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Abstract

We present a new supernode-based incomplete LU factanivatethod to construct a precon-
ditioner for solving sparse linear systems with iterativethods. The new algorithm is primarily
based on the ILUTP approach by Saad, and we incorporate aeruwhltechniques to improve
the robustness and performance of the traditional ILUTFhotet These include the new dropping
strategies that accommodate the use of supernodal stegdtuthe factored matrix. We present
numerical experiments to demonstrate that our new methoaohipetitive with the other ILU ap-
proaches and is well suited for today’s high performanchitectures.

1 Introduction

As the problem size increases with the high fidelity simoladidemanding fine details on large, three-
dimensional geometries, iterative methods based on pdétmmed Krylov subspace techniques are
attractive and cheaper alternatives to direct methods. itlsalrcomponent of the iterative solution
techniques is the construction offective preconditioners. Physics-based preconditioneysjaite
effective for structured problems, such as those arising frizeretized partial dferential equations.
On the other hand, a class of methods based on incomplete ¢digsition are still regarded as the
generally robust “black-box” preconditioners for unstiued systems arising from a wide range of
applications areas. A variety of ILU techniques have beadistl extensively in the past, including
distinct strategies of dropping elements, such as levéillaftructure-based approach (ILK)j [20],
numerical threshold-based approach [19], and more rgcantmerical inverse-based multilevel ap-
proach [1, 2]. The ILUK) approach assigns a fill-level to each element, which cleriaes the length
of the shortest fill path leading to this fill-in [13]. The elenis with level of fill larger thark are
dropped. Intutively, this leads to good approximate fazadion only if the fill-ins become smaller and
smaller as the sequence of updates proceeds. ImplementétldJ(k) can involve a separate symbolic
factorization stage to determine all the elements to bepiadp The threshold-based approach takes
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into account the numerical size of the elements in the factand drop those elements that are truly
small in magnitude. This method tends to produce betteraappation and is applicable for a wider
range of problems, but its implementation is much more cempkcause the fill-in pattern must be
determined dynamically. One of the most sophisticatedstiolgl-based methods is ILUTP proposed
by Saad [19, 20], which combines a dual dropping strategi witmerical pivoting (“T” stands for
threshold, and “P” stands for pivoting). The dual droppinkiin ILU(z, p) first removes the elements
that are smaller than from the current factored row or column. Among the remairgfgments, at
mostp largest elements are kept in order to control the memory tirowherefore, the dual strategy is
somewhat in between the structural and numerical appreache

Our method can be considered to be a variant of the ILUTP agbrcand we modified our high-
performance direct solver SuperLU [6, 7] to perform incoet@lfactorization. A key component in Su-
perLU is supernode, which gives several performance adgastover a non-supernodal (e.g., column-
wise) algorithm. Firstly, supernodes enable the use ofdritgvel BLAS kernels which improves data
reuse in the numerical phase. Secondly, symbolic factiwizéraverses the supernodal directed graph
to determine the nonzero structuresLadindU. Since the supernodal graph can be much smaller than
the nodal (column) graph, the speed of this phase is drigticgoroved. Lastly, the amount of indirect
addressing is reduced while performing the scagtgher operations for compressed matrix represen-
tation. Although the average size of the supernodes in amiptete factor is expected to be smaller
than in a complete factor because of dropping, we attempteetdin supernodes as much as possible.
We have adapted the dropping rules to incorporate the sogekrstructures as they emerge during
factorization. Therefore, our new algorithm has combineddfits of retaining numerical robustness
of ILUTP as well as achiving fast construction and applmatf the ILU preoconditioner. In addition,
we developed a number of new heuristics to enrich the egistinpping rules. We show that these new
heuristics are helpful in improving the numerical robussef the original ILUTP method.

A number of researchers have used blocking techniques &ircohincomplete factorization pre-
conditioners. But the extent to which the blocking was agapis rather limited. For example, in device
simulation, Fan et al. used the blocks of size 4x4, which moaturally when each grid point is
associated with 4 variables after discretization of thepémai PDEs [10]. Chow and Heroux used a
predetermined block partitioning at a coarse level, andog&epl fine-grain dense blocks to perform
LU or ILU of the sparse diagonal blocks [3]. Henon et al. deped a general scheme for identifying
supernodes in ILU(k) [12], but it is not directly applicakitethreshold-based dropping. Our algorithm
is most similiar to the method proposed by Gupta and Georgle #hd we extended it to the case of
unsymmetric factorization with partial pivoting.

Our contributions can be summarized as follows. We adajptedassic dropping strategies of
ILUTP in order to incorporate supernode structures and ¢oramodate dynamic supernodes due to
partial pivoting. For the secondary dropping strategy, wippsed an area-based fill control method,
which is more flexible and numerically robust than the tiad#l column-based scheme. Furthermore,
we incorporated several heuristics for adaptively modyvarious threshold parameters as the factor-
ization proceeds, which improves the robustness of theithgo.

The remainder of the paper is organized as follows. In Se@iwe describe the computer systems,
the test matrices, and the performance metrics that wilsled to evaluate the new algorithm. Section 3
describes in detail the new supernodal ILU algorithm togethith various dropping strategies, and
presents the numerical results. In Section 4 we give somartesof the implementational and software
issues. Finally in Section 5 we compare our new code with ROR, which uses an inverse-based
ILU algorithm.



2 Notations and Experimental Setup

We will use the following notations throughout the paper. MigeA to denote the cdicient matrix
of the original linear systenl,. andU to denote the triangular factors. The mathix= L + U — |
represents the filled matrix containing bdtrandU, andM = LU is the preconditioning matrixD,
D;, D represent diagonal matricd’, P, P represent permutaion matricesS¥@enotes the number
of elements in the se&®. We use Matlab notation for integer ranges: {) refers to a range of integers
(s,s+1,...,1). We use nnZ) to denote the number of nonzeros in mawix Thefill ratio refers to
the ratio of the number of nonzeros in the filled mafixver that in the original matrid. Sometimes
we need to refer to the fill ratio of certain columni.e., nnzg(:, j))/nnz(A(, j)). The fill ratio is a
direct indicator of the memory requirement. The number adrapions is also related to the fill ratio,
although it usually grows more linearly.

We use two platforms to evaluate our algorithms. The firshi©ateron cluster running a Linux
operating system at the National Energy Research Scie@tioputing (NERSC) CentérEach node
contains dual Opteron 2.2 GHz processors, with 5 GBytesleisabmory. We use only one pro-
cessor of a node. The processor’s theoretical peak flopting-performance is 4.4 Gflofsec. We
use PathScalec compiler with the following optimization flags=03 -OPT:IEEE arithmetic=1
-OPT: IEEE NaN_inf=ON, which conforms to the IEEE-754 standard.

The second machine is a Dell PowerEdge 1950 server runningux loperating system in the
MOE Key Laboratory for Computational Physical Sciencesddn University. It contains 2 quad-
core Xeon 2.5 GHz processors, with 32 GBytes shared memarys&/ only one processor but all the
memory available. We use Intelis.c compiler with-03 optimization flag.

To evaluate our new ILU strategies, we have chosen 54 maffrice the following sources: Matrix
Market [17], University of Florida Sparse Matrix colleatid5], and five matrices from the fusion
device simulation [14]. We use COLAMD for column permutaiand MC64 for equilibration and
row permutation. The iterative solver is restarted GMRE® wur ILU as a right preconditioner (i.e.
solvingPAM™1y = Ph). The stopping criterion ifirx = b—Ax|> < §||bll2, here we usé = 1078 which
is in the order of the square root of IEEE double precisionhitecepsilon. We set the dimension of
the Krylov subspace to be 50 and maximum iteration count tbd®®. We test ILUf) with different
values ofr, such as 16, 107, and 108.

To compare theféectiveness of dierent solvers, or dierent ILU parameter configurations, we will
use the performance profiles similar to what was proposed BpEn and J. Moré in [8] to present the
data. The idea of performance profile is as follows. GiventadMef matrices and a s& of solvers,
for each matrixn € M and solvers € S, we usefr(m, s) andt(m, s) to denote the fill ratio and total
time needed to solven by s. If sfails to solvem for any reason (e.g. out of memory, or exceeding
maximum iteration limit), we sefr(m, s) andt(m, s) to be+oo (in practice, a very large number that
is outside the range of our interest idfszient). Then, for each solvex we define the following two
cumulative distribution functions as the profiles of fillicaand time ratio, respectively.

#Hme M: fr(m, s) < x}

X) = , XeR
and
#{meM:% < x}
0s(X) = e XeR

#M) ’

Ihttp://www.nersc.gov/nusers/systems/jacquard
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Intuitively, ys(X) shows the fraction of the problems thatould solve within the fill ratiox, and
0s(X) shows the fraction of the problems th&tould solve within a multiple ok of the best solution
time among all the solvers. Therefore, the plots difedtent solvers in the-y or x-6 coordinate could
differentiate the strength of the solvers in the criteria of &tla or time ratio—the higher the curve,
the more problems the corresponding solver could solventhdesame fill or time limit.

We caution that even though performance profile is a powérhilto present overall performance
summary data of dlierent solvers, it cannot show theffdrence of the solvers for each individual
matrix. Therefore, in addition to performance profile, wd show other specific results when there is
a need.

3 Incomplete Factorization with Supernodes

3.1 Sketch of the algorithm

Our base algorithm framework is the left-looking, partialgting, supernodal sparse LU factoriza-
tion algorithm implemented in SuperLU [6, 7]. A key conceptJuperLU is to exploit dense blocks
appeared in thé andU factors. In particular, we define a supernode_iito be a ranger(: s) of
columns with the triangular block on the diagonal being, fatid the identical nonzero structure else-
where among the columns. Using the same supernode patttibe rows ofU, the nonzero structure
of each column irJ consists of a number of dense segments. Thus, the compidssisestructure for

L consists of a collection of supernodes as dense submataiocgshat folJ consists of a collection of
dense subvectors. For convenience, each diagonal blddkassociated with each supernode is treated
as full and stored together with thesupernodal structure. Moreover, we merge several colutrthe a
fringe of elimination tree into one supernode regardlesheif row structures. We call these relaxed
supernodes, which help increase the average supernodat simeexpense of storing a small number
of explicit zeros.

The factorization algorithm is left-looking, with supedepanel update kernel. A panel is simply
a set of consective columns, and is an algorithmic blockiagmeter used to enhance data reuse in
the memory hierarchy; it enables use of Level 3 BLAS. At edeb sf panel factorization, we obtain
a panel in thaJ factor and a panel in thie factor.

There are some preprocessing steps before the factoniZatimel. In SuperLU, these include
row/column equilibration and sparsity-preserving reordenhthe columns. In the case of incomplete
factorization, we found that it is often beneficial to indudnother preprocessing step to make the
initial matrix more diagonal dominant (e.g., via a maximuraigited bipartite matching algorithm).
For this, we use the code MC64 developed byfilaund Koster [9]. MC64 finds a permutation and the
row/column scalings so that the scaled and permuted matrix hieeenf modulus 1 on the diagonal
and dt-diagonal entries of modulus at most 1. (Mayer calls thisatn® [16].) We tested 54 matrices
with or without MC64, and found that using MC64, the ILU-praditioned GMRES converged for 48
matrices with average 13 iterstions, whereas without MGB4matrices succeeded and the average
iteration count is 34Moreover, without MC64, the number of zero pivots encowedas also larger.

Our incomplete factorization algorithm retains most of altgorithmic ingredients from SuperLU,
with added dropping rules that are applied tolthendU factors on-the-fly. The description of the high
level algorithm is given as Algorithm 1. The steps markedbalsl correspond to the new steps intro-
duced to perform ILU. Since partial pivoting with row inteenge is used, the resulting factorization
is performed on the matriR, PoD; AD.P{, whereD, andD. are diagonal scaling matriceRy is the



row permutation matrix returned from MC6Ry is the column permutation matrix for sparsity preser-
vation, andP; is the row permutation matrix from partial pivotindd;, D¢, Po and P, are obtained
before factorization, anB, is obtained during factorization. In the following sectipmve describe our
adaptation of the dropping rules to the situation when suguis are present, and our way to handle
zero-pivot breakdowns.

Algorithm 1. Left-looking, supernode-panel ILU algorithm

1. Preprocessing

=

1.1) (optional) Use MC64 to find a row permutatidPy and row and column scaling factars

D; andD; such thatPgD,AD. is an I-matrix;

1.2) If step 1.1) is not performed, do a simple LAPACK-style yoalumn equilibration to
obtainD;ADg;

1.3) Compute a column permutatioR; to preserve sparsity of the LU factorization |of
PoD;AD:P{;
2. Factorization oPoD; AD:P!

FOReach panel of columns DO

2.1) Symbolic factorizationdetermine which supernodes to the left will update the ey
panel and a topological order of updates;

—_

e

2.2) Panel factorization:
FOReach updating supernode DO
Apply triangular solve to obtain the part;
Apply matrix-matrix multiplication to obtain the part;
END FOR
2.3) Inner factorization:
FOReach columnj in the panel DO
Update the current colump
Apply the dropping rule to the U part;
Find pivot in this column;
(optional) Modify the diagonal entry to handle zero-pivot breakdown;
Determine supernode boundary;
IE column j starts a new supernode THEN
Apply the dropping rule to the newly formed supernode(s: j—1)in L;
END IF
END FOR
END FOR




3.2 Threshold-based dropping criteria

Our primary dropping criteria are threshold-based and #kithe ILUTP variants [19, 20]. That is,
while performing Gaussian elimination with partial pivadi we set to zero the entrieslirandU with
modulus smaller than a prescribed threshgldiherer € [0, 1].

Since our compressed storage is column oriented forlbatidU, the dropping rule is also column
oriented. The upper triangular mattikis stored in a normal compressed column format, we can easily
remove the small elements while storing the newly computddnen into the compressed storage,
using the first criterion given in Figure 1.

Threshold-based dropping criteria for ILt)(

1) Droping elements ib): If |ujj| < 7lIA(;, |)lle, We SelL;j tO ZETO.

2) Dropping elements i: In a supernodé.(;, s : t), if |IL(i,s : D)o < 7, We set the
entirei-th row to zero.

Figure 1: The threshold-based dropping criteria.

The lower triangular matridt is stored as a collection of supernodes. Our goal is to rekan
supernodal structure to the largest extent as in the comfaetorization. In a naive implementation
of ILU, we may apply the traditional dropping to each indivad column. But it is usually not the
case that the nonzeros in the same row of the consituent oslwithin a supernode (resulting from
a complete factorization) are dropped. This implies therafropping, the nonzero structures among
the columns in the original supernode may b&eadent, thus, we will need to regroup the columns into
smaller supernodes, resulting in performance penaltyedas we adopt an alternative approach that
better respects the supernode structure. That is, we &igegr or drop an entire row of a supernode
when it is formed at the crrent step. This is similar to whas fiest proposed by Gupta and George for
incomplete Cholesky factorization [11]. Our dropping erion is the second rule shown in Figure 1.
Note that since partial pivoting is used, the magnitude efdlements irL is bounded above by one,
and so the absolute quantity is the same as the relativeityuahhe use ofeo-norm for rowi of a
supernode implies that when raws dropped, the magnitude of every element in this row is kmal
thanr. Therefore, in a traditional column-wise algorithm, thegements should be dropped as well.
On the other hand, there might be a rpsuch that|L(], s: t)|l. > 7 and hence row is retained in our
supernodal version, even though some elements in this robmamaller than in magnitude and
would have been dropped in a column-wise algorithm. To suraean local viewpoint, this supern-
odal dropping rule leads to fewer elements being droppedoeosd with a column-wise algorithm.
But we cannot give such an analytical comparison for tha@ffaictorization, because anyfidirence
in the current step couldi@ct the dropping in the later factorization, We did an experit to compare
the supernodal ILU and the column-wise ILU (setting maximaupernode size to be onépr 54 ma-
trices, GMRES with supernodal ILU converged for 47 matriedsle the column-wise ILU succeeded
with only 43 matrices. The average fill ratios of the superai@id column-wise ILU are 13.2 and 9.8,
respectively. For the 43 matrices that both versions subeggethe supernodal ILU version is around
2.3 times faster in total GMRES solution time than the scaksion on the Dell Xeon servethis
shows that our supernodal version is numerically supedbieaes higher performance than the scalar
ILU.



3.3 Secondary dropping to control fill-in adaptively

ILU(7) works well if there is sfficient memory, but it may still incur too much fill. A secondary
dropping can be used to alleviate the problem.

Several methods were proposed earlier in this regard. 1d’SHaU(r,p) approach [19]p is the
largest number of nonzeros (not the level-of-fill) allowadecho row ofF (in a row-wise algorithm).
Gupta and George suggested uspi{@) = y - nnz(A(, j)) for the j-th column instead of a constant,
wherey is an upper bound of the fill ratio defined by a user [11]. Thesparoposed a method of
computing a secondary dropping tolerance by an intergwidtirmula rather than sorting the largest
p entries, which is cheaper than the original I\ ). According to our experience, Gupta’s heuristic
depends largely on the distribution of the nonzero moduids,iand the fill ratio can be either very
large or very small. The benefit of avoid sorting is also ledit as sorting is not very expensive.
Suppose we usguicksort the complexity is onlyO(klogk), wherek is the number of nonzero entries
in F(:, }). There is also a linear time algorithm to find theh largest number in an array [4], but in
practice, it may not be as fast as quicksort.

We now present a new strategy for choosmdsiven a user-desired upper bound of the overall fill
ratioy, we define an upper bound functidij) for each columnj, f : [1,n] — [1,v], which satisfies
f(n) < y. Then at the-th column, if the current fill ratio

nnzFCG,1:))
nnzA(,1: )

exceedsf(j), we choose a maximum possible valpsuch that when we keep the larggstlements,
the current fill ratio is bounded bf(j). This criterion can be adapted to our supernodal algoriism
follows. For a supernode witkcolumns,p may be computed as

o= max{ f(j) - nnzA(:, 1 : j))k— nnzF@G,1:j- k))’ k}.

In other words, if we keep the largegtrows of this supernode, the current fill ratio is guaranteed n
to exceedf(j). The secondkterm in max...} is to ensure that we do not drop any row in the diagonal
block of the supernode.

This is also an ILUt,p) approach with adaptive, similar to Gupta’'s scheme. However, our fill
ratio definition (1) isarea-basednstead of column-based, because we count all the fill-ora frolumn
1 to columnj. That is, we only monitor the overall memory growth inste&dhat of each individual
column. This is more flexible than the column-based methdHanit allows larger amount of fill for
certain columns so long as the cumulative fill ratio in thevimes columns is small. At the end of
factorization, the total fill ratio is still bounded hybecause of the conditiof(n) < y.

The above description of area-based strategy is geneudcay be used in any implementation.
We now introduce a specifit(j) that is suitable for the SuperLU implementation. SihcandU are
stored in dfferent data structures, and dropping.df invoked after a complete supernode is formed,
it is sensible to use fferent secondary droppping rules foandU. For a column-based method, at
the j-th column, the simplest way is to spjitproportionally withj : (n— j) ratio forU(:, j) andL(:, j).

For our area-based approach, we may choose two functfp@g,for L and fy(j) for U, so long as
fL(n)+ fy(n) < y. Asimple way is to assigi (n) and fy (n) to be the areas df(;, j) andU(:, j) relative
toF(;,1:]), as follows:

(1)

(@)

o) = 2oy )= (1) @

7



Then we split the fill quota proportionally witfy, (j) : f(j) ratio.

A problem with this is that dropping itV could be very constraining for smajll Then, we can
simply usefy (j) = y/2. With this, even though it could happen thHafj) + fu(j) > v in the middle of
the factorization,f_(n) + fy(n) < v still holds in the end, and the total memory is still bound8dhce
we do not apply the dropping rules toward the end in order doice the number of zero pivots (see
Section 3.4), we need to reserve some quota for them by mgldicij) + fu(j). In addition, we need
to allow more fill-ins inL than inU, because the dense diagonal blocks are storbdand some small
entries inL are located in the rows with large norm, hence are not drapfisé result, we propose to

use

() =09x 2, 1= (1) @

In conjunction with the dynamic, area-based strategy farosing p, we devised an adaptive
scheme for choosing as well. The idea is that when the current fill ratio is large, wmcreaser,
forcing more droppings. Otherwise we decrease retain more entries. Specifically, lefl) = 7o be
the user-input threshold, at colunjnif the fill ratio given by Equation (1) is larger thaf{j), we set
7(j+1) = min{1, 27(j)}, otherwise, we set(j+1) = maxXro, 7(j)/2}. Thatis, we maintain(j) € [ro, 1].
Our adaptive ILUt(j),p(})) is a simple heuristic which does not require sorting.

We now present the results of the tests comparing variowspeter settings. The ILU configura-
tions include:

o ILU(7), 7 =107%

ILU(t, p), 7=10%0r 108, p=y-nnz@)/n;

column-based adaptive, 7 = 10~ or 10°;

area-based adaptiye v = 10 or 10°;

area-based adaptiv¢j), 7o = 1074, no secondary dropping

Figure 2 shows the performance profiles of the fill ratio aredtiime ratio for the 54 test matrices.
We can see that a smallsuch as 16 is generally not good, that is, it is noffieient to use the sec-
ondary dropping rule only. The threshold-based droppiitgroon in Figure 1 should play a significant
role.

A key conclusion is that our new area-based scheme is muchk mbust than the column-based
scheme; it is also better than ILtJ(when the fill ratio does not exceed the user-desiredLU(7)
becomes better only when the fill ratio is unbounded (i.¢owait to exceedy). This is consistent with
the intuition that an ILU preconditioner tends to be moreusitwith more fills.

There are two reasons why the actual fill ratio can be largar the preset parametgrFirstly, our
dropping rules do not drop entries in the dense diagonakblotherefore, when there are some large
supernodes i, these blocks would contribute to a large memory growth dverns large. Secondly,
we never drop any entries in several trailing columns, angliysthere are a lot of fill-ins towards the
end of the factorization. If the user wants the memory to tsokibely under control, we recommend
that a slightly smalley be used.

Figure 2(b) shows the runtime comparison of the solvergysia Dell Xeon server. In this plot, the
matrices with fill ratio larger than 10 are considered asifail Thus, the comparison is made under the
same memory constraint, and none of the solvers are allaweohisume much more memory than the
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Figure 2: Performance profiles after incorporating the sdaoy dropping rulesy = 10.

others. The top three solvers are much better than the otDBersarea-based adaptiyeer adaptiver
schemes have quite similar performance, with the formeinigea slight edge over the other one.

Taking into account both memory and time, we can see thatettenslary dropping helps achieve
a good trade-, with controlled fill-in and the solver not being much slowgither our “red” scheme
or “blue” scheme can be used as a default setting in the code.

3.4 Handling breakdown due to zero pivots

In the case of LU factorization with partial pivoting, zerivgts may occur due to numerical cancel-
lations when the matrix is nearly singular. However, for mgoimplete LU factorization, zeros pivots
may occur more often because of dropping, which has notlinig with numerical cancellation.

To illustrate this, let us consider the following twox2 matrices:

A=2 Y AZ:[; 0], (bc # 0).

c O b

Assume that the column permutation is Identity. Thug ik 7 |a], the (2,1) entry will be dropped,
and the (2,2) entry will become zero, causing ILU to break mlodssuming thag, b, andc are drawn
independently from the uniform distribution ir1, 1], we have:

PI’OHUQZ =0} = ;1 > 0.

In general, let us assume that the nonzero entries of a rmpraimatrix satisfy a uniform distri-
bution in [-1, 1]. Then for a given sparsity pattern, if there exist a ronnpatiationP and a columnj
such that PA)(j : n, j) = 0, the probability of encountering a zero pivot in thh column would be
positive. We can show that (4)"2®-" is a lower bound of the probability. L& = PA and suppose
that j is the minimum column index which satisfi@gj : n, j) = 0. The probability that all the pivots
of the firstj — 1 columns are diagonal entries Bfand all the @&-diagonal entries are dropped (with



this condition,, definitely there will be a zero pivot in tli¢h column) is

-1 -1 7\NNZB(i+1:n,i))
]—[ ]_[ Prol|B(k, i) < 7|B(, )|} = (Z)
i=1 ki i=1
\MNZA,L:j-1)-(j-1) 7\Nnz(@)-n)
— > | = .
= (4) - (4)

The last inequality comes from the fact that there is at leastnonzero element in each column of a
nonsingular matrix.

Usually, many zero pivots occur in the last columns, becduisemore probable at the end than
in the beginning that all the nonzero entries of a column arenpted to the upper triangular part. To
mitigate this, we stop dropping when the column index isdattpan man — 2Ns, n x 95%}, where
N is the maximum size of a supernode. That is, the factorizati@imost finished. According to our
experiement, this helps reduce a large fraction of the zietig

We have devised a simple adaptive mechanism to handle tregigit when a zero pivot indeed
occurs. At columny, when we encounter;jj = 0, we set it tarJJA(:, j)ll to ensure the factorization can
continue andJ is nonsingular after the factorization. This is equivaleradding a small perturbatian ~
to Lj; at the current step. tf = 7, the perturbation we add tg; will not exceed the upper bound of the
error propagated by the droppings. In our code, we chopge="10"21-I/" which is an increasing
function with the column index, rather than a constant. Thevents the diagonal entries dffrom
being too small, which could result in a very ill-conditi@hpreconditioner.

Adding a small perturbation on the zero diagonal is a simgheady to enable the factorization to
complete. This is an acceptable solution when not many zewispoccur, otherwise, the precon-
ditioner can be quite ill-conditioned even though the fezatgion completes, making this iffective.
Some other methods were proposed to handle the breakdoam asuhe delayed pivoting [11] and
the multilevel method [1]. We plan to investigate them in tineire. But our comparison showed that
our current ILU scheme is very competitive with a multile¥eU scheme as in ILUPACK [2], see
Section 5.

3.5 Relaxed pivoting with diagonal threshold

For some matrices with band structure or close to diagoaliginant, sometimes we can trade partial
pivoting for a sparser factorization. Therefore, we preval relaxed pivoting strategy which gives
preference to the diagonal entries. We use a threshold péeame [0, 1] to facilitate this. If|fj;| >

n maxjilfij|}, we use the diagonal entiy; as the pivot. Thus; = 1.0 corresponds to partial pivoting,
andn = 0.0 corresponds to diagonal pivoting. Usualjycannot be too small if the numerical property
of the matrix is unknown because the magnitude of the eritriegan grow as much ag?. In general,
even though the pivot growth can be a bit larger than one, ityepetd entries are still relatively small.

Tables 1 and 2 present the numerical results with varyjmgthout (i.e., ILU®)) or with secondary
dropping (i.e., ILUf, p)).

When secondary dropping is not used (Table 1), (threshhmlaiting is more reliable than no
pivoting at all, because general matrices are not closeing ldgagonally dominant, even the I-matrices
may not be. As long ag > 0, the numbers of solvable problems are about the same. Exrcep= 1.0,
largern tends to maintain sparsity slightly better. The fill raticcbmes large when is very small,
because we use an absolute dropping threshold, fwhich results in less dropping with smalkgrFor
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Diagthreshg) 1.0 0.1 0.01 0.001 0
ILU(10~%) | Number of sucesses a7 48 47 48 44
Average fillratio 12.6 12.0 12.6 129 11.7
ILU(107®) | Number of sucesses 51 51 51 51 45
Average fillratio 28.6 28.6 289 29.1 29.9

Table 1: Hfect of Diagthresh ) with ILU(7).

Diag thresh ) 1.0 0.1 0.01 o0.001 00.8 0.5
=107 | Number of successes 32 33 33 35 [384 33
Average fill ratio 56 4.7 47 48 4752 4.8
7 =10"° | Number of successes 25 29 31 29 226 29
Average fill ratio 58 6.0 6.1 59 5959 6.0

Table 2: Hfect of Diagthresh §) with ILU(t, p), using area-based secondary dropping, 10.

some matrices, the fill ratios are quite large if we use pdaiating. However, they can be solved if we
use a relaxed pivoting scheme. For example, for the fusiamixmaatrix181 of dimension 589,698,
ILU factorization runs out of memory if partial pivoting ised, but it can be solved with= 0.1. We
also did experiments when MC64 is not used for ILU{)@with = 0.1. There were two more failures
but the average fill ratio is only.8. Among those for which the preconditioner works, the ayerfl
ratio is 128, which is not so small. As a result, we recommend that MC@&dvisys used, ang = 0.1
is used as a default in our code.

When secondary dropping is used (Table 2), the situationtisery conclusive, and it is flicult
to choose a googl. This is mainly because the influence of drop tolerance beesdnsignificant in the
presence of secondary dropping. But we can see clearlyhtbatverage fill ratios are less than half of
those in Table 1, and the numbers of problems successfullgdare quite smaller.

All we can advise to the users is, when memory is not at a pmaiius better not to use secondary

dropping.

3.6 Three variants of MILU

Through experiments, we found that the numerical qualith tvie pure threshold-based dropping rule
is not very satisfactory, and then we looked into the Modifldd (MILU) method.

The MILU techniques were introduced to reduce tiffeat of dropping by compensating for the
discarded elements [20]. The basic idea is to add up the dpfements in a row or column to the
diagonal ofU. The commonly used strategy has an appealing propertytthegserves the row sums
relationP, Ae = LUefor a row-wise algorithm or column sums relatiehP, A = e" LU for a column-
wise algorithm, wheré. andU are incomplete factors. Algorithm 2 gives the procedureedqsm
a column-wise MILU with partial pivoting. Note that for thgper triangular parf;; is equal tou;;,
whereas for the lower triangular péif = ljju;; because of scaling.

In order to accommodate our supernodal dropping critereaneed to modify the above column-
wise MILU procedure. Recall that in Algorithm 1, we apply tth®pping rule 2) in Figure 1 as a hew
supernode i is formed. The consequence of this “delayed” dropping i$ #tdhe time a column
is processed for pivoting, the computed sammay contain fewer dropped entries and less amount is
compensated on the diagonal. Therefore, the column suie$oreis not preserved. This drawback
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can be circumvented if we redesign the symbolic factogzratilgorithm to allow dierent supernode
partitions. Then, we could have an implementation that imemically faithful to Algorithm 2, but

the performance of the code wouldfar because the average size of the supernode would be smaller
Instead, we decided to use a simpler adaptation of the codelew. For each column ofJ, we
accumulate irs the sum of the dropped entries. Thexris not only added to the diagonal but is also
used in choosing the proper pivot in the lower triangulat.pade call this supernodal version of MILU

to be SMILU-1, which is outlined in Algorithm 3.

The SMILU-1 algorithm ensures that the pivot has the largesgnitude after droppings are per-
formed in the upper triangular part. However, we cannot gutae that the pivot still has a relatively
large absolute value after the entries in the lower triasugaite dropped. The pivot could become small
or even zero after we apply the dropping ruleLtdthat is, after applying (4) in Algorithm 3.) This
may cause the factdy to be ill-conditioned or even singular, resulting in an aét preconditioner.
The SMILU-2 algorithm in Algorithm 4 provides a remedy foiglproblem. Here, we ensure that the
magnitude of the pivot is nondecreasing after diagonal @regtions, thereby avoiding small pivots.

An alternative method is to accumulate the one-norm of tlopled vector. This will make the
pivots have larger absolute values compared to what wouild 8®1ILU-2, and we expect the condition
number ofU would be smaller. We call this SMILU-3, shown in Algorithm 5.

For SMILU-2 and SMILU-3|fjj + sign(fi;)s = [fij| + S, sincesis always nonnegative. As a result,
the trick we use in SMILU-1 to select proper pivot for pargi@oting (Step (2) in Algorithm 3) is no
longer needed here.

In Table 3, we compare the performance of various ILU alpori and direct solver SuperLU,
using the 54 test matrices. We classify the failures in tluaegories: “slow” means the stopping
criterion is not met, although the residual norm is still @a&sing while the maximum iteration count
is exceeded (i.e§ < [Irll2/Ilbll2 < 1), “diverge” meang|r|l> > |bll2, and “memory” means the code
runs out of memory. We used the Dell Xeon server that has 32t€3Bypemory. Because of large
amount of memory available, SuperLU succeeded with all batmroblem, for which the code ran out
of memory. As can be seen, whers suficiently small, e.g.7 = 10%orr = 1078, the ILU algorithms
can solve the same number of problems as SuperLU.4dLuKually works very well, however, when
it fails, it is often due to a lot of zero pivots.

Figure 3 shows performance profiles of various ILU algorishamd SuperLU, using the Opteron
cluster. For a certain time limit, various ILUs can solve mamore problems than SuperLU. The ILUs
are also advantageous over SuperLU in terms of fill ratio.c&the Opteron cluster has a relatively
smaller amount of memory than the Dell Xeon server, Supedild fvith more problems due to mem-
ory exhaustion. SMILU-2 and SMILU-3 are quite comparabkpezxially for the matrices with small
fill ratio. They are designed for avoiding the factdrto be ill-conditioned, but thé andU factors can
be far fromPA, which could result in slow convergence. We can see from thedithat wherr is
small, such as = 10°%, or 10°8, the diference between theftiirent variants of ILUs are very small,
mainly because the number of entries dropped is small.

4 Comments on Software

In this section, we describe a few implementationdficlilties encountered while performing incom-
plete factorization, and summarize the new parametersdated to the ILU routine.
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Algorithm 2. Classic column-wise MILU for column j

(1) Obtain the current filled columR(:, j);

(2) Compute the sum of dropped entrieHi(, j): S = Xgroppedfij;

(3) Setfj; tobefj+s

(4) Pivot: row interchange in the lower triangular pa( : n, j);

(5) Separat®) andL: U(1:j,j)=F(1:jj); L(:nj)=F(q:nj)/F(,J);

Algorithm 3. SMILU-1: Supernodal MILU for column |

(1) Compute the sum of the dropped entrie&)ify, j): S= Y groppedUij;
(2) Choose pivot row, such that = argmaxj |fij + S;
(3) Swap rows andj, and seu;; := fijj + s
(4) IF j starts a new supernode THEN
Let (r : t) be the newly formed supernode;= j — 1)
For each columik in the supernoder (< k < t):
compute the sum of the dropped entri€g:= ¥igropped!ik;
SetUkk := Uxk + Sk * Uk,
END IF;

Algorithm 4. SMILU-2: Supernodal MILU for column |

(1) Compute the sum of the dropped entrie&)iy, j): s = | X droppedUij|;
(2) Choose pivot row, such that = argmax | | fi;;
(3) Swap rows andj, and set;; := fij + sign(fij)s,
(4) IF j starts a new supernode THEN
Let (s: t) be the newly formed supernodeé;= j — 1)
For each row that is dropped, sefik := Ukk + |lik|Ukk, for s< k < t;
END IF;

Algorithm 5. SMILU-3: Supernodal MILU for column |

(1) Compute the sum of the dropped entrie€)ify, j): s = X groppedUij|;
(2) Choose pivot row, such that = argmax | fi;;
(3) Swap rows andj, and set;; := fij + sign(fij)s,
(4) IF j starts a new supernode THEN
Let (s: t) be the newly formed supernode;< j — 1)
For each row that is dropped, selfi := Ukk + |lik|Ukk, fOr s< k < t;
END IF;
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Figure 3: Performance profiles of various of ILU algorithmihw = 104,107, or 10°8, using the
Opteron cluster. The left column is the profile w.r.t. therdtio, and the right column is the profile
w.r.t. the time ratio. Secondary dropping is turndfl o
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converge slow diverge memotyzero pivots

r=10" ILU 47 3 4 0 7786
SMILU-1 35 15 4 0 9

SMILU-2 44 6 4 0 9

SMILU-3 38 14 2 0 9

7=10° ILU 51 0 3 0 685
SMILU-1 49 3 1 1 0

SMILU-2 50 3 1 0 0

SMILU-3 49 5 0 0 0

7=107% ILU 52 1 0 1 0
SMILU-1 50 3 0 1 0

SMILU-2 50 3 0 1 0

SMILU-3 51 3 0 0 0

(r=00) SuperLU 53 0 0 1 0

Table 3: Comparison of various IL@[algorithms and SuperLU on the Dell Xeon server. The last col
umn “zero pivots” indicates the number of zero pivots endered during ILU factorization. Secondary
dropping is turned 1.

4.1 Difficulty with symmetric pruning

Symmetric pruning is a technique to find a smaller graph (sgirimreduction) in place d&(L") and
that maintains the path-preserving property. Using symimetduction can speed up the depth-first
search traversals (i.e., the symbolic factorization) Wit interleaved with the numerical factoriation
steps. Specifically, at stejp the symmetric reduction of the current factdt, 1 : j) is obtained by
removing all nonzerogs for which lsuge # 0 for somet < min(r, j) [6]. That is, inL, the nonzeros
below the first matching nonzero pair in column and rew | of the factorF(1 : j,1 : j) can be
removed. Consider the followingd4 matrix A, the filled matrixF (using the given elimination order),
and the symmetric reductidr

e o o o e o o o e o o o
o o e @ O O e ®© O ©
A= , F= , R=
° ° °
) e O O O & o o o

In F andR, a symbol %” indicates a fill-in entry. InR, a symbol &” indicates a removed entry
from symmetric pruning, that i$4; is removed due to the matching nonzero pairanduy,. If G(F)
is used in the depth-first traversal, the enigyis obtained by the following path:

38154

When using the reduced gra@{R), the above path is replaced by the following one, and thehaea

bility is maintained:
3815828,

2\We use the convention that an edge is directed from a coluramdw of the matrix.
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However, in an incomplete factorization, if the magnituddg is smaller than the threshold, it

would be dropped both i and inR. Then the edge 2R, 4 does not exist anymore. The entry
would be missing iRis used for the depth-first search, and similarlylfar The erroneouf is shown
below, where &” indicates a numerical dropping in ILU.

[ ] [ ) [ ) [ ]

[ ]
Rilu:

S

[ ] [e] @]

We thought about several ways to mitigate this problem, saskelayed pruning or protecting
pruned entries from dropping. But their implementationsilddncur nontrivial costs in tuntime and
memory. We did some tests to evaluate the benefit of pruningcémplete factorization, even if the
pruned graph is very small, i.e. sizeRfess than 5% of that d¥, the total speedup is usually no more
than 20%. For incomplete factorization, since the fill rédioften much smaller (i.eF is already quite
small), we expect the benefit of pruning would be less. Tloeeefwe decided not to use any reduced
graph.

4.2 Zero pivots and relaxed supernodes

In SuperLU’s complete factorization, we use relaxed sup@ées to increase the average size of su-
pernodes (or block size). It groups several columns at thgdrof the column elimination tree into
an artificial supernode [6]. The column elimination treehis elimination tree (etree) ¢4T|A|, which
shows the columns’ dependencies for any row permutatiortigp@ivoting). That is, the relaxed su-
pernodes at the bottom of the etree will not be modified by aingracolumns outside these supernodes.
Given a postordered etree, this means that the nonzero mogtste of a columm.(;, j) must be disjoint
from that of a later supernode ( s) > j. Otherwise, there exists a numerical assignment such that a
common rowi can be selected as a pivot at stepnaking supernode (: s) dependent on colump
Therefore, selecting any pivot colunjihas no impact on supernode:(s).

On the other hand, in an incomplete factorization, if zex@pdccurs in columrj due to dropping,
we cannot choose a random row below the diagonal as pivaulsedt could overlap with a row in the
future relaxed supernodes, which in essence changes deestiticture and dependency. Therefore,
we must choose a pivot row which does not appear in any ldtereg supernode.

4.3 Tunable parameters in the ILU routine

The new ILU routine is nameg’lGSITRF, which takesoptions structure as the first argument, which
contains a set of parameters to control how the ILU decortipaswill be performed. The default val-
ues of these parameters are given in Table 4, which are satlmgahe routineilu_set_default options().
The users may modify these values based on their problends nee

Based on our experience, we provide the following guidsliregarding how to choose the param-
eters if the defaults do not work:

e Equilibration is necessary, and MC64 is usually helpful.

¢ If zero pivots occur and the preconditioner is too ill-cdiadied, you should try modified variants
SMILU-2 or SMILU-3.
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Options Default
MC64 ON
equilibration ON
drop tolerancex) 104
fill-ratio bound ¢) | 10

diag thresh f) 0.1
column permutation COLAMD
SMILU SMILU-2

secondary dropping area-baseg

Table 4: Default values of the parameters of the ILU roui@SITRF.

o [f the fill ratio is still small, you may try a smaller.

¢ If you run out of memory, you may try a smallerand a smaller.

5 Comparison with ILUPACK

There are a number of ILU preconditioning packages for umsgiric matrices, such as SPARSKIT [18],
ILUPACK [2], ILU ++ [15]. We have compared our algorithm with ILUPACK V2.1, whibas been
gaining popularity.

We choose to compare with ILUPACK mainly because it uses wadiiferent approach than ours;
it is an inversed-based method, and uses a relatively newlenal approach to handle small pivots.
The inverse-based approach attempts to control the siteadfiterse of the preconditioner so that the
preconditioner has a small condition number. This objedgwachieved indirectly in ILUPACK: at step
k of factorization, the algorithm monitors the norm of #ath row of L™1. If that exceeds the prescribed
boundv, implying no suitable pivot can be chosen at this step, tlognkrand columrk is moved to
the end, and the factorization continues to the nexfeolumn. After all fthe good pivots are chosen,
the current level is considered to be complete, the factiorm starts a new level, which is comprised
of all the delayed rows and columns from the previous level.

Our tests were carried out on the Dell Xeon cluster. For ILGRAwe downloaded the precompiled
64-bit libraries, and compiled only the main() functionngi‘gcc -03". For our code, we usedi‘tc
-03" to compile, and linked witlGotoBLAS library.

In our experiments, we tried to keep the same parametengefidor both codes:

e OurILU: 7 = 1074, area-based secondary dropping 5 or 10, diagonal thresholg=0.1;

e ILUPACK: r = 1074, v = 5, secondary dropping = 5 or 10 (corresp. togaram. elbow” in the
code.)

The ordering algorithms are fiierent. our code uses a column reordering method such as Col-
umn Approximate Minimum Degree, for which the underlyingygin model is the adjacency graph of
IAITIA]. ILUPACK uses a symmetric reordering such as Approximateitdiim Degree, for which the
underlying graph model is the adjacency graph®f + |Al.

From our 54 test matrices, we chose 37 which are availableaimvell-Boeing Figure 4(a) shows
the performance profiles of the two preconditioners with 10 in our secondary dropping. For smaller
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allowable fill ratios, ILUPACK could solve a few more problerthan our ILU does. However, when
the fill ratio is close to the prescribed limjit our code can solve more problems. If we use a smaller
v, the curves of profile will be changed, see Figure 4(b), arg #re diferent from just cutting  at

v = 5in the left figure.
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Figure 4: Comparison of fill ratio between our supernodal hndl ILUPACK.

Figure 5 compares the runtime of ILUPACK with two of our ILUriants, one is ILUf), another
is ILU(, p). This shows that our area-based adaptive It.|d) is superior to the other solvers.
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Figure 5: Comparison of runtime between our supernodal It laUPACK.

To explore some detailed information about these solveeexamined 11 hard problems for which
at least one solver fails and at least one solver workss. Theess-failure instances are tabulated
in Table 5. Our area-based approache is better than theabittjid(r) approach. ILUPACK solved
different set of problems, but ours can solve a few more. Ovexallapproache is at least competitive
with ILUPACK.
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Matrix ILU(7) ILU(r, p), area-based, static ILUPACK
NASASRB
ecl32
gematll
jpwh_991
onetone2
twotone
vavasisl
vavasis2
wang3
wang4
xenon2
total solved

X

X | X[X|[X|X]|]o]o|X]|o|X]|o
o|lo|o|X|X|o|o|o]|o|X
X|X|[X]|]o|o|X|X]|o|X]|o|o

N
~

5

Table 5: The selected matrices for which at least one soleeksy(shown as<¢”) and one solver fails
(shown as X”). We setr = 10 andy = 10.

6 Conclusions

We adapted the classic dropping strategies of ILUTP in ai@@rcorporate supernode structures and
to accommodate dynamic supernodes due to partial pivoiogthe secondary dropping strategy, we
proposed an area-based fill control mechanism which is mexinfe and numerically more stable than
the traditional column-based scheme. Furthermore, waocated several heuristics for adaptively
modifying various threshold parameters as the factoomagiroceeds, which improves the robustness
of the algorithm. The numerical experiments show that our sigpernodal ILU algorithm is compet-
itive with an inversed-based ILU method as implemented WRACK. The new ILU routine will be
available in SuperLU Version 4.0.

In the future, we plan to investigatefifirent methods for handling zero pivots in order to enhance
stability of the factorization, add more adaptivity, anddst the preconditioningféect with the other
iterative solvers.
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