
ENERGY EFFICIENT INDEXING ON AIR

T. Imielinski S. Viswanathan B. R, Badrinath

Department of Computer Science

Rutgers University

New Brunswick, NJ 08903

Abstract

We consider wireless broadcasting of data as a way of dls.

seminating information to a massive number of users. Orga-

nizing and accessing information on wireless communication

channels is different from the problem of organizing and ac-

cessing data on the disk. We describe two methods, (1, m)

Indezing and Distributed Indezing, for organizing and ac-

cessing broadcast data. We demonstrate that the proposed

algorithms lead to significant improvement of battery life,

while retaining a low access time.

1 Introduction

The physical requirements of wireless communication

channels, make the problem of organizing wireless

broadcast data different from data organization on the

disk. Index based organization of data transmitted over

wireless channels, is very important from the power con-

servation point of view and can result in significant im-

provement in battery utilization. New technology can

utilize and build upon some well known techniques for

file organization and access. These traditional solutions

cannot be applied directly and need substantial modi-

fication because, of different physical limitations of the

wireless communication channels. New solutions require

merging interdisciplinary expertise ranging from new

communication protocols to file system and database

design.

In this paper, we consider wireless data broadcasting

as a way of disseminating information to a massive num-

ber of clients equipped with battery powered palmtops.

Palmtops are not connected to any direct power source

and run on small batteries (such as AA) and commu-

nicate on narrow bandwidth wireless channels. These

physical requirements call for energy and bandwidth ef-

ficient solutions both on hardware and software levels.

Permission to copy wmthoutfee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

This paper and [IVB94a], provide different organizing

techniques for broadcasting data and also for access-

ing that data. In [IVB94a], we concentrate on hashing

methods with special emphasis on flexibility, in terms

of the tradeoff between power consumption and access

time. In this paper, we analyze index based schemes

with special emphasis on minimizing the power con-

sumption and also the time to access the data. [IVB94b]

describes algorithms for organizing and accessing data

based on clustering and non-clustering indices. We con-

centrate on the wireless communication medium, al-

though most of the presented work can also be applied

to a fixed wired network.

We distinguish between two fundamental modes of

providing users with information:

Data Broadcasting Periodic broadcasting of data on

a communication channel. Accessing broadcasted

data does not require uplink transmission and is

“listen only”. Querying involves simple filteting of

the incoming data stream according to a user specified

“filtern.

InteTactive\@bDemand The client requests a piece of

data on the uplink channel and the server responds by

sending this data to the client.

In practice, a mixture of the above two modes will

be used. The most frequently demanded items, the

so called hot spots (stock quotes, airline schedules etc)

will be broadcasted creating a sort of “storage on the

air”. Since the cost of broadcasting does not depend on

the number of users, this method will scale up with no

penalty when the number of users (hence, the requests)

grows. For example, if stock information is broadcasted

every minute, then it doesn’t matter whether 10 users

or 10,000 users are listening, the average waiting time

will be 30 seconds. This would not be the case if

stock information was provided on demand. The “on-

demand” mode will have to be used for the less often

requested items. Broadcasting them periodically would

be a waste of bandwidth. However, even in pure ‘on-

demand” mode it makes sense to batch requests for the

same data and send the data once rather than cater

individually to each request. Periodic data broadcasting

SiGMOD 94- 5/94 Minneapolis, Minnesota, USA
@ 1994 ACM 0-89791 -639-5/94/0005..$3.50

25

http://crossmark.crossref.org/dialog/?doi=10.1145%2F191839.191846&domain=pdf&date_stamp=1994-05-24

is the topic of this paper.

1.1 Motivation

The lifetime of a battery is expected to increase only

20% over the next 10 years [She92]. A typical AA

cell is rated to give 800 mA-Hr at 1.2 V (0.96 W-

Hr). The constraint of limited available energy is

expected to drive all solutions to mobile computing on

palmtops. There is a growing pressure on hardware

vendors to come up with the energy efficient processors

and memories. The Hobbit chip from AT&T is one

such processor which consumes only 250 mW in the full

operation mode (actwe mode). The power consumption

in doze mode is only 50 pW (the ratio of power

consumption in active mode to doze mode is 5000).

When the palmtop is listening to the channel, CPU must

be in active mode for examining data packets (finding,

if they match the predefine data). CPU is a much

more significant energy consumer than the receiver itself

and since it has to be active to examine the incoming

packets it may lead to waste of energy, especially if on

an average only a very few data packets are of interest

to the particular unit.

Therefore, it is definitely beneficial if palmtops can

slip into doze mode most of the time and come into

active mode only when the data of interest is expected

to arrive. This requires the ability of selective tuning,

which is discussed in detail, in this paper. Later in the

paper, we provide an example of realistic energy savings

due to the ability of selective tuning.

Energy efficient solutions are important due to the

following reasons :

Energy efficient solutions make it possible to use

smaller and less powerful batteries to run the same

set of applications for the same time. Smaller

batteries are important from the portability point

of view since, palmtops can be more compact and

weigh less.

With the same batteries, the unit can run for a

very long time without the problem of changing the

batteries ever so often. This can result in substantial

monetary savings and avoids recharging. Recharging

can be cumbersome especially if the client is on the

move. With energy efficient solutions batteries may

have to be recharged only every few days, rather

than every few hours.

For environmental consideration. Every battery that

is disposed is an environmental hazard.

The bandwidth of a wireless channel can vary from

1.2 Kbps for slow paging channels, through 19.2

Kbps (characteristic of cellular proposals like CDPD -

Cellular Digital Packet Data) to about 2 Tfbps of the

wireless LAN. The methods developed in this paper

are independent of the bandwidth of the underlying

network and are motivated mainly by the battery

power constraints and using the available bandwidth

efficiently.

Wireless data broadcasting can be viewed as storage

on the air - an extension of the server’s memory. On

an average, the access time for such a storage is equal

to half the time necessary to broadcast the whole data.

Thus, in case of the low bandwidth channel the access

time can be quite substantial. On the other hand, the

access time is independent of the number of users who

are listening. Hence, this “public” storage scales well

with an increase in the number of users.

Broadcasting over a fast, fixed network has been in-

vestigated as an information dissemination mechanism

in the past. In the Datacycle project at Bellcore

[Bow92, Her87], database circulates on a high band-

width network (140 ikfbps) and users query this data

by filtering relevant information using a special mas-

sively parallel transceiver, capable of filtering up to 200

million predicates a second.

The main differences between wireless broadcasting con-

sidered in this paper and broadcasting considered in the

Datacycle architecture can be summarized as follows:

● Power conservation is of no concern in Datacycle

architecture while it is a major physical requirement

for the wireless broadcast.

● The wireless bandwidth is much lower than the

bandwidth assumed in DataCycle architecture.

Gifford in [Giff85] describes a system where newspapers

are broadcasted over the FM band and downloaded by

PCs equipped with radio receivers. There is a single

communication channel and power conservation plays

little role since, the PCs are connected to a continuous

power supply.

In section 2, we discuss data organization basics for

broadcasting. In section 3 and section 4, we discuss two

indexing algorithms, (1, m) indexing and distributed

indezing (respectively), for organizing and accessing

data. Section 5 compares the performance of the two

algorithms with the performance of optimal algorithms.

Subsection 5.1 will interpret our results in terms of

the improvement in power consumption and access

time, with an example of an application broadcasted

over cellular data link. We will demonstrate that our

methods result in significant savings in terms of power

consumption and access time, and is very close to that of

optimal ways of broadcasting. In section 6, we present

conclusions and discuss future work.

2 Data Organization for

Broadcasting

Consider a file consisting of a number of

which are identified by their primary key.

records

The file

26

is not static and can be updated frequently, so its

content and its size can grow and shrink often. The

server broadcasts this file periodically to a number of

clients, on a communication channel which is assumed

to have broadcasting capability. Henceforth, the

communication channel will be referred to as broadcast

channel. Clients will only receive the broadcasted data

and fetch individual records (identified by a key) from

the broadcast channel. However, updates to the file are

reflected only between successive broadcasts. Hence,

the content of the current version of the broadcast is

completely determined before the start of broadcast of

that version.

In our model, filtering is by simple pattern matching

of the primary key. Clients will remain in doze

mode most of the time and tune in periodically

to the broadcast channel, in order to download the

required data. Selective tuning will require that the

server, in addition to broadcasting the data, also

broadcast a directory that indicates the point of time

in the broadcast channel when particular records are

broadcasted. One idea is to let all the clients cache a

copy of this directory. However, this solution has the

following disadvantages:

In a mobile environment, when a client leaves its cell

and enters a new cell, it will need the directory of the

data being broadcasted in that cell. The directory

it had cached in its previous cell may not be valid in

the new cell.

New clients who have no prior knowledge of the

broadcast data organization, will have to access the

directory from the air. Palmtops that are turned

off and switched on again, can be thought of being

classified in this category.

Broadcast data can change its content and grow or

shrink any time between successive broadcasts. In

this case, the client has to refresh it’s cache. This

may generate excessive traffic between clients and

the server. In fact the directory will become a hoi

spot. Since we assume that the broadcasted data is

very frequently accessed and thus it is broadcasted,

the same argument holds even more strongly for the

directory. Therefore, the directory is broadcasted as

well.

If many different files are broadcasted on different

channels, then clients need excessive storage for the

directories of all the files being broadcasted and

palmtops have limited storage.

Due to the above reasons, we broadcast the directory of

the file in the form of an index in the broadcast channel.

The index we consider is a multi-leveled index.

Let us first justify the use of index for the broadcasted

data. If data is broadcasted without any form of index,

27

then the client in order to filter a data record, will have

to tune to the channel on an average, half of the time

it takes to broadcast the file. This is unacceptable as it

requires the client to be active (be in active mode) for

a long time, thereby consuming scarce battery resource.

We would rather provide a selective tuning ability,

enabling the client to become active only when data

of interest is being broadcasted. The broadcast channel

is the source of all information to the client including

data as well as index. We consider a single channel

since multiple channels are equivalent to a single channel

with capacity (bit rate/bandwidth) equivalent to the

combined capacity of the corresponding channels. There

is no point in having separate channels for index and

data, because index is also a form of data. Moreover,

minimizing the data broadcasted on a single channel

will encompass the problem of having different channels

and optimizing data broadcast in each of them.

Each version of the file along with all the (interleaved)

index information will constitute a beast. Pointers to

specific buckets within the beast will be provided by

specifying an offset from the bucket which holds the

pointer, to the bucket to which the pointer points to.

The actual time of broadcast for such a bucket (from

the current bucket) is the product of (oj f set – 1) and

the time necessary to broadcast a bucket.

For a file being broadcasted on a channel, the following

two parameters are of concern:

●

●

Access Time: The average time elapsed from the

moment a client wants a record identified by a

primary key, to the point when the required record

is downloaded by the client.

Tuning Time: The amount of time spent by a

client listening to the channel. This will determine

the power consumed by the client to retrieve the

required data.

Listening to the broadcast channel requires the client

to be in the active mode. Hence, the tuning time for

accessing data is determined by the amount of time

spent being in the active mode (plus a small amount

for being in doze mode).

The access time for a broadcast is determined by the

following two parameters:

Probe Wait: When an initial probe is made into the

broadcast channel, the client gets the information

about the occurrence of the next-nearest index

information relevant to the required data. The

average duration for getting to this nearest index

information is called the probe wait. This wait is

equal to half the distance between two consecutive

index information.

Beast Wait: The average duration from the point

the index information relevant to the required data

is encountered, to the point when the required record

is downloaded is called the beast wait.

The access time is the sum of probe wait and beast

wait. These two factors work against each other. If

we try to minimize one of them the other will increase.

For example, in order to minimize beast wait, we can

broadcast the index once (at the beginning of each

beast). In this case probe wait will be large, since the

client will always have to wait for the index (till the

starting of the next beast) missing the required data in

the current beast. On the other extreme, for minimizing

the probe wait, index can precede each data bucket in

the broadcast. This would minimize probe wait but

would increase beast wait (due to an increase in overall

length of the broadcast).

In periodic wireless broadcasting, air behaves like a

storage medium requiring new data organization and

access methods. The broadcast tuning time roughly

corresponds to the access time for the disk based

files. There is no parameter in the disk that directly

corresponds to the access time on the broadcast channel.

The file’s storage occupancy may seem the closest but

it only accounts for one of the components of the access

time - the beast wait and does not capture the probe

wait factor.

The main difference between the organization of broad-

casted data (data on air) versus data on disk can be

summarized as follows:

. Data on Air is characterized by two parameters:

access time and tuning time, contrary to just one

parameter (access time) for data on disk.

The goal of this paper is to provide methods for

allocating index together with data on the broadcast

channel. We do not provide new types of indices

but rather, new index allocation methods which would

multiplex index and data in an efficient way with respect

to the two basic parameters: access time and tuning

time. Our methods will allocate index and data for any

type of index.

The smallest logical unit of the broadcast will be

called a bucket. All buckets are of the same size. Bucket

sizes are equal only for convenience and uniformity.

The argument is the same as the reason for having

blocks of equal size for indexing in conventional memory

media. Bucket size will be equal to some multiple

of the packet size (the basic unit of message transfer

in packet switched networks). Both access time and

tuning time will be measured in terms of number of

buckets. We will discuss the organization and the access

of the broadcasted data with the assumption that setup

time and setup power consumption for tuning into a

channel or going into doze mode are negligible. [IVB94b]

discusses as to how the algorithms have to be modified

FitE

Plwku3

— FLE

Prwkm m-r
BcAST

1

Index

n-Dsts BwM
Tum.q4

Figure 1: Optimal Methods

if we eliminate this assumption. In the algorithm that

we describe, index will be interleaved with data. Index

will provide a sequence of pointers which eventually lead

to the required data.

In general, data organization algorithms which seek

optimum in two dimensional space of access and tuning

time are of importance. Below, we present two

algorithms which are optimal in the one dimensional

space of access time and tuning time. These will serve

as benchmarks for comparisons to our algorithms.

Access.opk

This algorithm provides the best access time with a very

large tuning time. The best access time is obtained

when no index is broadcasted along with the file. The

size of the entire broadcast is minimal in this way.

Clients simply tune into the broadcast channel and filter

all the data till the required records are downloaded.

For a file of size Data buckets, on an average it takes
W time to get to the record with the required primary

ke~. Thus, the access time for access-opt algorithm is

~. The average tuning time is the worst and is equal

to *. This is because the client has to to be in active
2

mode throughout the period of access. This method is

illustrated in Figure 1.

Tune.opt:

This algorithm provides the best tuning time with a

large access time. The server broadcasts the index at

the beginning of each beast. The client which needs the

record with primary key K, tunes into the broadcast

channel at the beginning of the next beast to get the

indexl. It then follows the index pointers to the record

with the required primary key. The tuning time is equal

to the number of levels in the multi-leveled index tree

plus one (for the final probe to download the record).

This method has got the worst access time because,

clients have to wait till the beginning of the next

LIt may not be possible for the client to have a knowledge about

the beginning of the uext beast. This is because files could vary

in size dynamically and also, in a mobile environment different

cells might have different File sizes

28

INDE’x SEGMENT MTA SEGMENT

CAT(Data-f, Dak_2, D~_3, ,,,,,,, Dr.k_m) = FiLE

Figure 2: (1,m) indexing

broadcast even if the required data is just in front of

them. With Index denoting the size of index of the file,

probe wait is (‘a’a>~ndec), beast wait is (‘at”}~ndea)

and access time is (Data+ lndez). This method is also

illustrated in Figure 1.

If tuning time is of no concern, then one can use

access-opt for getting the least access time. If access

time is of no concern, then one can use tune.opt for

getting the least tuning time. Usually, both tuning time

and access time are of int crest, hence the above two

algorithms have only theoretical significance. We use

them as benchmarks for more sophisticated algorithms

developed later in the paper.

In the next section, we present a simple indexed

data organization called (1, m) indezing and later, we

present a more sophisticated indexed data organization

called distributed indexing.

3 (l,m) Indexing

We distinguish between indez buckets holding the index

and data bucket~ holding the data. An indez segment

refers to the set of contiguous index buckets and a data

segment refers to the set of data buckets broadcasted

between successive index segments.

(1, m) indexing is an index allocation method in

which the index is broadcasted m times during the

broadcast of one version of the file. The whole index

is broadcasted following every fraction (~) of the file.

Figure 2 illustrates this algorithm.

All buckets have an offset to the beginning of the

next index segment. The first bucket of each index

segment has a tuple, with the first field as the primary

key of the record that was broadcasted last and the

second field as the offset to the beginning of the next

beast. This is to guide the clients that have missed the

required record in the current beast and have to tune to

the next beast.

The access protocol for record with

● Tune into the current bucket

channel.

. Read the offset to determine

next nearest index segment.

key K is as follows:

on the broadcast

the address ~f the

●

●

●

Go into doze mode and tune in at the broadcast of

the index segment.

From the index segment determine when the data

bucket containing the record with primary key K

is broadcasted. This is accomplished by successive

probes, by following the pointers in the multilevel

index (the client might go into doze mode between

two successive probes).

Tune in again when the bucket containing the record

with primary key K is broadcasted and download

the record.

*.1 Analysis

In the following analysis, the probability distribution of

the initial probe of the clients is assumed to be uniform

within the beast. Let Data denote the average size of the

file (the file could change in size between two successive

beasts). Let n denote the capacity of the bucket i.e.,

the number of (search-key plus pointer)s a bucket can

hold.

Let k denote the number of levels in the index tree and

finally, let lndez denote the number of buckets in the

index tree.

When the index tree is fully balanced:

k = [logn(Data)l
I

lndez =l+n+n2+... +n1-1

Access Time:

The probe wait is ~ * (Indez + ~)

and the beast wait is ~ * ((m * ~ndez) + Data).

Hence, the access time is:

~x(~ndez+ ~) + ~*((m*Indez)+Data) i.e.,

~x((m+l)xlndez+(~ + 1) * Data)

Tuning Time:

The first probe is the initial probe that gets a pointer

to the next nearest index bucket. Then, k probes

are required for following the pointers in the indexz.

Finally, one last probe is required for downloading the

required record.

Thus, the tuning time is:

2 + [logfl(Data)l

Optimum m:

Now, we present a formula to compute the optimal m so

as to minimize the access time for the (l,m) indexing.

For finding the minimal access time, we differentiate

the above formula (for access time) with respect to

2in case the required record has been missed, which occurs with

a probability y of 0.5, then we need another probe at the beginning

of the next bead. This adds 0.5 to the average tuning time, but

this is ignored in the formulae. This is true for both the algorithms

that we describe in this section

29

Figure 3: File in the running example

m, equate it to zero and solve for m, m* denotes the

optimum m.

r

Data
m*=—

Index

Hence, we divide the file into m* equal parts (data

segments). In the broadcast channel, each data segment

is ‘preceded by the index.

4 Distributed Indexing

We can improve upon (l,m) indexing algorithm by

cutting down on the replication of index. Distributed

indexing is a technique in which index is partially

replicated. This method is based on the observation

that there is no need to replicate the entire index

between successive data segments - it is sufficient to

have only the portion of index which indexes the

data segment which follows it. Although the index is

interleaved with data in both, (1,m) and distributed

indexing, in the distributed indexing only relevant index

is interleaved as opposed to interleaving the whole index

as in (1,m) indexing.

Since the distributed indexing method is fairly in-

volved, we will start with a subsection which motivates

the method. The algorithm is formally described later.

4.1 Motivation

We will proceed by describing different variants of index

distribution for the specific example of the file shown in

figure 3. Figure 3 shows a data file consistingof81 data

buckets. The lower most level consisting of square boxes

~N’”s’Oa’””
Figure 4: Non-replicated Distribution

represent a collection of three data buckets. The index

tree is shown above the data buckets. Each index bucket

has three pointers (the three pointers of each index

bucket in the lower most index tree level is represented

by just one arrow). The terms displayed below the

picture of the index will be explained later.

We will consider three different index distribution

methods with the last one being distributed indexing.

In all three methods the index is interleaved with

data and the index segment describes only data in

the data segment which immediately follows it. The

methods differ in the degree of the replication of index

information:

Non-replicated Distribution

Different index segments are disjoint. Hence, there

is no replication.

Entire Path Replication

The path from root of index to an index bucket B

is replicated just before the occurrence of B.

Partial Path Replication (Distributed Indexing)

Consider two index buckets B and B’. It is enough

to replicate just the path from the least common

ancestor of B and 1?’, just before the occurrence

of B’, provided we add some additional index

information for navigation.

The non-replicated distribution and the entire path

replication are two extremes. Distributed indexing aims

at getting the best of both the schemes. Below, we

demonstrate index distribution for the three schemes

and show how data will be accessed in each of them.

Figure 4, Figure 5 and Figure 6 will illustrate the

three schemes. In these figures, the current beast is

represented in three levels for easy of illustration. The

broadcast channel is organized by taking the first level

followed by the second, which in turn is followed by the

third level. The shaded portion denotes data buckets.

30

Plmt.al

,~ I!rs.d wQ1-i_’a2

/1
,_3 I I@.a

I ‘M-*

G“’”-
Figure 5: Entire Path Replication

In the running example to describe the three schemes,

assume that the client requires a record in bucket 66

and makes the initial probe at data bucket 3.

Non-replicated Distribution

Figure 4 illustrates the layout for this scheme. The

offset at bucket 3 points to the beginning of the next

beast. The client will make the following successive

probes (in the next beast) I, a3, b8, c23 and bucket

66. Since the root of index is broadcasted only once

for each beast, the initial probe will result in obtaining

the offset to the beginning of the next beast. In order to

determine the occurrence of the required record, we have

to get to the root of the index. Hence, the probe wait

for this scheme will be quite significant and will offset

savings in beast wait due to the lack of replication.

Entire Path Replication

Figure 5 illustrates the index distribution when the

entire path from root of the index tree to each index

buckets bi is replicated. The replication is just before

the occurrence of bi. The offset at data bucket 3 will

direct the client to the index bucket ‘I’ that precedes

second.a 1, Then, the client makes the following

successive probes: fipst.a3, b8, c23 and bucket 66.

The access time suffers from the replication of index

information. In this example, the root was unnecessarily

replicated six times, as demonstrated below.

Partial Path Replication - Distributed Indexing

Figure 6, shows that we can further improve on the

access time provided by entire path replication. Instead

of replicating the entire path we will replicate only a

3 the ~ t f $~t at data bucket 3 could have directed the cfient to

index bucket b2. In which case, the client could make the following

successive probes: b2, b3, a2, a3, b8, c23 and bucket 66. The

client need not have made an extra probe at b3. There are three

pointers per index bucket, four levels in the index tree, and one

extra probe was -de. The nuxnber of ext.. probes srows linearly

with the increase in the number of pointers in the index bucket

and it also grows linearly with the number of levels in the index

tree. This becomes substantial as the number of data buckets and
the capacity of the index bucket incre=es. The tuning time is no

longer logarithmic in the number of data buckets

1

III ,rhlBrcak4)

Figure 6: Distributed Indexing

part of it.

Notice that root 1 is no longer replicated many times.

The offset at the data bucket 3 will direct the client

to second_al. However, to make up for the lack of root

preceding second-al, there is a small index called the

control index within second-al. If the local index (in

second-al) does not have a branch that would lead to

the required record then, the control index is used to

direct the client to a proper branch in the index tree.

The control index in second_al, directs the client to

i2. At i2 the root is available and the client makes

the following probes: first-a3, b8, c23 and bucket 66.

In case, a record in bucket 11 was being searched by

the client, reading the bucket second-al would provide

the client with the required information to successively

tune in at b2, C4 and bucket 11. In this case, having

the root just before second-al would have been a waste

of space (this is true if the search key was in any data

bucket 9 through 26). The additional space which is

necessary to store the coritrol index is a small overhead

compared to the savings resulting from partial index

path replication.4

Figure 7 shows the control index for index buckets

that are part of the index tree described in Figure 3

and whose layout is shown in Figure 6. The first part

of each control index element denotes the key to be

compared with during the data access protocol. The

second part denotes the pointer to be followed in case

the comparison turns out to be positive. For example,

if a record in bucket < 8, is being searched for, then

the control index at second-al, directs the client to the

beginning of the next beast. However, if a record in

bucket > 26, is being searched for, then the search is

directed to 22. Otherwise the search in the control index

fails and the rest of second.al is searched.

4 replicated buckets can be modified by removing the entries

for records that have been broadcasted before the occurrence of

that bucket. This will result in savings of some space, which when

amortized over all the replicated buckets in the bead, will make

up for the space taken up by the control index

31

Con&olIndex at IrN_al

H

KM, m

26 , 1.2

B

ContolIndex at~_al a , ~gin

26 , i_2

ContolIndex atttwr.al

m

17 , beqin

26 , 1.2

ContolIndex at W-Q

M

26 , twin

53 , i_3

Con~olhdex aitrat.ti

H

53 , kgin

80 , 1-4

Conbollndex dsem.ti

El

62 , tqin

eo , i-i

Conkollndex ~~.a

H

71 , twin

80 , 1.4

Conlrolhdex aII_2
kQxJ

HGmolhdex atsscm.az 35 J ~gin
CdrolMex .dI.3

53 , 1.3 m

Cmollndex alW~

El

44 , t+gin

53 , 1.3

Figure 7: Control Index

In the following subsection we present a formal

description of the distributed indexing algorithm.

4.2 Distributed Indexing Algorithm

Given an index tree, this algorithm provides a method

to multiplex it together with the corresponding data file

on the broadcast channel. Thus, the distributed index-

ing method is not a new method of index construction

but a method of allocation of a file and its index on the

broadcast channel.

The distributed indexing algorithm takes an index

tree and multiplexes it with data by subdividing it into

two parts:

. The replicated part

s The non-replicated part

The replicated part constitutes the top r levels of

the index tree, while the non-replicated part consists

of the bottom (k – r) levels. The index buckets of the

(r+ 1) th level are called non-replicated roots and they

are collectively denoted by NRR. The index buckets

in NRR are ordered left to right, consistent with their

occurrence in the (r + 1) th level.

Each index subtree rooted in a non-replicated root in

NRR will appear only once in the whole broadcast just

in front of the set of data segments it indexes (points

to). Hence, each descendant node of a non-replicated

root of the index will appear only once in the given

version of the broadcast. On the other hand, each node

of the index tree which appears above a non-replicated

root is replicated the number of times equal to a number

of children it has.

Definitions

● 1: Denotes the root of the index tree.

● B: Denotes an index bucket belonging to NRR.

Bi: Denotes the i th index bucket in NRR.

Path(C, B): The sequence of buckets along the path

from index bucket C to B (excluding B).

Data(B): The set of data buckets indexed by B.

Ind(B): The part of the index tree below B

(including B).

LCA(Bi, Bk): the least common ancestor of Bi and

Bk in the index tree.

Let NRR = {B1, B2,Bt}

Rep(Bl) = Path(I, Bl), B1 is the first bucket in NRR.

Rep(.B,) = Path(LCA(B,_l, Bi)j B,) for i = 2, ..., t.

Thus, Rep(B) will refer to the replicated part of the

path from the root of the index tree to index segment

B. Ind(B), on the other hand will refer to the non-

replicated portion of the index. Figure 3 shows the

values of Data, Rep and Ind for each of the index

buckets in NRR,

Each version of the broadcast will be a sequence of

triples:

< Rep(B), Ind(B), Data(B) > VB ENRR, in

the left to right oTder

Let P1, P2, ..., Pr denote the sequence of buckets in

Path(I, B).

Control index is stored in each of the Pi index buckets.

Let Lwt (Pi) denote the value of the primary key in the

last record that is indexed by bucket Pi.

Let NEXTB (i) denote the offset to the next-nearest oc-

currence of Pi (which in turn is the index bucket at level

i in Path(I, B)). Let t be the value of the primary key

in the last record broadcasted prior to B and let begin

be the offset to the beginning of the next bcas-t.

Control index in Pi, which belongs to Rep(B) (i.e., it

precedes Ind(B) and Data(B)) will have the following

z tuples:

[1, begin]

[Last(PZ), NEX!Z’B(l)]

[Last(P3), NEXTB(2)]

.

[La.d(Pi)j NEXTB(i -1)]

The control index in bucket Pi, is used as follows: Let K

be the value of the primary key of the required record.

If (K < i) is true, then the search is directed the

beginning of the next beast (i.e., the begin pointer is

followed). If the result of the comparison is false, then

(K > La~t(Pj)) is checked for smallest such ~ to

be true. If (j < i), NEXTB (j – 1) is followed,

else the rest of the index in bucket P, is searched as in

conventional indexing.

The access protocol for a record with primary key K is

as follows:

32

●

6

●

●

4.

(i) Tune to the current bucket of the beast. Get the

offset for the bucket containing control index.

(ii) Tune again to the beginning of the designated

bucket with control index, Determine, on the basis

of the value of the search key K and the control

index, whether to:

a) Wait until the beginning of the next beast (the

first tuple). In this case tune to the beginning of

the next bcastand proceed asin (iii).

– b) Tune in again for the appropriate higher level

index bucket. i.e., follow one of the “NEXT”

pointers and proceed as in (iii).

(iii) Probe the designated index bucket and follow a

sequence of pointers (the client might go into doze

mode between two successive probes) to determine

when the data bucket containing the record with key

K is going to be broadcasted.

(iv) Tune in again when the bucket containing the

record with key K is broadcasted and download the

record.

3 Analysis

In the following subsection, we derive formulas for

access time, tuning time and the optimum number of

replicated levels. We assume that the initial probe by

the clients are uniformly distributed over the period of

the whole beast. Let r denote the number of replicated

(top) levels. Let n denote the capacity of the bucket

and finally, let k denote the number of levels in the

index tree.

We consider index trees which are balanced (all leaves

are on the same level) and assume that each node has

the same number of children. Needless to say, in reality,

index trees may be radically different (unbalanced,

varying fanout) and our algorithm works for arbitrary

index trees. The formula for the general case is given in

[IVB94b].

Access Time:

The access time is a sum of probe wait and beast wait.

Let us estimate the probe wait first.

The control information is present in every replicated

index bucket. The replicated index buckets are present

in front of each Ind(B), which in turn is in front of

Data(B). Thus, the maximum distance separating two

replicated buckets is: Ind(B) + Data(B)

The average size of Ind(B) can be calculated as:
~k-v_l

l+n+ .Oo+nk-r-l
=

n-1

The average size of Data(B) is : ~

Hence, the probe time will be equal to

~k–r
– 1 + Data

n—1 nr

Bcatd wait is equal to half the total length of the

broadcast, which includes the data, the index, and the

additional overhead due to the index replication.

In general, as the index overhead increases (i.e., when

r is increased) the beast wait increases, but the probe

wait decreases. Intuitively, the index overhead reflects

the degree of index replication and is an “investment”

towards reducing the probe time. This is because the

more replicated index we have, the less time it will take

to get to the control index bucket after initial tuning.

Each bucket b of the replicated part of the index tree

(the top r levels) will be replicated as many times as

the number of children that b has. Therefore, the total

number of replicated index buckets will be equal to the

total number of nodes in the upper (~+ 1) levels of the

index tree minus one. The replicated index buckets,

include part of the index tree (top r levels) plus the

index overhead. The index overhead is obtained by

subtracting the number of buckets in the top T levels of

the index tree, from the total replicated buckets. Thus,

the index overhead is equal to the number of buckets in

the (T + 1) th level minus one i.e., (n’ – 1)

Thus, the access time is

1 nk-r
– 1 + Data

5
*(+ (n’ – 1)+ lndez + Data)

n–1 nv

Tuning Time:

Tuning time primarily depends on the number of levels

of the index tree. The initial probe of the client is

for determining the occurrence of control index. The

second is for the first access to control index. Control

index directs the client to the required higher level index

bucket. Next, the number of probes by the client is

equal to at most k, the number of levels in the index

tree. Finally, the client has to download the required

record.

Thus, the tuning time using distributed indexing is

bound by:

(logn(llata)l + 3

Optimizing the number of replicated levels:

Optimizing the number of replicated levels, has no

impact on the tuning time. It affects only the access

time. Thus optimizing the number of replicated levels

r, corresponds to minimizing the access time. For

decreasing probe wait, the length of (1nd(13) +Data(B))

has to be reduced. This can be done by increasing

the number of replicated levels. However, this would

amount to an increase in beast wait as the length of

the entire broadcast would increase (due to increased

replication). Hence, there is a trade off between probe

wait and beast wait.

Probe wait is a monotonically decreasing function, with

a maximum when T = O and a minimum when T = k.

Beast wait is a monotonically increasing function, with

33

0-128

-,. .- x ,06

,@

1 1
hm.bd

,- I . ..-... —<i m,
I I I ,, !

0,,

.
-.._x

!
, . ~__-a- --

.$9
1 1 1

I I
,.

0 s, ,~ 1
,,

0s0
I

07,
! I .,, j

1 1070 1 !
I

06,
1

1 L- 1
,.

,---?

---’
,, A’,. ,--’

,, /----
,,

I /. #---
,.

//
,.

/ Y,, //
,, /~.

s+ ,
I

o-

Figure 8:

a maximum

I I I I I ,,!. ,-. I&
O= 0.0 0- OUO ,-

Comparison for Large Bucket Capacity

when r=k and a minimum when T = 0.

Consider the case when ~ increases from O to 1:

probe wait decreases by **(D“~”:n-1) + n~)

and beast wait increases by (-).
In general, when r increases by one to (~+ 1):

probe wait decreases by ;*(
Dat;;~-1~ + ~k-r)

and beast wait increases by
~n”*(;-l)).

This is because for each increment of r, the total number

of replicated buckets grows to (nr+l – 1) from (n’ – 1),

thus a factor of (n’+l – 1 – (nr – 1)) = n’ * (n – 1) is

added for the number of replicated index buckets.

Thus, for achieving the minimum access time, we should

keep increasing r as long as:

1 Data *(n – 1)

5
(+nk-r) > (n”(; -l))

~r+l

Data * (n – 1)+ nk+l > n2*r+1 * (n – 1)

1 Data * (n – 1) +n~+l

5
* (lo% ()-1) > 7’

n—1

Thus the optimum r, r’ is:

1;* (logn(
Data * (n – 1) + nk+l

=)-1)]+1
n—1

5 Comparisons

In the following, we compare (1,m) indexing and

distributed indexing algorithms with the two optimal

algorithms, access.opt and tune-opt. We consider files

of various sizes, for two different bucket capacities (n

=10 and n = 128). Figure 8 shows the access time

obtained using distm”buted indexing, (1, m) indezing,

access. opt and tune_opt, when n is 128. Figure 9 shows

the access time obtained for the algorithms for n equal

to 10. X-axis denotes the number of buckets in the

file. Y-axis denotes the access time (in terms of the

number of buckets). These two graphs illustrat; that

“-10

-s. . . . ,06

I I I I J
m“s.t.”.d

! !0
, ~ ~y . . .

.,., _,, _w
,-] ,, I t-:+- --

I 1 I I /
I ,,-

O-

oen
,/,’

,,,
070

,,-

060 I

,.,’
0-

.-

. ..---’”
.340 .’ / ..- <--

,.- /
O=

/.-.”-/

.m

1

om
,,. ,- x 106

Figure 9: Comparison for Small Bucket Capacity

File Index T-opt (llm) (D I) A-opt

1000 9 3 4 5 500

5000 41 3 4 5 2500

10000 80 3 4 5 5000

105 790 4 5 6 50000

Table 1: Tuning time comparison for n= 128

distributed indexing performs much better (in terms of

the access time) than (1,m) indexing (except in case

of the number of levels being one, as discussed below).

Both (l,m) indexing and distributed indexing always

perform better than tune-opt. The more the capacity

of the buckets (n) the better the performance of the

suggested algorithms.

Table 1 illustrates the tuning time required by the

four algorithms, for different file sizes, for n= 128.

Table 2 shows the same for n= 10. The numbers in the

two tables are in terms of buckets. The first and the

second column refer to the file size and the index for that

file. The third, forth, fifth and sixth columns denote

the tuning time of tune-opt, (1,m) indexing, distributed

indexing and access-opt algorithms respect ively.

As the tables illustrate (and so do the formulae)

the tuning time due to tune-opt and (l,m) indexing

is almost the same and is optimal. The tuning time

of distributed indexing is also almost equal to that of

tune-opt (difference of just two buckets – always). The

tuning time of access.opt is very large and is very much

higher than the other three.

When the index size is equal to one bucket, then

distributed indexing is not advantageous, This is

File Index T-opt (l,m) (D I) A-opt

1000 111 4 5 6 500

5000 556 5 6 7 2500

10000 1111 5 6 7 5000

105 11111 6 7 8 50000

Table 2: Tuning time comparison for n= 10

34

because we cannot distribute the index in this case (as a

bucket is a unit, which is indivisible). In this case (l,rn)

indexing scheme is better. In a file with a multi-leveled

index tree, distributed indexing always performs better

in terms of access time and the tuning time is one more

than in (l,m) indexing.

From the above, we can conclude the following:

●

●

●

●

●

(l,m) indexing achieves a tuning time that is almost

equal to the optimal tuning time (tune.opt). The

tuning time of (l,m) indexing is substantially better

than that of access.opt.

The access time achieved by (1, m) indexing is

between the optimal access time (access-opt) and

the access time due to tune-opt.

In terms of access time, distributed indexing is

always better than (l,m) indexing, except in the case

when the index fits into a single bucket. In terms of

tuning time, both are almost equivalent, tuning time

with distributed indexing is just one more than that

of (l,m) indexing.

Distributed indexing achieves a tuning time very

near the optimal (tune-opt) and it also results in

an access time very close to the optimal access

time (access-opt) for large capacities (n) of the

bucket. Distributed indexing is almost as good

as the optimal algorithm for access time and the

optimal algorithm for tuning time.

Our algorithms are significantly better than ac-

cess-opt and almost as good as tune-opt, in terms of

the power consumption. The proposed algorithms

achieve an access time almost equal to access-opt

and the access time achieved is much better than

that of tune-opt.

5.1 Practical Implications

Consider a broadcasting system that is similar to the

quotrez system5 where, a stock market information of

size 16* 104 Bytes, is being broadcasted. The broadcast

channel has a bandwidth of 10 Kbps. Let the bucket

length be 128 bytes. Thus, there are 1250 buckets of

data. Let n, the number of (search-key plus pointer)’s

that can fit in a bucket, be 25. The index size is 53

buckets. It takes around 0.1 seconds to broadcast a

single bucket and 125 seconds to broadcast the whole

file(with no index). Let the clients be equipped with

the Hobbit Chip (AT&T). The power consumption of

the chip in doze mode is 50 gLW and the consumption in

active mode is 250 mW. For simplicity we will neglect

other components which use energy during data filtering

5Quotrex system broadcasts stock quotes continuously over

FM band

and assume that 250 mW constitutes the total energy

consumption.

With access.opt method, access time is 625 buckets (half

of beast duration) i.e., 62.5 seconds. Tuning time is also

625 buckets i.e., the power consumption is 62.5 see* 250

mW = 15.625 Joules.

With tune-opt method, access time is 1303 (1250+53)

buckets i.e., 130.3 seconds. Tuning time is minimum at

4 buckets i.e., the power consumption is 0.1 sec * (4 *

250 + 1299 * 50 * 10-3) mW = 0.106 Joules.

If we want a low access time and also low power con-

sumption then we can use (l,m) indexing or distributed

indexing.

(1, m) indezing: Optimum m can be computed to be

5. The access time is 909 buckets i.e., 90.9 seconds.

The tuning time is 5 buckets. Hence, the power

consumption is 0.1 sec * (5 * 250 + 904 * 50 * 10–3)

mW i.e., 0.130 Joules.

Therefore, in this case, the energy consumed per

query request is 120 times smaller than that of

access.opt. This is achieved by compromising on

the access time which increases by 45.4%.

Comparing with tune-opt, the power consumption is

almost the same. However, the access time improves

to 69.8% of the access time in tune-opt.

Distributed indexing: The optimum number of

replicated levels in distributed indexing is 2. The

access time is 689 buckets i.e., 68.9 seconds. The

tuning time is 6 buckets, Hence, the power

consumption is 0.1 sec * (6 * 250 + 683 * 50 * 10-3)

mW i.e., 0.153 Joules.

Therefore, in this case, the energy consumed per

query request is 100 times smaller than that of

access-opt. This is achieved by compromising on

the access time which increases by just 10%.

Comparing with tune-opt, the power consumption is

almost the same. However, the access time improves

to 52.9V0 of the access time in tune.opt.

5.2 How much energy do we save ?

The overall increase in the battery life due to indexing

on air heavily depends on the overall structure of the

set of applications that run on the palmtop. Assume

that two AA batteries, each rated at around 1.0 W Hr,

are used in the receiver, one being used for filtering and

the second for other applications. One such battery is

good for 4 hours of continuous data filtering (without

indexing). Using distributed indexing, we can serve the

same number of filtering requests with 100 times less

energy, The saved energy can be used for extra queries

or for other additional work. For example, in our case,

four hours of data filtering will take approximately only

l% of the energy of one AA battery for the same number

of requests. This savings can be used to almost double

35

the overall working time for other applications. In case,

data filtering was the only application being run, then

using distributed indexing, we can serve 100 times as

many requests.

6 Conclusion

We have explored data organization and access for dig-

ital broadcast data, taking a stand that periodic broad-

casting is a form of storage. Data is stored on the air

with the latency of access proportional to the duration

of the beast. Broadcasted data can be reorganized “on

the fly” and refreshed (reflecting updates) between two

successive beasts. The main difference with the disk

based files is that we need to minimize two parameters

(access time and tuning time) contrary to just one (ac-

cess time) for the disk based files. We investigated two

data organization methods namely (lrm) indexing and

distributed indexing and demonstrated the advantages

of these methods, by comparing them with the optimal

methods of broadcasting - for access time and tuning

time. Optimum solution for access time has a large

tuning time and the optimum solution for tuning time

has large access time. A solution that has good perfor-

mance, both in terms of tuning time and access time is

required. We have attempted to solve this problem.

In [IVB94a] which is orthogonal to this paper, we

explore data organizing methods based on hashing. We

have demonstrated that contrary to the disk based

files, perfect hashing does not provide the minimum

access time. Distributed indexing is better than any

Hashing scheme for small key sizes. In [IVB94b],

algorithms for organizing and accessing data based on

any clustering index is described. Algorithms for non-

clustering indices and indexing based on multiple keys,

for static files, is also described in [IVB94b].

There are a number of research problems which have to

be

●

●

●

investigated:

If data records are of different size and requested

with different frequencies then more sophisticated

data organization techniques are needed.

Sophisticated synchronization mechanisms are nec-

essary when broadcasting multi-media information

involving text, audio and video.

There are a number of communication issues which

have to be looked at in more detail. How to

achieve reliability of the broadcast in the error

prone environments such as wireless cellular? Since

the clients are only listening there is no (or very

limited) possibility of the acknowledgment. Multiple

Access protocols which guarantee timely delivery

of information are necessary for the broadcasting

(especially the directory) to work correctly.

● In practice, a mixed technique, where only the most

frequently accessed items are broadcasted and the

rest of the items are provided on demand. Efficient

techniques towards this end are necessary.

References

[A1092] Rafael Alonso and Hank Korth, “Database

issues in nomadic computing,” MITL Technical

Report, December 1992.

[Bow92] T. F. Bowen et. al., “The DATACYCLE

Architecture,” Comm. of the ACM, Vol 35, No. 12,

December 1992, pp. 71-81.

[Cher92] David Cheriton, “Dissemination-

Oriented Communication Systems,” Stanford Uni-

versity, Tech. Rept. 1992.

[Giff85] David Gifford et. al., “The application of

digital broadcast communication to large scale

information systems,” IEEE Journal on selected

areas in communications, Vol 3, No. 3, May 1985,

pp.457-467.

[Good91] David J. Goodman, “Trends in Cellular and

Cordless Communications,” IEEE Communica-

tions Magazine, June 1991.

[Her87] G. Herman et al., “The Datacycle architecture

for very large high throughput database systems,”

in Proc ACM SIGMOD Conf., 1987, pp 97-103.

[IB93] T. Imielinski and B. R. Badrinath, “Wireless mo-

bile computing: Challenges in data management,”

To appear in Comm. of the ACM.

[IVB94a] T. Imielinski, S. Viswanathan and B. R.

Badrinath, “Power Efficient Filtering of Data on

Air,” Proc of 4 th Intl Conference on Extending

Database Technology, Cambridge - March 94.

[IVB94b] T. Irnielinski, S. Viswanathan and B. R.

Badrinath, “Data on Air : Organization and

Access,” Submitted for publication.

[Ray93] Bob Ryan, “Communications get personal,”

BYTE, February 1993, pp. 169-176.

[She92] Samuel Sheng, Ananth Chandrasekaran, and R.

W. Broderson, “A portable multimedia terminal

for personal communications,” IEEE Communica-

tions Magazine, December 1992, pp. 64-75.

[Terr92] D. B. Terry, D. Goldberg, D. A. Nichols, and

B. M. Oki, ‘Continuous queries over append-only

databases,” Proc of the ACM SIGMOD, June 1992,

pp. 321-330.

36

