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Abstracf This paper presents analgorithm, called
ARIESICSA (Algorithm for Recovery and Isolation

Exploiting Semantics for Client-Server
Architectures), for performing recovery correctly in
client-server (CS) architectures. In CS, the server
manages the disk version of the database. The cli-
ents, after obtaining database pages fromtheserver,
cache them in their buffer pools. Clients perform
their updates on the cached pages and produce log
records. The log records are buffered locally in vir-
tual storage and later sent to the single log at the
server, ARIES/CSA supports write-ahead logging
(WAL), fine-granularity (e.g., record) locking, partial
rollbacks and flexible buffer management policies
like steal and no-force. It does not require that the
clocks on the clients and the server be synchronized.
Checkpointing by the server and the clients allows
for flexible and easier recovery.

1. Introduction

The c/ient-server (CS) computing paradigm is be-
coming very pervasive in the computer industry. In
addition to providing user-friendly interfaces, a client
may perform data caching and updating for applica-
tions such as CAD, CASE, etc. Object-oriented da-
tabase management systems (OOLIBMSS) support
such applications in the CS architecture with such
caching of data [CFLS91, Deux91, DMFV90, FrCL92,
LLOW91, WaRo91, WiNe90]. Prod ucts like
GemStone, ObjectStorem, VERSANTm, 02m, and
ONTOSm support it. Unfortunately, very little has
been published on the details of the recovety algo-
rithms employed by those systems. Typically, the
existing papers on CS discuss in some detail only
concurrency control issues [CFLS91, DMFV90,
WaRo91, WiNe90]. The exceptions are [FZTCD92,
MoNa92b].

In our model of CS (see Figure 1), the server man-
ages the disk version of the database and, possibly,
takes care of global locking across the clients, The
clients, after obtaining database pages from the
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server, cache them in their buffer pools. Clients
perform their updates on the cached pages and pro-
duce log records. However, clients do not have
disks for logging. They buffer log records locally in
virtual storage and later send them to the single log
managed by the server. The problems of keeping
the caches coherent, and performing global locking
and recovery are very similar to those associated
with the shared disks (S0) architecture [DIRY89,
Lome90, Rahm91]. Most of the algorithms that we
have developed for SD [MoNa91, MoNa92a,
MoNa92b, MoNP90, MoNS91] are very much appli-
cable to CS. For the purposes of this paper, the
specifics of the protocols used for concurrency and
coherency control are not that important, We will
concentrate on issues and solutions relating to re-
covering from various types of failures when fine-
granularity (e.g., record) locking is in effect.

The rest of the paper is organized as follows. In the
remainder of this section, first, we describe how
recovery is performed in a single-system DBMS to
define the terminology used in the paper; then, we
describe some of the problems which would need
to be addressed in a CS architecture where a client
is allowed to cache and update the pages received
from the server. The rest of the paper describes
how database recovety is performed correctly in the
CS architecture, while at the same time not increas-
ing overheads significantly and while retaining some
optimization currently applicable to the traditional
DBMSS. In section 2, we first state our assumptions
about the CS environment and then describe the
ARIESICSA (ARIES for Client Server Architectures)
method. In section 3, we describe how log sequence
numbers (LSNS) are synchronized in CSA to benefit
from the Commit_LSN technique of [Moha90]. Then,
in section 4, we compare our method with related
work. Finally, we summarize in section 5.

1.1. Terminology for Recovery

We describe the terms which are used for recovery
in the rest of the paper by describing the actions
taken by a single-system DBMS during its normal
processing, and its restart recovery processing after
a crash.
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BM: Buffer Manager; BP: Buffer Pool; DM: Data Manager;
LLM: Local Lock Manager; GLM: Global Lock Manager.

Figure 1: Our Model of Client-Server Architecture

1.1.1. Normal Processing page, the page’s page_LSN field is set to the LSN

In many DBMSS (e.g., in DB2m), every update to
every page of the database gets logged. The log
manager of the DBMS writes log records in time
ordered sequence in one (conceptual) log and as-
signs a log sequence number (LSfV) to every log
record. An LSN is generally the logical address of
a log record. Hence, LSNS monotonically increase
in value, Every database page header has a field
called page_LSN. On performing an update of a
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of the log record describing that update.

The buffer manager component of the DBMS uses
the page-LSN value of the page in order to make
sure that a modified page is not written to disk
before all the log records that describe changes to
that page have been written to stable storage, i.e.,
to implement the WAL (write-ahead log) protoco/.
That is, given the page_LSN of a dirty page, the
buffer manager needs to know the address of the
log record that describes the most recent change to
the page, This is straightforward if LSNS are log
records’ addresses.

Many DBMSS, such as IBM’s DB2 and DB2/6000m,
do not write an updated page to disk at the time of
termination (i.e., after commit or rollback) of the
transaction which performed the update. This is
termed the no-force policy. This is to be contrasted
with the force policy adopted by IBM’s IMS, and
DEC’S Rdb/VMSM [ReSW89]. No-force improves
transaction response time and concurrency, and re-
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duces 1/0 and CPU overheads, and the utilization of
1/0 devices [MHLPS92].

The LSN value is used as a way of relating the state
of a page on disk with respect to updates that have
been logged for that page during recovery from a
DBMS crash, That is, given a log record and the
page for which that log record was written, the re-
covery manager needs to know whether or not that
page already contains that log record’s update. Note
that this means that only the LSN for a given page
needs to monotonically increase over time as the
page is updated multiple times.

During recovety from a crash, the DBMS must re-
store the database to a consistent state. To make
this possible, some actions have to be taken during
normal processing. For example, consider the ARIES
(Algorithm for Recovery and /so/ation Exploiting Se-
mantics) transaction recovery and concurrency con-
trol method which was introduced in [MHLPS92]
and which has been implemented, to varying de-
grees, in the IBM products 0S/2 Extended Edition
Database Manager, DB2, DB2/2m, DB2/6000, Mes-
sage Queue Manager/ESA, Workstation Data Save
Facility/VM and ADSM, in the IBM Research proto-
types Starburst and QuickSilver, in Transarc’s
Encinam product suite, and in the University of Wis-
consin’s Gamma and EXODUS, ARIES takes the fol-
lowing actions, besides other actions, during normal
processing:

. It uses WAL for recovery. H does in-place updating
in the buffer pool and disk versions of pages (i.e.,
it does not do shadowing or delayed updating),

. Periodically, it takes a checkpoint by first writing
a Begin Checkpoint log record, then collecting some
informa~ion and finally writing an fnd Checkpoint log
record which contains that informa~ion. The col-
lected information relates to pages that are more
up to date in the buffers than on disk (dirty pages)
and to transactions that are in progress. For each
page in the stored dirty pages list (LWVJ, there is
an LSN called Recovew LSN (Reef.SfV, for short)
which is stored in DPL and associated with the page.
RecLSN is some LSN starting from which ifa forward
scan of the log were to be performed, then all the
log records needed to bring the disk version of the
page up to date with its buffer version (by possibly
redoing all or some of those log records’ updates)
would be encountered. During normal processing,
the buffer manager tracks RecLSN of a page in the
buffer control block (BCB) for the page. The value
is assigned when the page state is about to change
from c2ean1 to dirty. Typically, the current end-of-log
LSN is picked conservatively as RecLSN, rather than

the LSN of that log record which describes that up-
date which makes the page become dirty.

1.1.2. Restart Recovery

During restart recovery after a crash, ARIES pro-
cesses the log and takes the following actions:

● Performs the ana/ysis pass which starts at the
Begin-Checkpoint log record of the last completed
checkpoint (i.e., a checkpoint for which both the
Begin_Checkpoint and End_Checkpoint log records
are present) and continues until the end of the log.
During this pass, DPL and the transaction information
found in the End_Checkpoint record are brought up
to date as of the end of the log by analyzing the log
records in that interval (see [M HLPS92] for a de-
tailed description of how this is done), If a log record
is encountered for a page that does not appear in
DPL, then that page is added to DPL. For each such
page, RecLSN is assigned to be the LSN of the first
encountered log record referencing that page.

. DPL from the analysis pass determines the starting
point (i.e., the RedoLSN = the minimum of the
RecLSNs in DPL) for the log scan of the next pass
(redo pass), and acts as a filter to determine which
log records and consequently which database pages
have to be examined to determine if some updates
need to be redone. A page referenced in a log
record is examined only if the page appears in DPL
and the page’s RecLSN is less than or equal to the
log record’s LSN. An update is redone only if the
page qualifies for examination and page_LSN is less
than the log record’s LSN. The effect of the redo
pass processing is that ARIES repeats history as
recorded in the disk version of the log by redoing
all those updates whose effects are missing in the
disk version of the database.

. In the following undo pass, using the transaction
information produced by the analysis pass, ARIES
rolls back those transactions that did not terminate
or enter the in-doubt (prepare) state of two-phase
commit. ARIES also logs, typically using compensa-
tion log records (CLRS), updates performed during
partial or total rollbacks of transactions during both
normal and restart undo. In ARIES, CLRS have the
property that they are redo-only log records. By
appropriate chaining of the CLRS to log records writ-
ten during forward processing, a bounded amount
of logging is ensured during rollbacks, even in the
face of repeated failures during restart recovety or
of nested rollbacks, When the undo of a log record
(a nonCLR) causes a CLR to be written, the CLR is
made to point, via the LfndofUxtLS/V field of the CLR,
to the same transaction’s log record that precedes
(i.e., the one pointed to by the PrevLSfV field) the

1 ln the current context, a page at the server is clean if the buffer version at the server is the same as the disk version and a page at a
cl tent is clean if the client version N the same as the server version.
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log record being undone. ARIES supports logical formed correctly both for client and server failures?
undo since the page affected during the undo of a That is, how does the recovery logic ensure that
nonCLR could be different from the page originally pages which need recovery are correctly identified
affected by the nonCLR’s update (see [Moha93a, and also that all log records which need to be re-
Moha94b, MoLe92] for examples and concurrency done or undone are correctly identified and pro-
advantages of logical undos). cessed?

The server as well as the clients take checkpoints

1.2. Recovery Issues in CS Architecture periodically to ensure correct operation.

In this section, we motivate the reader with some 2. ARIES/CSA Method
of the recovety issues which arise as a result of the
CS architecture. 2.1. Assumptions

In CS, the clients have no local disks to store the
log records for the updates. Only the server has

. A transaction executes in its entirety at a particular

the log disks. So, the following questions arise. The
client or at the server. It is relatively easy to permit

answers given here are expanded upon later in the
reads alone to be performed both at the server and

paper.
a client by a single transaction. If a transaction
needs to see itsown updates, then even this requires

● How does the client assign LSNS for the log more work since the updated pages in the client
records? would have to be flushed to the server before a

Clearly, in this environment, one cannot afford to
read is performed at the server, Permitting the

wait for a log record to be sent to the server and
same transaction to perform even updates at both

for the server to respond back with an LSN for the
places would make the recovery logic more compli-

newly written log record before the updated page’s
cated since any rollback of a transaction would have

page_LSN field is set to the correct value. We would
to be performed in reverse chronological order

like to be able to assian LSNS ?ocatlv even as Ioa
across the two systems.

records are being cre~ted and are being buffere~ . WAL is used for recove~. All newly produced log
in the client. records currently buffered in a client are sent to the

This leads to the following question: if every client
server just before any dirty page is sent back to the

were to assign LSNS independently without each
server (i. e., a conservative way of ensuring write-

one somehow taking into account the values being
ahead logging with respect to the server) or at the

assigned in the other systems, then how would re-
time a transaction is being committed, whichever

covery happen correctly (see [MoNa92b, MoNP90]
happens earlier.

for examples of problem scenarios)? A problem
may arise because, over time, different clients may
modify the same page and assign LSNS independently
which may not be monotonically increasing.

● When does the client ship the Iog. records to the
server?

A client buffers log records for a period of time in
virtual storage before shipping them to the server.
All the log records produced by a client for its up-
dates are sent to the server when dirty pages are
sent back to the server or when a transaction com-
mits, whichever happens earlier.

● How does the server enforce the WAL protocol
when the log records and the page could be arriving
independently at the server?

The server ensures that the log records correspond-
ing to a dirty page’s page_LSN are written to the
stable storage before writing that page to disk. This
may require keeping a mapping between log record
addresses and their LSNS.

● Since dirty pages might move between the clients
and the server quite unpredictably, how does the
recovery method ensure that recovery is still per-

. Global lock management support is provided by
the server. Clients acquire global locks by commu-
nicating with the global lock manager (GLM) at the
server. Each client may have a local lock manager
(LLA4) so that the global locks are acquired in the
name of the LLMs rather than individual transactions.
This would permit some optimization which result
in some message, CPU and storage savings, espe-
cially if multiple transactions were to execute
concurrently at a given client (see [MoNa91,
MoNa92a] for more discussions), The GLM function
can be easily distributed, e.g., as in the DEC
VAXclusterw distributed lock manager [KrLS86].

. Record locking is in effect, which means that a
page may contain the uncommitted updates of many
transactions concurrently executing in different sys-
tems. However, at any given time, only one system
is allowed to be actively modifying a page. This
system is called the update privilege owning system.
This is done to avoid the need for merging different
versions of a page and to avoid some problems
relating to space management (such problems were
not dealt with in [CFLS91] when the 02PL protocols
were proposed). To guarantee this physical serial-
ization of updates to a page, the ownership of update
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privileges is managed using physical (P) locks, as
in ARIES for the shared disks (SD) environment
[MoNa91]. A client cannot give up the update priv-
ilege on a page before the latest updated version
of the page has been received by the server. For
the transfer of the update privilege, it is enough if
the server has cached the latest version of the page
in its buffer pool. The latest version need not have
been written to disk before another client is granted
the update privilege.

. Clocks across the complex of systems are not
necessarily synchronized. Even if the clocks are
synchronized, it is unlikely that they would be syn-
chronized to the degree of precision that would be
needed to be able to use timestamps as LSNS
[MoNP90]. Furthermore, if a single-system DBMS
is being extended to support CS, then it is possible
that the current page_LSN field is not long enough
to store timestamps and hence using timestamps
would require going through the undesirable data-
base migration work of unloading all existing data,
reformatting all pages and reloading the data.

● Clients have (local) log managers which behave
very much like the regular log managers, except
that, instead of writing log records to a local disk,
they just buffer them in virtual storage and then at
various points in time ship them to the server. When
the server receives log records from a client, it
appends them to its log file. A client does not discard
a log record from its log buffer until it gets confir-
mation that that log record has been safely recorded
on stable storage at the server. The log records
written by a client contain the client’s identity. This
information would be used during an analysis pass
for separating the log records written by a particular
client from those written by the other clients.

● A no-jorce policy is used between the clients and
the server - that is, when a transaction terminates
(by committing or rolling back), the pages modified
by the transaction are not necessarily sent to the
server before the transaction is allowed to terminate.
Of course, a transaction is declared to have com-
mitted only after all its log records are sent to the
server and the server has forced them to its stable
storage, The coherency control protocol used to
establish coherency amongst the multiple copies of
the same page in the buffer pools of the different
clients must of course be able to handle the no-force
policy (see [MoNa91, Rahm91, ReSW89] for details
about many protocols and their requirements).

● A stea? policy is used between the clients and the
server - that is, a page containing uncommitted up-
dates may be sent from a client to the server. Cli-
ents do not have disks which could be used for

storing updated pages. The server, which has its
own buffer pool, may write to disk even pages con-
taining uncommitted updates.

2.2. LSN Management

We first discuss how LSN values are assigned in
CS to ensure that recovery is performed correctly
and that certain optimization are possible. The key
point is that LSNS are assigned locally by the cli-
ents. In ARIES/CSA, the page_LSN field is used as
an update sequence number, That is, page_LSN will
no longer necessarily be a log record address. Dur-
ing normal processing, an update to a page involves
the following:

. Look up the current value of page_LSN on the
page being updated.

● While writing the log record describing the update,
pass to the log manager the page_LSN value,

. The log manager assigns to the new log record
as its LSN the higher of the following two values:

1 + the page_LSN passed as a parameter
1 + Local_Max_LSN

Loca/-A4ax-LSN is a value that the log manager
continuously maintains. It is typica22y the LSN of
the log record most recently appended by the local
log manager to its log buffer. The above method of
assigning the LSN guarantees that for a particular
system all the log records written by it will have
LSNS which are monotonically increasing, even
across log records for different database pages (this
is in contrast to the proposal in [Lome90]), The
utility of this feature is covered in the sections “2.3.
Page Reallocation” and “3. Commit-LSN Optimiza-
tion”. Also, it is possible that the value of
Local_Max_LSN may be increased without writing
any log records locally. We discuss this in the sec-
tion “3. Commit-LSN Optimization”.

The log manager places the LSN computed above
into the new log record’s LSN field, assigns the
value to Locai_Max_LSN and also returns that value
to the invoker of the log manager.

● On return from the log manager, the page updater
places the returned LSN value in the page_LSN field.

At the server, for enforcing the WAL protocol, when-
ever a dirty page is received from a client, the serv-
er’s buffer manager can conservatively assign as
that page’s ForceAddr the logical address, in the
server’s log file, of the most recently written log
record that came from that client.z Alternatively, the
server can associate with each received dirty page,

2 If a dirty
and picks

page is sent together with a set of log records by a client, the server fwst appends the received log records to its log btier
the ForceAddr, and then copies the page to its buffer pool and assigns it the picked ForceAddr.
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the logical address of that log record whose LSN
value is present in the page_LSN field of that page.
This would require some extra bookkeeping by the
server.

2.3. Page Reallocation

In a DBMS such as DB2, when a previously
deallocated page is reallocated, a slot is assigned
to it in the buffer pool and the slot is formatted
according to the type of the page being allocated.
That is, the deallocated version of the page is not
read from disk. This is a very useful optimization
since it saves a synchronous 1/0 for reading a page
whose contents are not of interest. An example of
the above kind of page is an empty index page
[Moha94b, MoLe92] which is reused. An index page
is deallocated when there are no keys left in the
page and is then reallocated during a subsequent
page split operation. During reallocation, the page
is not read from disk.

In a single-system DBMS environment, during page
reallocation, a page-formatting log record is written
and the the page_LSN is set to the address of that
log record [Moha94a]. This value of page_LSN
would be greater than the page_LSN value assigned
when the page was deallocated. (Note that it is re-
quired that page=LSN have a monotonically increas-
ing value for a given page.) But, in the CS architec-
ture, the page may be deallocated in one system
and then reallocated in another. How can we ensure
that the second system which reallocates the page
assigns a page_LSN value which is greater than
what the first system assigned while deallocating
the same page?

The way we ensure this property is by making the
new page_LSN be higher than the current LSN of
the space map page (SMP) which describes the
allocation-deallocation status of the page in question.
We pass the LSN of the SMP as the LSN for the
page being allocated. This works since at the time
of deallocating a page, we would have had to modify
the SMP entry for that page to say that the page is
available for future allocation. During that operation,
because of the algorithm used by the log manager
to assign LSNS (described in the section “2.2. LSN
Management”), it is ensured that the SMP update
log record’s LSN is higher than the latest LSN of
the page being deallocated. During allocation, since
we have to look at the SMP anyway (to even realize
that the page is available for allocation and then to
mark the page as being allocated), we can ensure
that the LSN assigned for the page-formatting log
record is higher than the current LSN of the SMP
page.3

2.4. Transaction Rollback

When a client sends a log record to the server, the
server analyzes the log record to keep track of var-
ious pieces of information about the transactions
that are active at the different clients. (This infor-
mation is tracked by the sewer for computing
Commit LSN as described in the section “3, Commit-
LSN Op~mization”. ) Therefore, it is possible for a
client to retrieve log records from a server for a
transaction rollback if they are not available locally.

Both total and partial rollbacks of transactions can
be supported. Consequently, clients can support the
savepoint concept. Total or partial rollback is initi-
ated by the client by opening a log scan starting
with the latest log record written by the transaction.
Due to the clients’ steal policy, some of the pages
on which undo has to be performed may not anymore
be present in the client’s buffer pool. Those pages
have to be fetched from the server’s buffer pool or
from the disks at the server. Except for these
changes, rollback is performed as in ARIES for SD
[MoNa91]. For example, if a page on which undo
needs to be performed is no longer in the buffer
pool of the client, then, in addition to the page, the
update privilege on that page would also have to
be reobtained,

2.5. Process and Media Failures

A page might have to be recovered when the DBMS
is in normal (nonrestart) operation. There are 2
cases to considec

Case 1: The page has been in use, for example, in
a client and a process failure occurs during an up-
date to the page. Since, in the general case, the
partially performed update’s effects cannot be easily
directly eliminated from the corrupted page
[Crus84], the page needs to be recovered by taking
an earlier uncorrupted copy of the page from the
server’s disk or buffer pool, and redoing any missing
updates to that copy by applying the log records.
The log records which need to be applied will be in
the range of page_LSN of the uncorrupted copy of
the page to the end-of-log when page recovety is
initiated.

The issue here is how to map a page_LSN to the
corresponding log record’s address when the server
or a client has to recover a page.

Case 2: The page cannot be read from disk at the
server due to a media error.

3 ,4n inefficient alternative suggested in [Lome90] requires the explicit tracking of a deallocated page’s LSN in the SMP entry for that
page. This has many negative consequences (see [MoNa92b] ).
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2.5.1. Page Corruption in Server

The page_LSN value (of the uncorrupted copy) cannot

be used as the starting point to scan the log to
recover a page when the system is operational since
it is no longer the address of a log record as in
single-system DBMSS like DB2. To handle this sit-
uation, when the ~tr.st update is about to be per-
formed to a clean page, the buffer manager tracks,
in the buffer control block (BCB), a lower bound for
the log record address of that update which causes
the page state to go from clean to dirty. This zog
address, called RecAc/dr, becomes the starting point
for page recovery. The ending point for the log scan
is the end-of-log address when page recovery is
initiated. The above RecAddr is also needed for
recording, at the time of a checkpoint, a summary
of the state of the buffer pool, In case the server
fails, this information is needed for determining the
point of the log from which the redo pass of restart
recovety should begin [Crus84, MHLPS92].

2.5.2. Page Corruption in Client

The buffer manager at a client associates with each
dirty page the LSN of the most recently written log
record at that client just before that page became
dirty at that client. When this dirty page is sent
to the server, this RecLSN information is also sent
with it. The buffer manager at the server then maps
the RecLSN to the corresponding (or conservatively
a lower) RecAddr and stores the information in its
BCB for that dirty page, If the server already had a
dirty version of that page (i.e., earlier, the same or
a different client had dirtied that page and that ear-
lier dirty version has not yet been written to disk),
then the server’s buffer manager retains the old

RecAddr. To be able to perform the LSN to address
mapping, the sewer can maintain, for each client,
a small set of <LSN, address> pairs as log records
are received from the client and added to the serv-
er’s log. These pairs can then be used to map a
particular LSN to its exact address or conservatively
to a lower valued address, With the RecAddr so
obtained, the log records can be applied by the
client or the server to the uncorrupted copy of the
page at the server to recover the page.

2.5.3. Page Corruption on Disk

If an uncorrupted version of the page cannot be
read from disk, the page is recovered by doing me-
dia recovery, Media recovery involves the following:

● Obtaining a copy of the page from the last backup
copy (archive dump).

● Accessing the log at the server and performing
the necessary redos by starting from the appropriate

log address as recorded with the backup copy (see
[MHLPS92, MoNa93] for detailed discussions of this
topic).

2.6. Client Failures

We believe that client failures would be handled
more effectively if the clients take checkpoints peri-
odically, just as in a single-system DBMS. First, we
describe this approach. Next, we briefly discuss the
approach where the clients do not take checkpoints
and the server takes on more responsibility.

2.6.1. Checkpointing by Clients

Each client periodically takes a checkpoint. The cli-
ent’s checkpoint records some information about
the state of the client’s buffer pool - e,g., the dirty
pages list (DPL) which contains for each dirty page
an LSN (RecLSN) before which there are no update
log records whose updates have not yet been re-
flected in the server version of the page (i.e., on
disk or in the server’s buffer pool). It also records
the states of the transactions which are active at
that client. The server keeps track of the most recent
checkpoint records of all the clients. When an
End_Checkpoint log record is received from a client,
the server maps, for each page in DPL, the RecLSN
value to an appropriate RecAddr, as explained be-
fore, updates the End_Checkpoint log record with
the RecAddr data in the place of the RecLSN data
and appends the log record to its log.

If a client were to fail, then the server, on noticing
the failure of the client, performs recovery on behalf
of the failed client. It does this by processing that
client’s checkpoint records, and by performing the
analysis, redo and undo passes as in ARIES. During
these passes, only the log records written by the
failed client have to be processed. The need for
possibly having to perform redo would have to be
checked only for those pages for which the failed
client had P locks that gave the client the update
privilege on those pages.4 Even for some of those
pages, redo would not be needed if the server’s
buffer pool already had the latest versions of those
pages. A log record’s update is redone if the
page_LSN value found in the log record is greater
than the page’s current page_LSN value. During
undo, any CLRS that are written will be written in
the name of the failed client,

Note that a client’s (say Cl’s) checkpoint contains
enough information for a page (say Pl) which it
modified only to ensure the redo of Cl’s updates.
This will be the case even if PI had earlier been
updated by C2 and the server transferred the update
privilege for PI to Cl without first writing PI to disk.

4 If coarser than page locking is being done (say, table (file) locking), then only the pages belonging to the table for which the client
currently holds the update privilege need to be recovered.
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The reason this is suficient is because the setier
treats PI as being dirty in its buffer pool, and when
Cl fails the updates of C2 will still be in the version
of PI at the server and hence only Cl’s updates
would have to be redone. Of course, if the server
itself were to fail (see the section “2,7. Server Fail-
ures”) before writing PI to disk, then C2’S updates
would also have to be redone. This will be guaran-
teed to occur since the sewer’s RecAddr for PI will
be low enough to cover C2’S updates also,

Since recovery for a failed client is performed by
the server as soon as the failure of the client is
noticed by the server, no work needs to be performed
by the client when it comes up later, Of course, if
distributed transactions are being supported, then
the client would have to reacquire some locks for
any in-doubt transactions (see [MHLPS92]). The
server could keep the information needed to do this
and hand itto the client when it reconnects.

2.6.2. No Checkpointing by Clients

The motivation for making clients take checkpoints
is to be able track updates made to a table (or an
object) at page level even if the table is locked at
a coarse granularity, e.g., by table-level locking. If
page-level locking is in effect, then it is possible to
track the needed recovery information (RecAddr) at
the page level in the GLM’s lock table [MoNa91] at
the server, The server could maintain the recovery
information in the form of RecAddr as follows: assign
RecAddr when P lock is granted on the page in the
update-privilege mode for the first time to any client;
after the client(s) has sent the updated page and
the log records, the server would write the page to
disk and after the 1/0 is complete, move RecAddr
forwards With the availability of such information,
without making clients take checkpoints, the server
can perform recovery if the client were to fail. This
is because the pages for which P locks with update
privilege are held by a client constitute that client’s
dirty pages list (DPL) and the recovery information
for those pages is available from the GLM Iocktable.
This approach is simple in concept since all recovery
responsibilities are with the server which owns the
database and log disks. However, this approach has
the following drawbacks:

. When a client locks an entire table, it is not pos-
sible to know what the DPL for the table is since
the GLM lock table has only one entry for the table.

● Even with page-level locking, RecAddr maintained
by the server may get old if the client, even while
holding the update privilege, does not perform an
update for a while. Advancing RecAddr under these

conditions is quite tricky. Taking checkpoints at the
client solves that problem more easily.

Hence, we preferred clients taking checkpoints.

2.7. Server Failures

To be able to recover from its own failures, the
server periodically takes its own checkpoints. The
server% checkpoint records some information about
the state of the server’s buffer pool (DPL with
RecAddrs) and the states of the transactions which
are active at the server,

While recovering from its own failure, the server
recovers the dirty pages that were in its buffer pool
at the time of its failure and also undoes any in-flight
transactions that were executing at the server. Dur-
ing the redo pass of this recovety, the server will
be potentially redoing even updates for which log
records were written by the clients. This may be
necessaty because one or more clients might have
updated a page without the page being written to
disk in between, the last client to update the page
might have given up the update privilege on that
page, and then the server might have failed before
writing that ditty page back to disk. For such a
page, it is the sewer’s responsibility to redo the
updates performed by the one or more clients.

Page recovery as described above would be per-
formed correctly, without any special logic, provided
(1) a dirty page is received at the server before the
last checkpoint of the server was taken (i.e., the
page would be included in the server’s DPL), or (2)
the page became dirty at the ~trst client only after
the server’s last checkpoint was taken (i.e., during
the server’s recovety, the log scan would encounter
the log record that references the page and hence
would recover that page). However, a page might
not be recovered at all or incorrectly recovered if it
became dirty at the first client before the server’s
last checkpoint was taken (i.e., the log record for
the page update may not be encountered during the
server’s recovery), and the dirty page was sent to
the server and the update privilege was given up
by the client only after the last checkpoint was
taken by the server (i.e., dirty page which is cached
at the server is not included in the server’s DPL).

The solution to the above problem is as follows:
when the server takes its checkpoint, the server
includes the DPLs of the clients also in its checkpoint.
This would ensure that, in the case of a dirty page
for which transfer of the update privilege is in
progress, the page would be encountered either in
the client’s memory or in the server’s memory.
Hence, the need for a coordinated checkpoint of

5 One needs to be carefid while moving RecAddr forward since we must not include those log records whose effects are not included in
the disk copy. One possibdity is that RecAddr is picked corresponding to the page_LSN of the version of the page written to disk, so
that the log records which are appended after that would be excluded.
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DPLs between the server and the clients. The server
does the following to take its checkpoint,

● Write the Begin Checkpoint log record and then
request all the operational clients to send their list
of dirty pages with their RecLSNs.

● Once ail the operational clients have sent in their
lists, the server merges those lists with its own
current list of dirty pages to produce the DPL for
the checkpoint. If the same page appears in more
than one list, then the smallest RecLSN from that
page’s multiple entries is chosen for inclusion in DPL.

It is important that the server wait until all the op-
erational clients have sent in their lists before it
merges its current list of dirty pages. Picking up the
local list first and then requesting the lists from the
clients could result in some pages not being ac-
counted for since a client might push back a page
to the server in the interval of time between those
two events! Such a page will not be included in DPL
and it might have log records preceding the
Begin_Checkpoint log record. Those log records will
not be redone during a subsequent recovery if a
server failure were to occur before the page is writ-
ten to disk.

● Convert RecLSNs to RecAddrs as described earlier.

. Write the End_ Checkpoint record with the DPL and
the server’s(local) transaction list.

If any clients were to fail while the server was down,
then the server would have to perform recovery on
behalf of those clients before it begins normal pro-
cessing, At the end of recovery, the server talks to
all its operattonat clients to fetch the lock information
that they have for their transactions and dirty pages,
Such information is needed to reconstruct the lock
table that would have disappeared when the server
failed.

3. Commit-LSN Optimization

The Commit_LSN technique (see [Moha90] for de-
tails) can be used to cheaply determine if all the
data on a page was committed. This method uses
the LSN of the first log record of the oldest update
transaction still executing in the system (which is
called Commit_LSN) to infer that all the updates in
pages with page_LSN less than Commit_LSN have
been committed. This simple observation turns out
to be a very powerful one. This method reduces
locking and latching, especially for transactions de-
siring the degree of isolation called cursor stability
(degree 2 in System R terminology), In addition, the

method may also increase the level of concurrency
that could be supported and decrease the need for
reevaluation of selection predicates. Several appli-
cations of the method, including many nontrivial

.

ones, were presented in [Moha90, Moha93b].
Commit_LSN has been implemented in DB2 V3.

The Commit_LSN method crucially depends on a
log record’s LSN being smaller than those of all the
log records written by a given system after the writ-
ing of the former log record. In the single-system
and shared nothing environments, this is trivially
satisfied if the LSN is a log address. In the SD and
CS environments, if (synchronized clocks’)
timestamps are not used as LSNS, then the alterna-
tive method used to determine LSNS must satisfy
this property.

In the SD and CS architectures, the Commit_LSN
value must be computed by taking into account all
the transactions executing across the whole complex
of systems. In CS, this is done as follows. Whenever
a log record sent by a client is appended to the log
by the server, the server analyzes the log record to
keep track of various pieces of information about
the transactions that are active at the different cli-
ents. To the latter, it also adds information about
the transactions that are active at the server itself.
Once this collection of information is available, the
server is in a position to compute and maintain the
Commit_LSN value across all the transactions in the
CS complex, The server periodically and/or on de-
mand communicates the current Commit_LSN value
to the clients. The clients and the server may use
that value for the Commit_LSN method as explained
in [Moha90],

In the SD and CS architectures, it is also important
that the LSNS issued by the different systems be as
close to each other as possible, even though the
log production rate at the different systems may be
very different. While no inconsistency will arise if
one or more systems keep issuing low LSNS, the
smaller values will unnecessarily prevent some
transactions from benefiting from the Commit_LSN
method. This is because low LSNS will keep the
global Commit LSN value too much in the past and
the conservat~e check (1s page_LS# less than
Commtt_LSN) will fail more often, and hence transac-
tions will be forced more often to obtain locks to
determine whether a piece of data is committed.
Instead of computing Commit_LSN across all the
files in the database, it is possible to compute it on
a per-file basis and get even more benefits (see
[Moha90] for details).

In CS, to assure proximity of the LSN values assigned
by the different systems, periodically, the server,
while interacting with every client, passes to each
client the maximum LSN (Max_LSM) value that it has
seen so far in the log records that it has received
from aZZ the clients. When Max_LSN is received by

each client, if it is found to be greater than the
current client’s Local_ Max_LSN, then
Local_Max LSN is set to Max_LSN. (As mentioned
in the sect~on “2.2. LSN Management”, this is the

63



case when Local_Max LSN value at the client is
increased without writ~ng any log record locally.)
This essentially amounts to a Lamport logical clock
scheme [Lamp78]. To make the process e~cient,
the transmission of Max_LSNs can be piggybacked
on to the other messages being exchanged between
the server and the clients.

4. Comparisons With Related Work

4.1. Client-Server EXODUS

Concurrently with our work, researchers at the Uni-
versity of Wisconsin proposed some modifications
to ARIES for supporting CS in the context of the
EXODUS Storage Manager (ESM) which also trans-
fers pages between the server and the clients
[FZTCD92]. Their method is called the ESM-CS re-
covery method (ESM-CS, for short, in the following).
It has many features in common with ARIEWCSA
(use of WAL with ARIES for recovety, steal policy
for buffer management, no disks at clients, etc.).
The assignment and management of LSNS is mostly
similar, although our approach is more general
since it handles record locking and it covers opti-
mization like page reallocation and Commlt_LSN.
The most significant ways in which ESM-CS differs
from ARIES/CSA are:

. In ESM-CS, when a transaction commits, the client
at which the transaction executed is required to ship
all the pages modified by that transaction to the
server (cal I it force-to-server-at-commit) pol icy. Fur-
thermore, all pages are purged from the buffer pool
of the client at transaction termination time. Clearly,
there would be situations where these could lead to
high overheads and it would be beneficial in many
ways (e. g., to reduce communication traffic and lock
hold times) to avoid them, as we do in ARIES/CSA.
Since their clients do not take checkpoints, avoiding
force- to-server-ut-commi t would require some fun-
damental changes in ESM-CS.

●ln ES M-CS, clients do not perform any recovery

actions except for writing log records in forward
processing for transaction updates. As a result,
even normal transaction rollback is not performed
by a client, This causes complications in ESM-CS
since pages updated by a to-be-rolled-back transac-
tion are not forced to the server before the server
performs the rollback. The latter requires that con-
ditional undo be performed in ESM-CS as designed
in [MoPi91] for an optimized version of ARIES (called
ARIES-RRH). This means that, even when some
undo does not have to be performed (because the
update is not part of the version of the page at the
server), a CLR would have to be written as if the
undo was actually performed. The latter is possible
only if logical undos are not required. The methods
for managing B+-tree indexes and hash-based stor-
age with very high concurrency [Moha93a, Moha94b,

MoLe92] may require logical undos. Such methods
cannot be supported in ESM-CS unless ESM-CS’S
approach to rollback handling is modified. Further-
more, supporting partial rollbacks would be a prob-
lem since the client would have to purge (at least)
those pages on which undo was performed at the
server. Unless the client examines all the relevant
log records or gets the needed information from the
server, it would not know which pages should be
purged. Conservatively purging all the pages would
be inefficient since that could potentially cause many
buffer misses subsequently when the transaction
resumes.

● Only page or coarser granularity locking is sup-
ported. In particular, record locking is not supported.
This assumption together with the force-
to-server-at-commit policy is taken advantage of in
many places. It is not clear how much ESM-CS
would have to be changed to accommodate fine-
granularity locking.

. The client executing a transaction and the server,
on receiving dirty pages, keep track of pages updated
by a transaction and remember RecLSNs of those
pages. Before the commit record is logged for a
transaction, this Commit Dirty Page List (CDPL) of
the transaction is logged by the server. During the
analysis pass, pages in CDPL are added to DPL.
This elaborate scheme is needed partly because
clients do not take checkpoints. It works only be-
cause of the force-to-server-at-commit policy. Even
this CDPL logging is not sufficient to deal with a
situation where a transaction (which does not ter-
minate before a server failure) modifies a clean (at
server) page prior to and also after the server’s
last checkpoint, but the dirty page is sent to the
server only after the server’s last checkpoint. In
this case, since the in-flight transaction’s CDPL
would not have been logged, the server’s analysis
pass will not encounter the log record written prior
to the checkpoint and hence redo of that earlier log
record’s update will not be performed. To avoid this
problem, ESM-CS conservatively associates the
transaction’s .Start_LSN as the RecLSN of such a
page! Again, it works only because of the force-
to-server-at-commit policy, ARIEWCSA avoids this
problem by including in the server’s checkpoint log
record even those pages which are not currently
dirty at the server but are dirty at the client.

[FrCL92] has proposed a client-server architecture
where it is possible to take advantage of client mem-
ories to cache a larger fraction of a database,
thereby reducing disk l/Os. This is achieved prima-
rily by the forwarding mechanism. When a client
makes a page request to the server and the server
does not have that page cached but another client
does, it forwards the request to that remote client.
The remote client ships the page directly to the
requesting client. This saves disk 1/0s by the server.

.
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The paper discusses other techniques, such as hate-
hints, and sending-dropped-pages. The former re-
duces the duplicate caching between the setver and
a client, and the latter could help increase the life
of cached pages,

That paper’s major focus is on performance but the
authors have discussed recovery in the related work
and future work sections of the paper. The assump-
tions made in the paper which are relevant for re-
covery are: page-level locking, one client sending a
dirty page to another, and avoiding making clients
send dirty pages to the server prior to committing
a transaction, Below, we discuss them in the context
of ARIES/CSA,

In ARIE!YCSA, we assume that locking is done at a

granularity finer than a page. This allows even dirty
pages to be shipped from one client to another be-
fore committing a transaction in the client. Of course,
the log records of the sending client must be re-
ceived by the server and acknowledged, before this
client can send the page to the requesting client.
Based on the recovery method which is chosen for
the implementation, the log records may or may not
be forced to disk during the transfer of a dirty page,
and the dirty page may or may not be written to
disk. These options and their implications on recov-
ery are discussed in [MoNa91] in detail, in the con-
text of the SD architecture, The idea of forwarding
has also been discussed in detail in [MoNa91],
where the global lock manager assists the requestor
in getting the page shipped from the system which
has the dirty page cached. In the SD architecture,
every system can access all the database disks,
Therefore, we did not want to pay the overhead of
messages and overload a system with page re-
quests.

ARIES/CSA does not require that dirty pages be
shipped to the server prior to committing a transac-
tion,

4.2. ObjectStore

ObjectStore [LLOW91] also caches pages at the cli-
ent, At commit time, modified pages are not only
sent to the server but are also written to disk by the
sewer. However, the pages accessed by the trans-
action continue to be cached at the client after the
transaction terminates. The smallest locking gran-
ularity that is supported is a page. Other than the
fact that WAL is being used, nothing more is men-
tioned about recovery in [LLOW91].

5. Summary

In the client-semer (CS) architecture, the server
owns the disks for log and data, and clients cache
and update database pages. In this paper, we de-
scribed the changes that had to be made to the
original ARIES method to support database recovery

in the CS architecture. The modified method, called
ARIES/CSA, was designed to provide a significant
level of flexibility. Only minimal changes were
needed to the original method to accommodate CS.
Some of the highlights of ARIES/CSA are:

. Server performs recovery on behalf of a failed
client. Clients take checkpoints and the clients’
checkpoint information is used by the server to re-
cover them efk!ciently.

● Server includes the dirty page lists of the clients
in its checkpoint to ensure correctness of recovery.

The key advantages of ARIES/CSA are: (1) It supports
fine-granularity locking, and the steal and no-force
buffer management policies. (2) It requires neither
the purging of the pages at the client when a trans-
action commits nor the forcing of the dirty pages to
the server at that time. (3) The load on the server
and recovety complexity are reduced by performing
normal transaction rollback (partial or total) at the
client. (4) ARIEWCSA supports indexing and hashing
methods like ARIEWKVL, ARIESAM and ARIES/LHS
[Moha93a, Moha94b, MoLe92] that require the ability
to support logical undos (as opposed to only page-
oriented undos). Nested transactions can also be
supported since ARIES has been extended to handle
them [RoMo89]. (5) The clocks across the complex
of systems do not have to be synchronized. (6)
ARIES/CSA supports the very powerful Commit-LSN
optimization, (7) If a single-system DBMS is being
evolved to the multisystem environment, ARIES/CSA
avoids the need for migration of all existing data by
avoiding using synchronized clocks’ timestamps as
LSNS, in case the timestamp value’s length is more
than the size of the currently-present page_LSN
field, (8) Clients can assigns LSNS locally which
improves performance,

In the future, we plan to deal with recovery issues
when individual objects/records, rather than pages,
are exchanged between the clients and the server,
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