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Abstract

We present a new supernode-based incomplete LU factorization method to construct a precon-
ditioner for solving sparse linear systems with iterative methods. The new algorithm is primarily
based on the ILUTP approach by Saad, and we incorporate a number of techniques to improve
the robustness and performance of the traditional ILUTP method. These include the new dropping
strategies that accommodate the use of supernodal structures in the factored matrix. We present
numerical experiments to demonstrate that our new method iscompetitive with the other ILU ap-
proaches and is well suited for today’s high performance architectures.

1 Introduction

As the problem size increases with the high fidelity simulations demanding fine details on large, three-
dimensional geometries, iterative methods based on preconditioned Krylov subspace techniques are
attractive and cheaper alternatives to direct methods. A critical component of the iterative solution
techniques is the construction of effective preconditioners. Physics-based preconditioners are quite
effective for structured problems, such as those arising from discretized partial differential equations.
On the other hand, a class of methods based on incomplete LU decomposition are still regarded as the
generally robust “black-box” preconditioners for unstructured systems arising from a wide range of
applications areas. A variety of ILU techniques have been studied extensively in the past, including
distinct strategies of dropping elements, such as level-of-fill structure-based approach (ILU(k)) [20],
numerical threshold-based approach [19], and more recently, numerical inverse-based multilevel ap-
proach [1, 2]. The ILU(k) approach assigns a fill-level to each element, which characterizes the length
of the shortest fill path leading to this fill-in [13]. The elements with level of fill larger thank are
dropped. Intutively, this leads to good approximate factorization only if the fill-ins become smaller and
smaller as the sequence of updates proceeds. Implementation of ILU(k) can involve a separate symbolic
factorization stage to determine all the elements to be dropped. The threshold-based approach takes
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into account the numerical size of the elements in the factors, and drop those elements that are truly
small in magnitude. This method tends to produce better approximation and is applicable for a wider
range of problems, but its implementation is much more complex because the fill-in pattern must be
determined dynamically. One of the most sophisticated threshold-based methods is ILUTP proposed
by Saad [19, 20], which combines a dual dropping strategy with numerical pivoting (“T” stands for
threshold, and “P” stands for pivoting). The dual dropping rule in ILU(τ, p) first removes the elements
that are smaller thanτ from the current factored row or column. Among the remainingelements, at
mostp largest elements are kept in order to control the memory growth. Therefore, the dual strategy is
somewhat in between the structural and numerical approaches.

Our method can be considered to be a variant of the ILUTP approach, and we modified our high-
performance direct solver SuperLU [6, 7] to perform incomplete factorization. A key component in Su-
perLU is supernode, which gives several performance advantages over a non-supernodal (e.g., column-
wise) algorithm. Firstly, supernodes enable the use of higher level BLAS kernels which improves data
reuse in the numerical phase. Secondly, symbolic factorization traverses the supernodal directed graph
to determine the nonzero structures ofL andU. Since the supernodal graph can be much smaller than
the nodal (column) graph, the speed of this phase is drastically improved. Lastly, the amount of indirect
addressing is reduced while performing the scatter/gather operations for compressed matrix represen-
tation. Although the average size of the supernodes in an incomplete factor is expected to be smaller
than in a complete factor because of dropping, we attempted to retain supernodes as much as possible.
We have adapted the dropping rules to incorporate the supernodal structures as they emerge during
factorization. Therefore, our new algorithm has combined benefits of retaining numerical robustness
of ILUTP as well as achiving fast construction and application of the ILU preoconditioner. In addition,
we developed a number of new heuristics to enrich the existing dropping rules. We show that these new
heuristics are helpful in improving the numerical robustness of the original ILUTP method.

A number of researchers have used blocking techniques to construct incomplete factorization pre-
conditioners. But the extent to which the blocking was applied is rather limited. For example, in device
simulation, Fan et al. used the blocks of size 4x4, which occurs naturally when each grid point is
associated with 4 variables after discretization of the coupled PDEs [10]. Chow and Heroux used a
predetermined block partitioning at a coarse level, and exploited fine-grain dense blocks to perform
LU or ILU of the sparse diagonal blocks [3]. Hénon et al. developed a general scheme for identifying
supernodes in ILU(k) [12], but it is not directly applicableto threshold-based dropping. Our algorithm
is most similiar to the method proposed by Gupta and George [11], and we extended it to the case of
unsymmetric factorization with partial pivoting.

Our contributions can be summarized as follows. We adapted the classic dropping strategies of
ILUTP in order to incorporate supernode structures and to accommodate dynamic supernodes due to
partial pivoting. For the secondary dropping strategy, we proposed an area-based fill control method,
which is more flexible and numerically robust than the traditional column-based scheme. Furthermore,
we incorporated several heuristics for adaptively modifying various threshold parameters as the factor-
ization proceeds, which improves the robustness of the algorithm.

The remainder of the paper is organized as follows. In Section 2 we describe the computer systems,
the test matrices, and the performance metrics that will be used to evaluate the new algorithm. Section 3
describes in detail the new supernodal ILU algorithm together with various dropping strategies, and
presents the numerical results. In Section 4 we give some remarks of the implementational and software
issues. Finally in Section 5 we compare our new code with ILUPACK, which uses an inverse-based
ILU algorithm.
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2 Notations and Experimental Setup

We will use the following notations throughout the paper. WeuseA to denote the coefficient matrix
of the original linear system,L andU to denote the triangular factors. The matrixF = L + U − I
represents the filled matrix containing bothL andU, andM = LU is the preconditioning matrix.D,
Dr , Dc represent diagonal matrices,P, Pr , Pc represent permutaion matrices. #(S) denotes the number
of elements in the setS. We use Matlab notation for integer ranges: (s : t) refers to a range of integers
(s, s+ 1, . . . , t). We use nnz(A) to denote the number of nonzeros in matrixA. Thefill ratio refers to
the ratio of the number of nonzeros in the filled matrixF over that in the original matrixA. Sometimes
we need to refer to the fill ratio of certain columnj, i.e., nnz(F(:, j))/nnz(A(:, j)). The fill ratio is a
direct indicator of the memory requirement. The number of operations is also related to the fill ratio,
although it usually grows more linearly.

We use two platforms to evaluate our algorithms. The first is an Opteron cluster running a Linux
operating system at the National Energy Research ScientificComputing (NERSC) Center.1 Each node
contains dual Opteron 2.2 GHz processors, with 5 GBytes usable memory. We use only one pro-
cessor of a node. The processor’s theoretical peak floating-point performance is 4.4 Gflops/sec. We
use PathScalecc compiler with the following optimization flags:-O3 -OPT:IEEE arithmetic=1
-OPT:IEEE NaN inf=ON, which conforms to the IEEE-754 standard.

The second machine is a Dell PowerEdge 1950 server running a Linux operating system in the
MOE Key Laboratory for Computational Physical Sciences at Fudan University. It contains 2 quad-
core Xeon 2.5 GHz processors, with 32 GBytes shared memory. We use only one processor but all the
memory available. We use Intel’sicc compiler with-O3 optimization flag.

To evaluate our new ILU strategies, we have chosen 54 matrices from the following sources: Matrix
Market [17], University of Florida Sparse Matrix collection [5], and five matrices from the fusion
device simulation [14]. We use COLAMD for column permutaionand MC64 for equilibration and
row permutation. The iterative solver is restarted GMRES with our ILU as a right preconditioner (i.e.
solvingPAM−1y = Pb). The stopping criterion is‖rk = b−Axk‖2 ≤ δ‖b‖2, here we useδ = 10−8 which
is in the order of the square root of IEEE double precision machine epsilon. We set the dimension of
the Krylov subspace to be 50 and maximum iteration count to be1000. We test ILU(τ) with different
values ofτ, such as 10−4, 10−6, and 10−8.

To compare the effectiveness of different solvers, or different ILU parameter configurations, we will
use the performance profiles similar to what was proposed by E. Dolan and J. Moré in [8] to present the
data. The idea of performance profile is as follows. Given a setM of matrices and a setS of solvers,
for each matrixm ∈ M and solvers ∈ S, we usef r(m, s) andt(m, s) to denote the fill ratio and total
time needed to solvem by s. If s fails to solvem for any reason (e.g. out of memory, or exceeding
maximum iteration limit), we setf r(m, s) andt(m, s) to be+∞ (in practice, a very large number that
is outside the range of our interest is sufficient). Then, for each solvers, we define the following two
cumulative distribution functions as the profiles of fill ratio and time ratio, respectively.

γs(x) =
#{m ∈ M : f r(m, s) ≤ x}

#(M)
, x ∈ R

and

θs(x) =
#
{

m ∈ M : t(m,s)
mins∈S{t(m,s)}

≤ x
}

#(M)
, x ∈ R

1http://www.nersc.gov/nusers/systems/jacquard
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Intuitively, γs(x) shows the fraction of the problems thats could solve within the fill ratiox, and
θs(x) shows the fraction of the problems thats could solve within a multiple ofx of the best solution
time among all the solvers. Therefore, the plots of different solvers in thex-γ or x-θ coordinate could
differentiate the strength of the solvers in the criteria of fill ratio or time ratio—the higher the curve,
the more problems the corresponding solver could solve under the same fill or time limit.

We caution that even though performance profile is a powerfultool to present overall performance
summary data of different solvers, it cannot show the difference of the solvers for each individual
matrix. Therefore, in addition to performance profile, we will show other specific results when there is
a need.

3 Incomplete Factorization with Supernodes

3.1 Sketch of the algorithm

Our base algorithm framework is the left-looking, partial pivoting, supernodal sparse LU factoriza-
tion algorithm implemented in SuperLU [6, 7]. A key concept in SuperLU is to exploit dense blocks
appeared in theL andU factors. In particular, we define a supernode inL to be a range (r : s) of
columns with the triangular block on the diagonal being full, and the identical nonzero structure else-
where among the columns. Using the same supernode partitionto the rows ofU, the nonzero structure
of each column inU consists of a number of dense segments. Thus, the compresseddata structure for
L consists of a collection of supernodes as dense submatrices, and that forU consists of a collection of
dense subvectors. For convenience, each diagonal block ofU associated with each supernode is treated
as full and stored together with theL supernodal structure. Moreover, we merge several columns at the
fringe of elimination tree into one supernode regardless oftheir row structures. We call these relaxed
supernodes, which help increase the average supernode sizeat the expense of storing a small number
of explicit zeros.

The factorization algorithm is left-looking, with supernode-panel update kernel. A panel is simply
a set of consective columns, and is an algorithmic blocking parameter used to enhance data reuse in
the memory hierarchy; it enables use of Level 3 BLAS. At each step of panel factorization, we obtain
a panel in theU factor and a panel in theL factor.

There are some preprocessing steps before the factorization kernel. In SuperLU, these include
row/column equilibration and sparsity-preserving reorderingof the columns. In the case of incomplete
factorization, we found that it is often beneficial to include another preprocessing step to make the
initial matrix more diagonal dominant (e.g., via a maximum weighted bipartite matching algorithm).
For this, we use the code MC64 developed by Duff and Koster [9]. MC64 finds a permutation and the
row/column scalings so that the scaled and permuted matrix has entries of modulus 1 on the diagonal
and off-diagonal entries of modulus at most 1. (Mayer calls this I-matrix [16].) We tested 54 matrices
with or without MC64, and found that using MC64, the ILU-preconditioned GMRES converged for 48
matrices with average 13 iterstions, whereas without MC64,47 matrices succeeded and the average
iteration count is 34.Moreover, without MC64, the number of zero pivots encountered is also larger.

Our incomplete factorization algorithm retains most of thealgorithmic ingredients from SuperLU,
with added dropping rules that are applied to theL andU factors on-the-fly. The description of the high
level algorithm is given as Algorithm 1. The steps marked asbold correspond to the new steps intro-
duced to perform ILU. Since partial pivoting with row interchange is used, the resulting factorization
is performed on the matrixPrP0Dr ADcPT

c , whereDr andDc are diagonal scaling matrices,P0 is the
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row permutation matrix returned from MC64,Pc is the column permutation matrix for sparsity preser-
vation, andPr is the row permutation matrix from partial pivoting.Dr , Dc, P0 andPc are obtained
before factorization, andPr is obtained during factorization. In the following sections, we describe our
adaptation of the dropping rules to the situation when supernodes are present, and our way to handle
zero-pivot breakdowns.

Algorithm 1. Left-looking, supernode-panel ILU algorithm

1. Preprocessing

1.1) (optional)Use MC64 to find a row permutationP0 and row and column scaling factors
Dr andDc such thatP0DrADc is an I-matrix;

1.2) If step 1.1) is not performed, do a simple LAPACK-style row/column equilibration to
obtainDrADc;

1.3) Compute a column permutationPc to preserve sparsity of the LU factorization of
P0DrADcPT

c ;

2. Factorization ofP0Dr ADcPT
c

FOReach panel of columns DO

2.1) Symbolic factorization:determine which supernodes to the left will update the current
panel and a topological order of updates;

2.2) Panel factorization:

FOReach updating supernode DO

Apply triangular solve to obtain theU part;

Apply matrix-matrix multiplication to obtain theL part;

END FOR

2.3) Inner factorization:

FOReach columnj in the panel DO

Update the current columnj;

Apply the dropping rule to the U part;

Find pivot in this column;

(optional) Modify the diagonal entry to handle zero-pivot breakdown;

Determine supernode boundary;

IF column j starts a new supernode THEN

Apply the dropping rule to the newly formed supernode(s : j − 1) in L;

END IF

END FOR

END FOR
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3.2 Threshold-based dropping criteria

Our primary dropping criteria are threshold-based and akinto the ILUTP variants [19, 20]. That is,
while performing Gaussian elimination with partial pivoting, we set to zero the entries inL andU with
modulus smaller than a prescribed thresholdτ, whereτ ∈ [0, 1].

Since our compressed storage is column oriented for bothL andU, the dropping rule is also column
oriented. The upper triangular matrixU is stored in a normal compressed column format, we can easily
remove the small elements while storing the newly computed column into the compressed storage,
using the first criterion given in Figure 1.

Threshold-based dropping criteria for ILU(τ)

1) Droping elements inU: If |ui j | < τ‖A(:, j)‖∞, we setui j to zero.

2) Dropping elements inL: In a supernodeL(:, s : t), if ‖L(i, s : t)‖∞ < τ, we set the
entirei-th row to zero.

Figure 1: The threshold-based dropping criteria.

The lower triangular matrixL is stored as a collection of supernodes. Our goal is to retainthe
supernodal structure to the largest extent as in the complete factorization. In a naive implementation
of ILU, we may apply the traditional dropping to each individual column. But it is usually not the
case that the nonzeros in the same row of the consituent columns within a supernode (resulting from
a complete factorization) are dropped. This implies that after dropping, the nonzero structures among
the columns in the original supernode may be different, thus, we will need to regroup the columns into
smaller supernodes, resulting in performance penalty. Instead, we adopt an alternative approach that
better respects the supernode structure. That is, we eitherkeep or drop an entire row of a supernode
when it is formed at the crrent step. This is similar to what was first proposed by Gupta and George for
incomplete Cholesky factorization [11]. Our dropping criterion is the second rule shown in Figure 1.
Note that since partial pivoting is used, the magnitude of the elements inL is bounded above by one,
and so the absolute quantity is the same as the relative quantity. The use of∞-norm for row i of a
supernode implies that when rowi is dropped, the magnitude of every element in this row is smaller
thanτ. Therefore, in a traditional column-wise algorithm, theseelements should be dropped as well.
On the other hand, there might be a rowj such that‖L( j, s : t)‖∞ > τ and hence rowj is retained in our
supernodal version, even though some elements in this row may be smaller thanτ in magnitude and
would have been dropped in a column-wise algorithm. To summarize, in local viewpoint, this supern-
odal dropping rule leads to fewer elements being dropped compared with a column-wise algorithm.
But we cannot give such an analytical comparison for the entire factorization, because any difference
in the current step could affect the dropping in the later factorization, We did an experiment to compare
the supernodal ILU and the column-wise ILU (setting maximumsupernode size to be one).For 54 ma-
trices, GMRES with supernodal ILU converged for 47 matrices, while the column-wise ILU succeeded
with only 43 matrices. The average fill ratios of the supernodal and column-wise ILU are 13.2 and 9.8,
respectively. For the 43 matrices that both versions succeeded, the supernodal ILU version is around
2.3 times faster in total GMRES solution time than the scalarversion on the Dell Xeon server.This
shows that our supernodal version is numerically superior achieves higher performance than the scalar
ILU.
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3.3 Secondary dropping to control fill-in adaptively

ILU(τ) works well if there is sufficient memory, but it may still incur too much fill. A secondary
dropping can be used to alleviate the problem.

Several methods were proposed earlier in this regard. In Saad’s ILU(τ,p) approach [19],p is the
largest number of nonzeros (not the level-of-fill) allowed in echo row ofF (in a row-wise algorithm).
Gupta and George suggested usingp( j) = γ · nnz(A(:, j)) for the j-th column instead of a constant,
whereγ is an upper bound of the fill ratio defined by a user [11]. They also proposed a method of
computing a secondary dropping tolerance by an interpolation formula rather than sorting the largest
p entries, which is cheaper than the original ILU(τ,p). According to our experience, Gupta’s heuristic
depends largely on the distribution of the nonzero modulos in F, and the fill ratio can be either very
large or very small. The benefit of avoid sorting is also limited, as sorting is not very expensive.
Suppose we usequicksort, the complexity is onlyO(k logk), wherek is the number of nonzero entries
in F(:, j). There is also a linear time algorithm to find thep-th largest number in an array [4], but in
practice, it may not be as fast as quicksort.

We now present a new strategy for choosingp. Given a user-desired upper bound of the overall fill
ratio γ, we define an upper bound functionf ( j) for each columnj, f : [1, n] → [1, γ], which satisfies
f (n) ≤ γ. Then at thej-th column, if the current fill ratio

nnz(F(:, 1 : j))
nnz(A(:, 1 : j))

(1)

exceedsf ( j), we choose a maximum possible valuep such that when we keep the largestp elements,
the current fill ratio is bounded byf ( j). This criterion can be adapted to our supernodal algorithmas
follows. For a supernode withk columns,p may be computed as

p = max

{

f ( j) · nnz(A(:, 1 : j)) − nnz(F(:, 1 : j − k))
k

, k

}

. (2)

In other words, if we keep the largestp rows of this supernode, the current fill ratio is guaranteed not
to exceedf ( j). The secondk term in max{. . .} is to ensure that we do not drop any row in the diagonal
block of the supernode.

This is also an ILU(τ,p) approach with adaptivep, similar to Gupta’s scheme. However, our fill
ratio definition (1) isarea-basedinstead of column-based, because we count all the fill-ins from column
1 to column j. That is, we only monitor the overall memory growth instead of that of each individual
column. This is more flexible than the column-based method inthat it allows larger amount of fill for
certain columns so long as the cumulative fill ratio in the previous columns is small. At the end of
factorization, the total fill ratio is still bounded byγ because of the conditionf (n) ≤ γ.

The above description of area-based strategy is generic, and may be used in any implementation.
We now introduce a specificf ( j) that is suitable for the SuperLU implementation. SinceL andU are
stored in different data structures, and dropping ofL is invoked after a complete supernode is formed,
it is sensible to use different secondary droppping rules forL andU. For a column-based method, at
the j-th column, the simplest way is to splitγ proportionally with j : (n− j) ratio forU(:, j) andL(:, j).
For our area-based approach, we may choose two functions,fL( j) for L and fU( j) for U, so long as
fL(n)+ fU (n) ≤ γ. A simple way is to assignfL(n) and fU(n) to be the areas ofL(:, j) andU(:, j) relative
to F(:, 1 : j), as follows:

fU( j) =
j

2n
γ, fL( j) =

(

1−
j

2n

)

γ. (3)
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Then we split the fill quota proportionally withfU( j) : fL( j) ratio.
A problem with this is that dropping inU could be very constraining for smallj. Then, we can

simply usefU( j) = γ/2. With this, even though it could happen thatfL( j) + fU( j) ≥ γ in the middle of
the factorization,fL(n) + fU(n) ≤ γ still holds in the end, and the total memory is still bounded.Since
we do not apply the dropping rules toward the end in order to reduce the number of zero pivots (see
Section 3.4), we need to reserve some quota for them by reducing fL( j) + fU( j). In addition, we need
to allow more fill-ins inL than inU, because the dense diagonal blocks are stored inL, and some small
entries inL are located in the rows with large norm, hence are not dropped. As a result, we propose to
use

fU( j) = 0.9×
γ

2
, fL( j) =

(

1−
j

2n

)

γ. (4)

In conjunction with the dynamic, area-based strategy for choosing p, we devised an adaptive
scheme for choosingτ as well. The idea is that when the current fill ratio is large, we increaseτ,
forcing more droppings. Otherwise we decreaseτ to retain more entries. Specifically, letτ(1) = τ0 be
the user-input threshold, at columnj, if the fill ratio given by Equation (1) is larger thanf ( j), we set
τ( j+1) = min{1, 2τ( j)}, otherwise, we setτ( j+1) = max{τ0, τ( j)/2}. That is, we maintainτ( j) ∈ [τ0, 1].
Our adaptive ILU(τ( j),p( j)) is a simple heuristic which does not require sorting.

We now present the results of the tests comparing various parameter settings. The ILU configura-
tions include:

• ILU(τ), τ = 10−4;

• ILU(τ, p), τ = 10−4 or 10−8, p = γ · nnz(A)/n;

• column-based adaptivep, τ = 10−4 or 10−8;

• area-based adaptivep, τ = 10−4 or 10−8;

• area-based adaptiveτ( j), τ0 = 10−4, no secondary dropping

Figure 2 shows the performance profiles of the fill ratio and the time ratio for the 54 test matrices.
We can see that a smallτ such as 10−8 is generally not good, that is, it is not efficient to use the sec-
ondary dropping rule only. The threshold-based dropping criterion in Figure 1 should play a significant
role.

A key conclusion is that our new area-based scheme is much more robust than the column-based
scheme; it is also better than ILU(τ) when the fill ratio does not exceed the user-desiredγ. ILU(τ)
becomes better only when the fill ratio is unbounded (i.e., allow it to exceedγ). This is consistent with
the intuition that an ILU preconditioner tends to be more robust with more fills.

There are two reasons why the actual fill ratio can be larger than the preset parameterγ. Firstly, our
dropping rules do not drop entries in the dense diagonal blocks. Therefore, when there are some large
supernodes inL, these blocks would contribute to a large memory growth evenif τ is large. Secondly,
we never drop any entries in several trailing columns, and usually there are a lot of fill-ins towards the
end of the factorization. If the user wants the memory to be absolutely under control, we recommend
that a slightly smallerγ be used.

Figure 2(b) shows the runtime comparison of the solvers using the Dell Xeon server. In this plot, the
matrices with fill ratio larger than 10 are considered as failure. Thus, the comparison is made under the
same memory constraint, and none of the solvers are allowed to consume much more memory than the
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Figure 2: Performance profiles after incorporating the secondary dropping rules;γ = 10.

others. The top three solvers are much better than the others. Our area-based adaptive-p or adaptive-τ
schemes have quite similar performance, with the former having a slight edge over the other one.

Taking into account both memory and time, we can see that the secondary dropping helps achieve
a good trade-off, with controlled fill-in and the solver not being much slower. Either our “red” scheme
or “blue” scheme can be used as a default setting in the code.

3.4 Handling breakdown due to zero pivots

In the case of LU factorization with partial pivoting, zero pivots may occur due to numerical cancel-
lations when the matrix is nearly singular. However, for an incomplete LU factorization, zeros pivots
may occur more often because of dropping, which has nothing to do with numerical cancellation.

To illustrate this, let us consider the following two 2× 2 matrices:

A1 =

[

a b
c 0

]

, A2 =

[

c 0
a b

]

, (bc, 0).

Assume that the column permutation is Identity. Thus, if|c| < τ |a|, the (2,1) entry will be dropped,
and the (2,2) entry will become zero, causing ILU to break down. Assuming thata, b, andc are drawn
independently from the uniform distribution in [−1, 1], we have:

Prob{u22 = 0} =
τ

4
> 0.

In general, let us assume that the nonzero entries of a nonsingular matrix satisfy a uniform distri-
bution in [−1, 1]. Then for a given sparsity pattern, if there exist a row permutationP and a columnj
such that (PA)( j : n, j) = 0, the probability of encountering a zero pivot in thej-th column would be
positive. We can show that (τ/4)nnz(A)−n is a lower bound of the probability. LetB = PA and suppose
that j is the minimum column index which satisfiesB( j : n, j) = 0. The probability that all the pivots
of the first j − 1 columns are diagonal entries ofB and all the off-diagonal entries are dropped (with
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this condition,, definitely there will be a zero pivot in thej-th column) is

j−1
∏

i=1

∏

k>i

Prob{|B(k, i)| < τ|B(i, i)|} =
j−1
∏

i=1

(

τ

4

)nnz(B(i+1:n,i))

≥

(

τ

4

)nnz(A(:,1: j−1))−( j−1)
≥

(

τ

4

)nnz(A)−n)
.

The last inequality comes from the fact that there is at leastone nonzero element in each column of a
nonsingular matrix.

Usually, many zero pivots occur in the last columns, becauseit is more probable at the end than
in the beginning that all the nonzero entries of a column are permuted to the upper triangular part. To
mitigate this, we stop dropping when the column index is larger than max{n − 2Ns, n × 95%}, where
Ns is the maximum size of a supernode. That is, the factorization is almost finished. According to our
experiement, this helps reduce a large fraction of the zero pivots.

We have devised a simple adaptive mechanism to handle the situation when a zero pivot indeed
occurs. At columnj, when we encounteru j j = 0, we set it to ˆτ ‖A(:, j)‖∞ to ensure the factorization can
continue andU is nonsingular after the factorization. This is equivalentto adding a small perturbation ˆτ
to Li j at the current step. If ˆτ = τ, the perturbation we add tou j j will not exceed the upper bound of the
error propagated by the droppings. In our code, we choose ˆτ( j) = 10−2(1− j/n), which is an increasing
function with the column index, rather than a constant. Thisprevents the diagonal entries ofU from
being too small, which could result in a very ill-conditioned preconditioner.

Adding a small perturbation on the zero diagonal is a simple remedy to enable the factorization to
complete. This is an acceptable solution when not many zero pivots occur, otherwise, the precon-
ditioner can be quite ill-conditioned even though the factorization completes, making this ineffective.
Some other methods were proposed to handle the breakdown, such as the delayed pivoting [11] and
the multilevel method [1]. We plan to investigate them in thefuture. But our comparison showed that
our current ILU scheme is very competitive with a multilevelILU scheme as in ILUPACK [2], see
Section 5.

3.5 Relaxed pivoting with diagonal threshold

For some matrices with band structure or close to diagonallydominant, sometimes we can trade partial
pivoting for a sparser factorization. Therefore, we provide a relaxed pivoting strategy which gives
preference to the diagonal entries. We use a threshold parameterη ∈ [0, 1] to facilitate this. If| f j j | ≥

η maxi≥ j {| fi j |}, we use the diagonal entryf j j as the pivot. Thus,η = 1.0 corresponds to partial pivoting,
andη = 0.0 corresponds to diagonal pivoting. Usually,η cannot be too small if the numerical property
of the matrix is unknown because the magnitude of the entriesin L can grow as much asη−1. In general,
even though the pivot growth can be a bit larger than one, the dropped entries are still relatively small.

Tables 1 and 2 present the numerical results with varyingη, without (i.e., ILU(τ)) or with secondary
dropping (i.e., ILU(τ, p)).

When secondary dropping is not used (Table 1), (threshhold)pivoting is more reliable than no
pivoting at all, because general matrices are not close to being diagonally dominant, even the I-matrices
may not be. As long asη > 0, the numbers of solvable problems are about the same. Except for η = 1.0,
largerη tends to maintain sparsity slightly better. The fill ratio becomes large whenη is very small,
because we use an absolute dropping threshold forL, which results in less dropping with smallerη. For
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Diag thresh (η) 1.0 0.1 0.01 0.001 0
ILU(10−4) Number of sucesses 47 48 47 48 44

Average fill ratio 12.6 12.0 12.6 12.9 11.7
ILU(10−6) Number of sucesses 51 51 51 51 45

Average fill ratio 28.6 28.6 28.9 29.1 29.9

Table 1: Effect of Diagthresh (η) with ILU(τ).

Diag thresh (η) 1.0 0.1 0.01 0.001 0 0.8 0.5
τ = 10−4 Number of successes 32 33 33 35 3434 33

Average fill ratio 5.6 4.7 4.7 4.8 4.75.2 4.8
τ = 10−6 Number of successes 25 29 31 29 2726 29

Average fill ratio 5.8 6.0 6.1 5.9 5.95.9 6.0

Table 2: Effect of Diagthresh (η) with ILU(τ, p), using area-based secondary dropping,γ = 10.

some matrices, the fill ratios are quite large if we use partial pivoting. However, they can be solved if we
use a relaxed pivoting scheme. For example, for the fusion matrix matrix181 of dimension 589,698,
ILU factorization runs out of memory if partial pivoting is used, but it can be solved withη = 0.1. We
also did experiments when MC64 is not used for ILU(10−4) with η = 0.1. There were two more failures
but the average fill ratio is only 8.4. Among those for which the preconditioner works, the average fill
ratio is 12.8, which is not so small. As a result, we recommend that MC64 isalways used, andη = 0.1
is used as a default in our code.

When secondary dropping is used (Table 2), the situation is not very conclusive, and it is difficult
to choose a goodη. This is mainly because the influence of drop tolerance becomes insignificant in the
presence of secondary dropping. But we can see clearly that the average fill ratios are less than half of
those in Table 1, and the numbers of problems successfully solved are quite smaller.

All we can advise to the users is, when memory is not at a premium, it is better not to use secondary
dropping.

3.6 Three variants of MILU

Through experiments, we found that the numerical quality with the pure threshold-based dropping rule
is not very satisfactory, and then we looked into the ModifiedILU (MILU) method.

The MILU techniques were introduced to reduce the effect of dropping by compensating for the
discarded elements [20]. The basic idea is to add up the dropped elements in a row or column to the
diagonal ofU. The commonly used strategy has an appealing property that it preserves the row sums
relationPrAe= L̃Ũe for a row-wise algorithm or column sums relationeTPr A = eT L̃Ũ for a column-
wise algorithm, wherẽL and Ũ are incomplete factors. Algorithm 2 gives the procedure to perform
a column-wise MILU with partial pivoting. Note that for the upper triangular partfi j is equal toui j ,
whereas for the lower triangular partfi j = l i j u j j because of scaling.

In order to accommodate our supernodal dropping criteria, we need to modify the above column-
wise MILU procedure. Recall that in Algorithm 1, we apply thedropping rule 2) in Figure 1 as a new
supernode inL is formed. The consequence of this “delayed” dropping is that at the time a column
is processed for pivoting, the computed sums may contain fewer dropped entries and less amount is
compensated on the diagonal. Therefore, the column sums relation is not preserved. This drawback
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can be circumvented if we redesign the symbolic factorization algorithm to allow different supernode
partitions. Then, we could have an implementation that is numerically faithful to Algorithm 2, but
the performance of the code would suffer because the average size of the supernode would be smaller.
Instead, we decided to use a simpler adaptation of the code asfollow. For each column ofU, we
accumulate ins the sum of the dropped entries. Then,s is not only added to the diagonal but is also
used in choosing the proper pivot in the lower triangular part. We call this supernodal version of MILU
to be SMILU-1, which is outlined in Algorithm 3.

The SMILU-1 algorithm ensures that the pivot has the largestmagnitude after droppings are per-
formed in the upper triangular part. However, we cannot guarantee that the pivot still has a relatively
large absolute value after the entries in the lower triangular are dropped. The pivot could become small
or even zero after we apply the dropping rule toL (that is, after applying (4) in Algorithm 3.) This
may cause the factorU to be ill-conditioned or even singular, resulting in an unstable preconditioner.
The SMILU-2 algorithm in Algorithm 4 provides a remedy for this problem. Here, we ensure that the
magnitude of the pivot is nondecreasing after diagonal compensations, thereby avoiding small pivots.

An alternative method is to accumulate the one-norm of the dropped vector. This will make the
pivots have larger absolute values compared to what would bein SMILU-2, and we expect the condition
number ofU would be smaller. We call this SMILU-3, shown in Algorithm 5.

For SMILU-2 and SMILU-3,| fi j + sign(fi j )s| ≡ | fi j |+ s, sinces is always nonnegative. As a result,
the trick we use in SMILU-1 to select proper pivot for partialpivoting (Step (2) in Algorithm 3) is no
longer needed here.

In Table 3, we compare the performance of various ILU algorithms and direct solver SuperLU,
using the 54 test matrices. We classify the failures in threecategories: “slow” means the stopping
criterion is not met, although the residual norm is still decreasing while the maximum iteration count
is exceeded (i.e,δ < ‖r‖2/‖b‖2 < 1), “diverge” means‖r‖2 ≥ ‖b‖2, and “memory” means the code
runs out of memory. We used the Dell Xeon server that has 32 GBytes memory. Because of large
amount of memory available, SuperLU succeeded with all but one problem, for which the code ran out
of memory. As can be seen, whenτ is sufficiently small, e.g.,τ = 10−6 or τ = 10−8, the ILU algorithms
can solve the same number of problems as SuperLU. ILU(τ) usually works very well, however, when
it fails, it is often due to a lot of zero pivots.

Figure 3 shows performance profiles of various ILU algorithms and SuperLU, using the Opteron
cluster. For a certain time limit, various ILUs can solve many more problems than SuperLU. The ILUs
are also advantageous over SuperLU in terms of fill ratio. Since the Opteron cluster has a relatively
smaller amount of memory than the Dell Xeon server, SuperLU fails with more problems due to mem-
ory exhaustion. SMILU-2 and SMILU-3 are quite comparable, especially for the matrices with small
fill ratio. They are designed for avoiding the factorU to be ill-conditioned, but theL andU factors can
be far fromPA, which could result in slow convergence. We can see from the figure that whenτ is
small, such asτ = 10−6, or 10−8, the difference between the different variants of ILUs are very small,
mainly because the number of entries dropped is small.

4 Comments on Software

In this section, we describe a few implementational difficulties encountered while performing incom-
plete factorization, and summarize the new parameters introduced to the ILU routine.
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Algorithm 2. Classic column-wise MILU for column j

(1) Obtain the current filled columnF(:, j);
(2) Compute the sum of dropped entries inF(:, j): s=

∑

dropped fi j ;
(3) Set f j j to be f j j + s;
(4) Pivot: row interchange in the lower triangular partF( j : n, j);
(5) SeparateU andL: U(1 : j, j) = F(1 : j, j); L( j : n, j) = F( j : n, j)/F( j, j);

Algorithm 3. SMILU-1: Supernodal MILU for column j

(1) Compute the sum of the dropped entries inU(:, j): s=
∑

droppedui j ;
(2) Choose pivot rowi, such thati = argmaxi≥ j | fi j + s|;
(3) Swap rowsi and j, and setu j j := fi j + s;
(4) IF j starts a new supernode THEN

Let (r : t) be the newly formed supernode; (t ≡ j − 1)
For each columnk in the supernode (r ≤ k ≤ t):

compute the sum of the dropped entries:Sk =
∑

idroppedl ik;
setukk := ukk + Sk · ukk;

END IF;

Algorithm 4. SMILU-2: Supernodal MILU for column j

(1) Compute the sum of the dropped entries inU(:, j): s= |
∑

droppedui j |;
(2) Choose pivot rowi, such thati = argmaxi≥ j | fi j |;
(3) Swap rowsi and j, and setu j j := fi j + sign(fi j )s;
(4) IF j starts a new supernode THEN

Let (s : t) be the newly formed supernode; (t ≡ j − 1)
For each rowi that is dropped, setukk := ukk + |l ik |ukk, for s≤ k ≤ t;

END IF;

Algorithm 5. SMILU-3: Supernodal MILU for column j

(1) Compute the sum of the dropped entries inU(:, j): s=
∑

dropped|ui j |;
(2) Choose pivot rowi, such thati = argmaxi≥ j | fi j |;
(3) Swap rowsi and j, and setu j j := fi j + sign(fi j )s;
(4) IF j starts a new supernode THEN

Let (s : t) be the newly formed supernode; (t ≡ j − 1)
For each rowi that is dropped, setukk := ukk + |l ik |ukk, for s≤ k ≤ t;

END IF;
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Figure 3: Performance profiles of various of ILU algorithms with τ = 10−4, 10−6, or 10−8, using the
Opteron cluster. The left column is the profile w.r.t. the fillratio, and the right column is the profile
w.r.t. the time ratio. Secondary dropping is turned off.
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converge slow diverge memoryzero pivots
τ = 10−4 ILU 47 3 4 0 7786

SMILU-1 35 15 4 0 9
SMILU-2 44 6 4 0 9
SMILU-3 38 14 2 0 9

τ = 10−6 ILU 51 0 3 0 685
SMILU-1 49 3 1 1 0
SMILU-2 50 3 1 0 0
SMILU-3 49 5 0 0 0

τ = 10−8 ILU 52 1 0 1 0
SMILU-1 50 3 0 1 0
SMILU-2 50 3 0 1 0
SMILU-3 51 3 0 0 0

(τ = 0.0) SuperLU 53 0 0 1 0

Table 3: Comparison of various ILU(τ) algorithms and SuperLU on the Dell Xeon server. The last col-
umn “zero pivots” indicates the number of zero pivots encountered during ILU factorization. Secondary
dropping is turned off.

4.1 Difficulty with symmetric pruning

Symmetric pruning is a technique to find a smaller graph (symmetric reduction) in place ofG(LT) and
that maintains the path-preserving property. Using symmetric reduction can speed up the depth-first
search traversals (i.e., the symbolic factorization) which are interleaved with the numerical factoriation
steps. Specifically, at stepj, the symmetric reduction of the current factorL(:, 1 : j) is obtained by
removing all nonzeroslrs for which ltsust , 0 for somet < min(r, j) [6]. That is, inL, the nonzeros
below the first matching nonzero pair in column and rows < j of the factorF(1 : j, 1 : j) can be
removed. Consider the following 4×4 matrixA, the filled matrixF (using the given elimination order),
and the symmetric reductionR:

A =
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.

In F andR, a symbol “◦” indicates a fill-in entry. InR, a symbol “⊖” indicates a removed entry
from symmetric pruning, that is,l41 is removed due to the matching nonzero pairl21 andu12. If G(F)
is used in the depth-first traversal, the entryl43 is obtained by the following path:2

3
A
−→ 1

F
−→ 4

When using the reduced graphG(R), the above path is replaced by the following one, and the reacha-
bility is maintained:

3
A
−→ 1

R
−→ 2

R
−→ 4

2We use the convention that an edge is directed from a column toa row of the matrix.
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However, in an incomplete factorization, if the magnitude of l42 is smaller than the threshold, it

would be dropped both inF and inR. Then the edge 2
R
−→ 4 does not exist anymore. The entryl43

would be missing ifR is used for the depth-first search, and similarly forl44. The erroneousR is shown
below, where “⊗” indicates a numerical dropping in ILU.

Rilu =
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.

We thought about several ways to mitigate this problem, suchas delayed pruning or protecting
pruned entries from dropping. But their implementations would incur nontrivial costs in tuntime and
memory. We did some tests to evaluate the benefit of pruning. For complete factorization, even if the
pruned graph is very small, i.e. size ofR less than 5% of that ofF, the total speedup is usually no more
than 20%. For incomplete factorization, since the fill ratiois often much smaller (i.e.,F is already quite
small), we expect the benefit of pruning would be less. Therefore, we decided not to use any reduced
graph.

4.2 Zero pivots and relaxed supernodes

In SuperLU’s complete factorization, we use relaxed supernodes to increase the average size of su-
pernodes (or block size). It groups several columns at the fringe of the column elimination tree into
an artificial supernode [6]. The column elimination tree is the elimination tree (etree) of|A|T |A|, which
shows the columns’ dependencies for any row permutation (partial pivoting). That is, the relaxed su-
pernodes at the bottom of the etree will not be modified by any other columns outside these supernodes.
Given a postordered etree, this means that the nonzero row structure of a columnL(:, j) must be disjoint
from that of a later supernode (r : s) > j. Otherwise, there exists a numerical assignment such that a
common rowi can be selected as a pivot at stepj, making supernode (r : s) dependent on columnj.
Therefore, selecting any pivot columnj has no impact on supernode (r : s).

On the other hand, in an incomplete factorization, if zero pivot occurs in columnj due to dropping,
we cannot choose a random row below the diagonal as pivot, because it could overlap with a row in the
future relaxed supernodes, which in essence changes the etree structure and dependency. Therefore,
we must choose a pivot row which does not appear in any later relaxed supernode.

4.3 Tunable parameters in the ILU routine

The new ILU routine is namedxGSITRF, which takesoptions structure as the first argument, which
contains a set of parameters to control how the ILU decomposition will be performed. The default val-
ues of these parameters are given in Table 4, which are set by calling the routineilu set default options().
The users may modify these values based on their problems need.

Based on our experience, we provide the following guidelines regarding how to choose the param-
eters if the defaults do not work:

• Equilibration is necessary, and MC64 is usually helpful.

• If zero pivots occur and the preconditioner is too ill-conditioned, you should try modified variants
SMILU-2 or SMILU-3.
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Options Default
MC64 ON
equilibration ON
drop tolerance (τ) 10−4

fill-ratio bound (γ) 10
diag thresh (η) 0.1
column permutation COLAMD
SMILU SMILU-2
secondary dropping area-based

Table 4: Default values of the parameters of the ILU routinexGSITRF.

• If the fill ratio is still small, you may try a smallerτ.

• If you run out of memory, you may try a smallerγ and a smallerη.

5 Comparison with ILUPACK

There are a number of ILU preconditioning packages for unsymmetric matrices, such as SPARSKIT [18],
ILUPACK [2], ILU ++ [15]. We have compared our algorithm with ILUPACK V2.1, which has been
gaining popularity.

We choose to compare with ILUPACK mainly because it uses a very different approach than ours;
it is an inversed-based method, and uses a relatively new multilevel approach to handle small pivots.
The inverse-based approach attempts to control the size of the inverse of the preconditioner so that the
preconditioner has a small condition number. This objective is achieved indirectly in ILUPACK: at step
k of factorization, the algorithm monitors the norm of thek-th row ofL−1. If that exceeds the prescribed
boundν, implying no suitable pivot can be chosen at this step, then row k and columnk is moved to
the end, and the factorization continues to the next row/column. After all fthe good pivots are chosen,
the current level is considered to be complete, the factorization starts a new level, which is comprised
of all the delayed rows and columns from the previous level.

Our tests were carried out on the Dell Xeon cluster. For ILUPACK, we downloaded the precompiled
64-bit libraries, and compiled only the main() function using “gcc -O3”. For our code, we used “icc
-O3” to compile, and linked withGotoBLAS library.

In our experiments, we tried to keep the same parameter settings for both codes:

• Our ILU: τ = 10−4, area-based secondary droppingγ = 5 or 10, diagonal thresholdη=0.1;

• ILUPACK: τ = 10−4, ν = 5, secondary droppingγ = 5 or 10 (corresp. to “param.elbow” in the
code.)

The ordering algorithms are different: our code uses a column reordering method such as Col-
umn Approximate Minimum Degree, for which the underlying graph model is the adjacency graph of
|A|T |A|. ILUPACK uses a symmetric reordering such as Approximate Minimum Degree, for which the
underlying graph model is the adjacency graph of|A|T + |A|.

From our 54 test matrices, we chose 37 which are available in Harwell-Boeing Figure 4(a) shows
the performance profiles of the two preconditioners withγ = 10 in our secondary dropping. For smaller
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allowable fill ratios, ILUPACK could solve a few more problems than our ILU does. However, when
the fill ratio is close to the prescribed limitγ, our code can solve more problems. If we use a smaller
γ, the curves of profile will be changed, see Figure 4(b), and they are different from just cutting off at
γ = 5 in the left figure.
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Figure 4: Comparison of fill ratio between our supernodal ILUand ILUPACK.

Figure 5 compares the runtime of ILUPACK with two of our ILU variants, one is ILU(τ), another
is ILU(τ, p). This shows that our area-based adaptive ILU(τ, p) is superior to the other solvers.
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Figure 5: Comparison of runtime between our supernodal ILU and ILUPACK.

To explore some detailed information about these solvers, we examined 11 hard problems for which
at least one solver fails and at least one solver workss. The success-failure instances are tabulated
in Table 5. Our area-based approache is better than the orginal ILU(τ) approach. ILUPACK solved
different set of problems, but ours can solve a few more. Overall,our approache is at least competitive
with ILUPACK.
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Matrix ILU(τ) ILU(τ, p), area-based, staticτ ILUPACK

NASASRB ◦ × ◦

ecl32 × × ◦

gemat11 ◦ ◦ ×

jpwh 991 × ◦ ◦

onetone2 ◦ ◦ ×

twotone ◦ ◦ ×

vavasis1 × × ◦

vavasis2 × × ◦

wang3 × ◦ ×

wang4 × ◦ ×

xenon2 × ◦ ×

total solved 4 7 5

Table 5: The selected matrices for which at least one solver works (shown as “◦”) and one solver fails
(shown as “×”). We setτ = 10−4 andγ = 10.

6 Conclusions

We adapted the classic dropping strategies of ILUTP in orderto incorporate supernode structures and
to accommodate dynamic supernodes due to partial pivoting.For the secondary dropping strategy, we
proposed an area-based fill control mechanism which is more flexible and numerically more stable than
the traditional column-based scheme. Furthermore, we incorporated several heuristics for adaptively
modifying various threshold parameters as the factorization proceeds, which improves the robustness
of the algorithm. The numerical experiments show that our new supernodal ILU algorithm is compet-
itive with an inversed-based ILU method as implemented in ILUPACK. The new ILU routine will be
available in SuperLU Version 4.0.

In the future, we plan to investigate different methods for handling zero pivots in order to enhance
stability of the factorization, add more adaptivity, and study the preconditioning effect with the other
iterative solvers.
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[12] P. Hénon, P. Ramet, and J. Roman. On finding approximatesupernodes for an efficient ILU(k)
factorization.Parallel Computing, 34:345–362, 2008.

[13] David Hysom and Alex Pothen. A scalable parallel algorithm for incomplete factor precondition-
ing. SIAM J. Scientific Computing, 22(6):2194–2215, 2001.

[14] S. C. Jardin, J. Breslau, and N. Ferraro. A high-order implicit finite element method for integrating
the two-fluid magnetohydrodynamic equations in two dimensions. Journal of Computational
Physics, 226:2146–2174, 2007.

[15] J. Mayer. ILU++. http://iamlasun8.mathematik.uni-karlsruhe.de/˜ae04/

iluplusplus.html, 2007.

[16] J. Mayer. Symmetric permutations for I-Matrices to delay and avoid small pivots during factor-
ization. SIAM J. Scientific Computing, 30(2):982–996, 2008.

[17] Matrix Market. http://math.nist.gov/MatrixMarket/.

[18] Y. Saad. SPARSKIT: A basic tool-kit for sparse matrix computations.http://www-users.cs.
umn.edu/˜saad/software/SPARSKIT/sparskit.html.

[19] Y. Saad. ILUT: A dual threshold incomplete LU factorization. Numerical Linear Algebra with
Applications, 1(4):387–402, 1994.

[20] Yousef Saad.Iterative methods for sparse linear systems. PWS Publishing Company, Boston,
MA, 1996.

20


