square grid.
The upper bound in (31) is also tracked (γ 2 ≈ 0.0247 is found by computing the mini-
mum eigenvalue of the pressure Schur complement problem associated with (30)) and
can be seen to provide a reliable bound for the algebraic error ‖x − x(m)‖E. We note
that the energy error is sandwiched between the preconditioned residual error and the
upper bound estimate throughout the iteration process.

There are two issues that need to be addressed if a practical implementation is to
be developed. The first issue is that in practice, as discussed in Section 3, the ideal
preconditioner M = E−1 is replaced by a spectrally equivalent operator M∗, which
leads to convergence of the residual in the M∗ norm rather than the M norm. While
we could take account of this by estimating the equivalence constants associated with
the approximation M∗ ∼ M, we prefer to keep things simple. (Our implementation
provides a built-in estimate for λ in (26), but we defer discussion until later.) Thus, for

6IFISS problem S2: flow over a step—the convergence curves in Figure 4 are for 
 = 4, but visually identical
convergence curves are obtained if the grid resolution parameter is increased.

ACM Transactions on Mathematical Software, Vol. 37, No. 4, Article 42, Publication date: February 2011.



TOM00053 ACM (Typeset by SPi, Manila, Philippines) 11 of 22 February 24, 2011 15:33

Optimal Solver for Saddle Point Systems 42:11

Fig. 4. Optimally preconditioned MINRES for Stokes flow: errors versus iteration number.

a given accuracy tolerance tol we stop the EST MINRES iteration at the first iteration
k that satisfies the simple stopping test:

√
2

γ 2 ‖r(k)‖M∗ ≤ tol, with ‖e(k)‖E ∼
√

2
γ 2 ‖r(k)‖M∗ . (32)

Taking this approach it is important that the approximation of M by M∗ be suffi-
ciently accurate. For the discretized flow problem in Figure 4, the results in Section 3.2
suggest that if sufficiently many AMG V-cycles are taken then the impact on conver-
gence will be minimal.7 Comparing the convergence curves shown in Figure 5 with
the exact case analogues in Figure 4, we see that there is very close agreement, espe-
cially in the right-hand plot. Moreover, independent of the number of V cycles that are
performed, the energy error remains sandwiched between the preconditioned residual
error and the quantity that is used to stop the iteration in (32).

The second practical issue associated with (32) is the need to explicitly compute
the inf-sup constant. Finding the minimum eigenvalue of the pressure Schur comple-
ment problem (30) is not viable in general. We note that if a flow problem is solved
on a nested mesh sequence then a more cost-effective strategy is to pre-compute γ 2 by
simply extrapolating estimates obtained by solving the eigenvalue problem associated
with (30) on coarse meshes. Herein we propose an alternative approach that does not
require coarse mesh estimates. Our idea is to compute estimates for γ 2 on the fly by
exploiting the connection between the MINRES iteration and the Lanczos estimates of
the eigenvalues of the preconditioned matrix. The key ingredient is the spectral analy-
sis in Elman et al. [2005], Theorem 6.6, which gives bounds for the largest negative
eigenvalue λ− and the smallest positive eigenvalue λ+ of the matrix M∗K:

λ− ≤ 1/2

(
δ −

√
δ2 + 4δγ 2

)
and δ < λ+. (33)

7Looking at Table III, we see that taking just one or two V cycles will suffice, especially in the case of uniform
grids.
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Fig. 5. Preconditioned MINRES for Stokes flow: negative Laplacian preconditioning with one V cycle (left)
and four V cycles (right).

If we assume that these two bounds are tight and invert (33) then we get the
estimate

γ 2
k =

(
λ2

− − λ−λ+
)
/λ+, (34)

which can be computed at every step of EST MINRES from the associated Lanczos
estimates for λ− and λ+ at that iteration. The details are given in Section 5. Results
obtained when γ 2 is replaced by γ 2

k in the upper bound estimate for our test problem
are shown in Figure 6. Comparing the upper bounds with those in Figure 5, we see
very close agreement as the iteration proceeds (the red lines are indistinguishable
for k > 20). This suggests that the bounds in (33) are tight. It also shows that
the Lanczos convergence to the eigenvalues closest to zero is rapid enough for this
strategy to be of practical use. There is another bonus—the computed estimates
of λ+ converge to the lower bound λ in (26). This means that we are given a free
estimate of the accuracy of the approximation M∗ ∼ M as the EST MINRES iteration
proceeds.

Turning to potential flow, we will see that analogous issues arise. We restrict our
attention to ideal H(div) preconditioning herein—a more complete discussion of MIN-
RES preconditioning using discrete versions of (23) and (24) is given by Powell and
Silvester [2004]. Thus, if we let I represent the RT0 mass matrix, and let Q represent
the diagonal pressure mass matrix, then the analogue of the stability bound (30) is the
pressure Schur complement equivalence (cf. (30)):

β2 ≤ qT B(I + D)−1 BTq
qT Qq

≤ 1, (35)

where β plays the role of the inf-sup constant and the nu × nu matrix D = BT Q−1 B is
a representation of the L2-norm of the divergence operator. Our stopping criterion in
this case is based on the heuristic

‖e(m)‖E ≤ 1
β2 ‖r(m)‖M. (36)
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Fig. 6. Preconditioned MINRES for Stokes flow with dynamic estimation of γ 2: negative Laplacian pre-
conditioning with one V cycle (left) and four V cycles (right).

Next, from Powell and Silvester [2004], Corollary 2.4, we quote some simple eigen-
value bounds for the matrix M∗K :

λ− ≤ −β2 and 1 = λ+. (37)
So we see that, mirroring the Stokes case, the lower bound λ− gives a mechanism

for estimating β2 on the fly as

βk =
√−λ−, (38)

where λ− is an estimate of the largest (closest to zero) negative eigenvalue of the coef-
ficient matrix by the Lanczos recurrence.

Figure 7 shows the evolution of the errors ‖r‖M and ‖e‖E when ideally precondi-
tioned MINRES is applied to a representative flow problem from Silvester and Powell
[2007]8 discretized using RT0 mixed approximation on a mesh of 9360 triangles. The
upper bound in (36) is also tracked with β2

k estimated at every step via (37). Note that
β2 ≈ 0.664. MINRES convergence is rapid—much faster than for Stokes flow—and
the three curves plotted are not easily distinguished. Looking closely we see that the
energy error stays below the upper bound after the third iteration. Refined eigenvalue
bounds in the case of inexact H(div) preconditioning were developed by Powell [2005].

4.2 Discretization Error Estimation

If our algorithm is to be run in a “black-box” fashion, then we need to connect
the absolute tolerance in the stopping test (32) with the PDE discretization error∥∥ 
u − 
uh

∥∥
V + ‖p − ph‖M. If we have an a posteriori estimator for the error, and if it

is applicable to any function ( 
uh, qh) ∈ Vh × Qh as in (13), then one possibility is to es-
timate the error at every iteration (the iterates x(1), x(2), x(3), . . . can be associated with
a sequence of functions from Vh × Qh). For example, for Stokes flow, we know from (11)
that

c η(m) ≤ ‖∇( 
u − 
u(m)
h )‖ + ‖p − p(m)

h ‖ ≤ C η(m), m = 1, 2, 3 . . . ,

8PIFISS problem P3: flow around a cylinder—the convergence curves in Figure 7 do not change if the grid
resolution is increased.
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Fig. 7. H(div) preconditioned MINRES for potential flow: dynamic estimation of β2.

so a simple strategy is to stop the EST MINRES iteration when the algebraic error is
comparable with the estimate of the discretization error η(m), that is, as soon as

√
2

γ 2 ‖r(m)‖M∗ ≤ η(m), (39)

with ‖e(m)‖E ∼
√

2
γ 2 ‖r(m)‖M∗ and η(m) ∼ ‖
u − 
u(m)

h ‖V + ‖p − p(m)
h ‖M. (40)

A rigorous justification for this choice was given by Jiránek et al. [2010], Theo-
rem 6.3. Looking at the specific Stokes flow test problem (flow over a step) used in
Section 4.1, the results in Figure 8 illustrate why we might consider adopting the
dynamic stopping test (39). The evolution of errors shown in Figure 8 are directly com-
parable with those in Figure 6; for clarity we have simply removed the algebraic errors
‖x − x(m)‖E and plotted the evolution of the approximation error estimate η(m) instead.
Note that, as the iteration proceeds, the algebraic error becomes insignificant relative
to the approximation error. The termination point associated with the refined stop-
ping test (39) is marked with an “∗”. Thus, if the stopping test (39) is “hard-wired” into
EST MINRES then the iteration is terminated after only 28 steps if we take one V
cycle of AMG. If the four V cycle AMG preconditioner is used instead, then
EST MINRES stops after 26 steps.

In the example above, the value of η (i.e., the discretization error estimate achieved
when the MINRES iteration converges) is relatively large η ≈ 0.269. This is bigger
than might be anticipated because the flow over step problem solved in Figure 8 is sin-
gular at the reentrant corner—severely impinging on the attainable solution accuracy.
Thus, as the grid is refined, the convergence in energy is slow: behaving like O(h2/3)
independent of the order of the mixed approximation.

Analogous results obtained for a more regular (enclosed–) flow problem9 are shown
in Figure 9. In this case, the spatial convergence is much more rapid, which explains

9IFISS problem S4: smooth colliding flow with a quartic polynomial velocity solution.
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Fig. 8. Preconditioned MINRES for Stokes flow over a step with dynamic estimation of η: Negative Lapla-
cian preconditioning with one V cycle (left) and four V cycles (right).

Fig. 9. Preconditioned MINRES for Stokes flow in a square domain with dynamic estimation of η: negative
Laplacian preconditioning with one V cycle: 8 × 8 grid (left) and 32 × 32 grid (right).

the very different position of ∗ in the left and right plots. For the coarse grid computa-
tion, the automatic stopping test leads to termination after 10 iterations. The spatial
approximation is 16 times smaller for the fine-grid computation—thus more MINRES
iterations must be taken to reduce the algebraic error to a level that is commensu-
rate with the approximation error. The stopping test suggests that 21 iterations would
suffice in this case.

The results reported in Table IV show the variation in “optimal” iteration count k∗
when this flow problem is approximated with increasing spatial resolution. We know
from a priori error analysis (see e.g., Elman et al. [2005], Section 5.4.1) that the spatial
accuracy of Q2–P−1 approximation is O(h2) in the energy norm if the flow solution
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Table IV. Variation of Estimated Spatial Accuracy with Increased Grid Refinement
for Smooth Solution

grid k∗ η ‖∇ · 
uh‖
Uniform 8 × 8 10 9.71 × 10−1 2.97 × 10−2

Uniform 16 × 16 17 2.54 × 10−1 3.66 × 10−3

Uniform 32 × 32 21 6.51 × 10−2 4.56 × 10−4

Uniform 64 × 64 24 1.64 × 10−2 5.69 × 10−5

is sufficiently smooth. This behavior is clearly evident in the tabulated values of η.
We also note that the divergence residual error is converging at a faster rate (O(h3)),
which means that the estimated error η is increasingly dominated by the velocity error
component in (13) as h is reduced.

5. SOFTWARE DESIGN AND IMPLEMENTATION ASPECTS

To set up notation for this section, consider solving the linear system K̂x̂ = b̂,
with K̂ representing the symmetric and indefinite preconditioned matrix. As al-
ready mentioned, MINRES generates a sequence of approximations x̂(m), m = 1, 2, . . .,
with x̂(m) ∈ Km(K̂, b̂), such that the residual r̂(m) = b̂ − K̂x̂(m) is minimized. Let
{w(1), . . . , w(m)} be a set of orthonormal vectors spanning Km(K̂, b̂), with w(1) = b̂/‖b̂‖,
and let Wm = [w(1), . . . , w(m)]. These vectors can be generated iteratively by means of
the following well-known recurrence:

K̂Wm = WmTm + tm+1,mw(m+1)eT
m =: Wm+1Tm, (41)

where em is the mth vector of the canonical basis and Tm is a tridiagonal symmetric
matrix containing the orthogonalization coefficients; see Greenbaum [1997], Section
2.5, or Saad [2003], Section 6.6, for full details. Using (41) we readily obtain the fol-
lowing relationship for the approximation x̂(m) = Wmy(m):

r̂(m) = b̂ − K̂x̂(m) = Vm+1

(
e1‖b̂‖ − Tmy(m)

)
.

The minimizing solution x̂(m) is thus obtained by solving the least-squares problem
miny ‖e1‖b̂‖ − Tmy‖. Thanks to the tridiagonal form of Tm, the least-squares solution
can be updated without explicitly solving the (m + 1) × m problem at each iteration.
This can be efficiently done on the fly by means of Givens rotations; see Greenbaum
[1997], Algorithm 4, and the actual implementation shown in Figure 10.

The Lanczos relation in (41) can be used to show that Tm = WT
mK̂Wm, so that the

eigenvalues of Tm, also referred to as Ritz values, provide approximations for the eigen-
values of K̂. For a moderate space dimension m, the work of Parlett [1998], Chapter
13, showed that the extreme eigenvalues can give very accurate estimates for the cor-
responding eigenvalues of K̂. In our context, K̂ is indefinite, and we are interested
in good approximations to the interior (closest to zero) eigenvalues, so as to obtain
estimates such as (34) for γk and (38) for βk. Unfortunately, Ritz values do not, in
general, approximate interior eigenvalues accurately. Fortunately, the matrices gen-
erated within the Lanczos process also allow us to compute so-called harmonic Ritz
values: θ1, . . . , θm, which are the m roots of the residual polynomial φm, defined as
r(m) = φm(K̂)b̂, with

φm(θ ) =
1

φ̂m(0)
φ̂(θ ) and φ̂(θ ) =

m∏
j=1

(θ − θ j).
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Using the Lanczos relation in (41) and its connection to polynomial recurrences, the
harmonic Ritz values can be computed by solving the following generalized eigenvalue
problem (see Morgan [1991] for an early implementation):

TT
m Tmu = θ Tmu.

We refer the reader to Freund [1992], and to Paige et al. [1995] for a proof that these
eigenvalues are indeed the roots of the residual polynomial. Morgan [1991] observed
that the harmonic Ritz values tend to approximate first the interior eigenvalues, and
he used these values to minimize the Rayleigh quotient for K̂−1. Paige et al. [1995]
showed that the inverses of the harmonic Ritz values are weighted means of the in-
verses of the eigenvalues of K̂−1. Both arguments suggest that harmonic Ritz values
are tightly related to a spectral approximation procedure for K̂−1, which is exactly
what we want in our algorithm.

Another useful feature of harmonic Ritz values is that the smallest positive value
approximates the smallest positive eigenvalue of K̂ from above, while the largest
negative harmonic Ritz value approximates the largest negative eigenvalue of K̂ from
below. Therefore, any interval containing zero that is free of K̂ ’s eigenvalues is also
free of harmonic Ritz values. It was also experimentally observed by Paige et al. [1995],
p. 129, that “the minimum residual process converges much faster after the smallest
positive eigenvalue and the largest negative one have been approximated sufficiently
well” by the harmonic Ritz values. This behavior can be observed in Figure 6, where
the convergence markedly improves at the point where the approximation of γ by the
interior harmonic Ritz estimation process settles down. This phenomenon is more gen-
erally associated with the convergence of the extremal eigenvalues of positive definite
matrices. In the indefinite case, however, the convergence behavior is strongly influ-
enced by the eigenvalues closest to zero (see Greenbaum [1997], Section 3.1) and thus
it is not surprising that accurate approximations to these eigenvalues speed up con-
vergence. In our context, such behavior implies that an accurate computation of the
error estimate is to be expected as soon as the underlying MINRES iteration starts
converging.

A template of the MINRES algorithm which has our built-in stopping test is given in
Figure 10. The two preconditioner constructions in Section 4.1 are differentiated by the
value assigned to the switch prob type. The algorithm calls three external functions.
The first of these is the preconditioning function PREC, which returns a vector z, which
effects the result of multiplying the input vector by the preconditioning matrix M∗
as discussed in Section 3. The second external function PARAM EST is described in
Figure 11. It returns the parameter that is used to scale the residual norm in the
stopping criteria (34) and (38). The third external function is ERROR EST. If an energy
error estimator is available as discussed in Section 4.2 then this function generates
the error estimate η(m) that is associated with the current MINRES solution iterate.
If a discretization error estimator is not available, as in Section 4.2, then the value of
η(m) that is returned by ERROR EST can simply be set to a fixed algebraic tolerance tol
that is less than the anticipated discretization error.

A more efficient procedure to determine the harmonic Ritz values consists in re-
casting the generalized eigenvalue problem as a standard eigenvalue problem with a
rank-one modification of Tm; see Paige et al. [1995]. The use of an effective precondi-
tioner generally guarantees that a large number of iterations will not be performed.
Nonetheless, if this did happen, then one could consider computing only the required
interior harmonic Ritz values.

To conclude this discussion, we reproduce a MATLAB session below that shows the
utility of the EST MINRES implementation within the IFISS software package, a
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Fig. 10. The EST MINRES algorithm.

Fig. 11. Specification of associated function PARAM EST.

full description of which can be found in the algorithm paper of Elman et al. [2007].
The specific Stokes flow problem under consideration is the analytic problem (S4)
that features in the right-hand plot in Figure 9. The discrete saddle point problem is
assembled at the start of the session by calling the driver stokes testproblem. For
the chosen mixed approximation and grid parameter, the saddle point system is of the
form (10) with nu = 8450 and np = 3072. The “exact” discrete solution xst is computed
via the built-in (“backslash”) sparse solver. Note that the ill-conditioning warning is
generated because the discrete Stokes system has a one-dimensional null space in
exact arithmetic; see Elman et al. [2005], pp. 224–229, for a full discussion. The call
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to the error estimator function stokespost postprocesses the solution vector xst and
outputs the computed values of η and ‖∇ · 
uh‖ given in Table IV.

>> stokes_testproblem, stokespost
specification of reference Stokes problem.
choose specific example (default is cavity)

1 Channel domain
2 Flow over a backward facing step
3 Lid driven cavity
4 Colliding flow

: 4

Grid generation for cavity domain.
grid parameter: 3 for underlying 8x8 grid (default is 16x16) : 6
uniform/stretched grid (1/2) (default is uniform) : 1
Q1-Q1/Q1-P0/Q2-Q1/Q2-P1: 1/2/3/4? (default Q1-P0) : 4
setting up Q2-P1 matrices... done
system matrices saved in square_stokes_nobc.mat ...
imposing boundary conditions and solving system ...
Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 3.834113e-17.
This should not cause difficulty for enclosed flow problems.
...
FAST Stokes Q2-P1 a posteriori error estimation
estimated velocity divergence error: 4.558566e-04
Estimated energy error is 6.5133e-02

The driver itsolve stokes provides the interface to the est minres function, which
is called after the preconditioning strategy (one V cycle in this instance) has been de-
termined. The computed values of η(m),

√
2

γ 2 ‖r(m)‖M∗ , and ‖r(m)‖M∗ are output at each
iteration. These are the values that are plotted in Figure 9. The MINRES solution
xest is returned as soon as the stopping criterion coef · | f̂ | ≤ η(m) is satisfied, namely,
after 21 iterations—corresponding to the asterisk in the plot. The evolution of the suc-
cessive estimates of γk and λ+ is reported before exiting. Note that the “Final estimated
error” that is also displayed agrees to four decimal places with the exact error estimate
η computed earlier. The final calculation that is made shows that the two velocity solu-
tion vectors agree to four decimal places in all components. As might be expected, the
plots of the flow solution generated from xst and xest cannot be distinguished from
each other.

>> itsolve_stokes
Inexact AMG block preconditioning ..
number of V-Cycles? (default 1) : 1
AMG grid coarsening ... 8 grid levels constructed.
AMG with point damped Gauss-Seidel smoothing ..
Call to EST_MINRES with built in error control ..

k Estimated-Error Algebraic-Bound Residual-Error
1 1.2035e+02 6.6773e+01
2 7.7520e+01 5.6539e+01
3 2.3430e+01 1.6600e+01
4 9.2256e+00 9.2119e+00
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5 7.2940e+00 7.2152e+00
6 2.7405e+00 7.5056e+00 3.5500e+00
7 2.4702e+00 7.3139e+00 3.4225e+00
8 9.6702e-01 6.2312e+00 1.5778e+00
9 1.1626e+00 5.9204e+00 1.4661e+00
10 6.8898e-01 3.6656e+00 7.7561e-01
11 5.6553e-01 3.1566e+00 6.5119e-01
12 3.4578e-01 1.9966e+00 3.7893e-01
13 1.5762e-01 1.5262e+00 2.7801e-01
14 1.7042e-01 1.1055e+00 1.9291e-01
15 9.9190e-02 6.0673e-01 9.9876e-02
16 1.0663e-01 5.7272e-01 9.3967e-02
17 7.5535e-02 2.8017e-01 4.4350e-02
18 7.5720e-02 2.7952e-01 4.4243e-02
19 6.6334e-02 8.6494e-02 1.3315e-02
20 6.5934e-02 7.1054e-02 1.0922e-02
21 6.5445e-02 4.3954e-02 6.7394e-03 Bingo!

Eigenvalue convergence
k infsup lambda
4 0.9807 1.0212
5 0.9340 1.0065
6 0.9147 1.0024
7 0.6689 0.9896
8 0.6618 0.9887
9 0.3581 0.9705
10 0.3502 0.9671
11 0.2992 0.9305
12 0.2917 0.9218
13 0.2684 0.9071
14 0.2576 0.9031
15 0.2468 0.9000
16 0.2328 0.8973
17 0.2320 0.8971
18 0.2239 0.8945
19 0.2238 0.8945
20 0.2177 0.8904
21 0.2174 0.8897

Final estimated error is 6.5445e-02
Optimality in 21 iterations

>> [np,nu]=size(Bst); xdiff=norm(xest(1:nu)-xst(1:nu),inf);
>> fprintf(’velocity solution difference is %7.3e\n’,xdiff)
velocity solution difference is 6.888e-04

6. CONCLUSIONS

This article describes the design and implementation of EST MINRES, an algorithm
for solving symmetric saddle point systems. It is argued that consideration of the
PDE origins of such systems is essential if uniformly efficient preconditioning is to be
achieved. It is also demonstrated that if an (energy–) a posteriori error estimation
routine is available then an optimally efficient stopping criterion can be realized. An
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important point is that our solver methodology is very general in scope—although the
emphasis in this article is on discretized problems arising in the modeling of incom-
pressible fluid flow—the EST MINRES algorithm (and our MATLAB implementation)
is applicable to any saddle point system that arises from mixed approximation.
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