
Practical Predicate Placement

Joseph M. Hellerstein”

University of California, Berkeley

joey@cs. wise.edu

Abstract. Recent work in query optimization has addressed
the issue of placing expensive predicates in a query plan.
In this paper we explore the predicate placement options
considered in the Montage DBMS, presenting a family
of algorithms that form successively more complex and
effective optimization solutions. Through analysis and
performance measurements of Montage SQL queries, we
classify queries and highlight the simplest solution that will
optimize each clam correctly. We demonstrate limitations of
previously published algorithms, and discuss the challenges
and feasibility of implementing the various algorithms in a
commercial-grade system.

1 Introduction

Relational Database Management Systems have begun

to allow user-defined data types and operators to be

utilized in ad-hoc queries. Simultaneously, Object-

Oriented DBMSS have begun to offer ad-hoc query fa-

cilities, allowing declarative access to objects and meth-

ods that were previously only accessible through hand-

coded, imperative applications. These two supposedly

distinct approaches to data management are converging

on similar sets of new problems in query optimization

and execution.

One of the major problems faced by these systems

is that the common relational heuristic of “selection

pushdown” (see e.g. [U1188]) is no longer advantageous

in all situations. Selection pushdown requires query

processing to perform selections before performing joins.

“ Current address: Department of Computer Sciences, 1210

W. Dayton St., Madison, WI, 53706. This work was initiated

while the author was at the University of California, Berkeley. In

part, this material is based upon work supported under a National

Science Foundation Graduate Fellowship. Any opinions, findings,

conclusions or recommendations expressed in this publication are

those of the author and do not necessarily reflect the views of the

National Science Foundation.

Permission to aop without fee all or part of this material is
igranted provided t at the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Asscxiation of Computing
Machinery. To copy otherwise, or to republish, requires a fee
andor specific permission.

This heuristic fails when expensive computations are

embedded in selections: in such scenarios the selections

may be more costly and less selective than joins, and

thus it may be desirable to postpone checking selections

until after performing joins. A variety of papers have

dealt with this problem in various forms, and two basic

algorithms for query planning have resulted, one first

described in [CGK89], another in [He192]. As we will see

in this paper, each of these approaches has limitations in

practice, which necessitate some compromises. We add

to these rather complex algorithms a family of simpler

heuristics, illustrating for each one the class of queries

which it can effectively optimize.

The intention of this work is to guide query optimizer

developers in choosing a practical solution whose im-

plementation and performance complexity is suited to

their application domain. As a reference point, we de-

scribe our experience implementing the Predicate Mi-

gration algorithm [He192, HS93a] and simpler heuris-

tics in the Montage Object-Relational DBMS (formerly

called Mir6 [Sto93]). We compare the performance of

the various heuristics on different classes of queries, at-

tempting to highlight the simplest solution that works

for each class.

Table 1 provides a quick reference to the algorithms,

their applicability and limitations. When appropriate,

the ‘C Lines’ field gives a rough estimate of the number

of lines of C code (with comments) needed in Montage’s

System R-style optimizer to support each algorithm.

1.1 Related Work

The System R project faced the issue of expensive

predicate placement early on, since their SQL language

had the notion of subqueries, which (especially when

correlated) are a form of expensive selection. At the

time, however, the emphasis of their optimization work

was on finding optimal join orders and methods, and

there was no published work on placing expensive

predicates in a query plan. System R and R* both

had simple heuristics for placing an expensive subquery

in a plan. In both systems, subquery evaluation was

postponed until simple predicates were evaluated. In

SIGMOD 94- 5/94 Minneapolis, Mhnesota, USA
0 1994 ACM 0-89791 -639-5/94/0005..$3.50

325

http://crossmark.crossref.org/dialog/?doi=10.1145%2F191843.191904&domain=pdf&date_stamp=1994-05-24

Algorithm Works For. . . C Lines Comments

queries without expensive predicates OK for single table queries,

PushDown+ and queries without joins 900 and thus some 00 DBMSS.
queries with either free or verg OK for MMDBMSS with standard

Pullup expensive selections 1400 primary join predicates.

queries with at most one join and Also used as a preprocessor

PullRank standard primary join predicates 2000 for Predicate Migration.

Predicate queries with standard primary Widely effective. Can cause
Migration join predicates 3000 enlargement of plan space.

queries where the optimal plan has Impractical to integrate with

LDL no costly predicates over an inner NA a System R optimizer.

all queries, including those Prohibitive computational

Exhaustive with expensive primary joins 1100 complexity.

Table 1: Summary of Algorithms

R*, the issue of balancing selectivity and cost was

discussed, but in the final implementation subqueries

were ordered among themselves by a cost-only metric:

the more difficult the subquery was to compute, the

later it would be applied. Neither system considered

pulling up subquery predicates from their lowest eligible

position. [LH93]

An orthogonal issue related to predicate placement is

the problem of rewriting predicates into more efficient

forms [CS93, CYY+92]. In such semantic optimization

work, the focus is on rewriting expensive predicates in

terms of other, cheaper predicates. This is similar to

the query rewrite facility of Starburst [PHH92]. It is

important to note that this issue is indeed orthogonal

to our problems of query planning — once predicates

have been rewritten into cheaper forms, they still need

to be optimally placed in a query plan.

1.2 Structure of the Paper

Section 2 provides background required for the rest of

the paper. Section 3 revisits the two published algo-

rithms for predicate placement, and highlights their

limitations. Section 4 presents four different predi-

cate placement heuristics and algorithms considered for

Montage, and discusses the class of queries for which

each is well suited. Section 5 describes our implementa-

tion experience. Section 6 summarizes and gives direc-
tions for future research.

2 Background: Terminology and the

Benchmark Database

In order to discuss predicate placement in a practical

context, we need to carefully define what we mean

by a predicate. In a typical SQL system, the WHERE

clause of a query is converted to conjunctive normal
form, and each conjunct is considered a separate

predicate. Predicates referencing a single table are

selection predicates, and predicates referencing multiple

326

tables are join predicates. There are twp types of join

predicates. A primary join predicate is one that is

intrinsic to the evaluation of the chosen join method;

typically it is a predicate matching an index, or a

predicate over sorted or hashed attributes. Each join

has at least one primary join predicate.1 Additional join

predicates are called secondary, and they are much like

selections — they can be placed anywhere in the query

plan, aa long as they remain higher in the query plan

tree than their associated primary join predicate. In the

remaining sections, discussion of pulling up selections

also applies to secondary join predicates.

In the course of the paper, we will be using SQL

queries to demonstrate the strengths and limitations of

our algorithms. The database schema for these queries

is based on that of Hong and Stonebraker [HS93b], with

cardinalities scaled up by a factor of 10. All tuples are

100 bytes wide. Attributes whose names start with the

letter ‘u’ are unindexed, while all other attributes have

B-tree indices defined over them. Numbers in attribute

names indicate the approximate number of times each

value is repeated in the attribute. For example, each

value in a column named ua20 is duplicated about 20

times. Some physical characteristics of the relations

appear in Table 2. The entire database, with indices

and cat alogs, was about 110 Megabytes in size.

In the example queries below, we refer to user-defined
functions. Numbers in the function names describe

the cost of the function in terms of random (i.e. con-

sequential) database 1/0s. For example, the function

costly 100 takes as much time per invocation as the 1/0

time used by a query which touches 100 uncluttered

tuples in the database. In our experiments, however,

the functions did not perform any computation; rather,

we counted how many times each function was invoked,

1 For nested loop join without an indexed inner, an arbitrary

join predicate can be chosen as primary. Typically it should be

one of minimal rank, as described in Section 4.1.

Table

tl
t2
t3
t4
t5
t6
t7

t8
t9

tlo

#Tuples

45900
77310
8730

40150
71560

2980
34390

65810
97230
28640

#8K Pgs

574
957
110
498
886
39

427

815
1203

356

Table2: Benchmark Database

multiplied that number by the function’s cost, and

added the total to the measurement of the running

time for the query. This allowed us to benchmark

queries with very expensive functions in a reasonable

amount of time; otherwise, comparisons of good plans

to suboptimal plans would have been prohibitively time-

consuming.

Our performance measurements were done in a de-

velopment version of Montage, similar to the publicly

available version 2.0. Montage was run on a Sparc-

station 10/40, equipped with 32Mb of main memory,

139Mb of swap space, and 833Mb of file system space,

running SunOS Release 4.1.3. All performance numbers

reported below are relative, not absolute.

3 Predicate Placement Algorithms

Revisited

Two basic approaches have been published for handling

expensive predicate placement. The first approach was

pioneered in the LDL logic database system [CGK89],

and was later proposed for an extended relational model

in [YKY+91]. We refer to this as the LDL algorithm.

The other approach, called Predicate Migration, is

outlined in [HS93a], and described in full in [He192].

Neither algorithm actually produces optimal plans in

all scenarios. In this section we explore the limitations

of each algorithm, and proposals for handling those
limitations in practice.

3.1 The LDL Algorithm

To illustrate the LDL algorithm, consider the following

example query:
SELECT *

FROM R, S

WHERE R.cl = S.cl

AND p(R.c2)

AND q(S.c2);

In the query, p and q are expensive user-defined boolean

functions.

Assume that the optimal plan for the query is as

327

Figure 1: A query plan with expensive selections p and

q.

A00

Da w

AA
R

Figure 2: The same

modeled as joins.

ps q

query plan, with the selections

where both p and q are placedpictured in Figure 1,

directly above the scans of R and S respectively. in the

LDL algorithm, p and q are treated not as selections,

but as joins with virtual relations of infinite cardinality.

In essence, the query is transformed to:
SELECT *

FROM R, S, p, q

WHERE R.cl = S.cl

AND p.cl = R.c2

AND q,cl = S.C2;

with the joins over p and q having cost equivalent to the

cost of applying the functions. At this point, the LDL

approach applies a traditional join-ordering optimizer to

plan the rewritten query. This does not integrate well

with a System R-style optimization algorithm, however,

since LDL increases the number of joins to order, and

System R’s complexity is exponential in the number

of joins. Thus [KZ88] proposes using the polynomial-

time IK-KBZ [IK84, KBZ86] approach for optimizing

the join order. Unfortunately, both the System R and

IK-KBZ optimization algorithms consider only left-deep

plan trees, and no lefi-deep plan tree can model the

optimal plan tree of Figure 1. That is because the plan

tree of Figure 1, with selections p and q treated as joins,

looks like the bushy plan tree of Figure 2. Effectively,

the LDL approach is forced to always pull expensive

selections up from the inner relation of a join, in order

to get a left-deep tree. Thus the LDL approach can

often err by making over-eager pullup decisions.

This deficiency of the LDL approach can be overcome

in a number of ways. A System R optimizer can be

modified to explore the space of bushy trees, but this

increases the complexity of the LDL algorithm yet fur-

ther. No known modification of the IK-KBZ optimizer

can handle bushy trees. Yajima et al. [YKY+91] suc-

cessfully integrate the LDL algorithm with an IK-KBZ

optimizer, but they use an exhaustive mechanism that

requires time exponential in the number of expensive

selections.

3.2 Predicate Migration Revisited

The Predicate Migration algorithm presented in [HS93a]

only works when join costs fit a linear cost model. In

this section we update that cost model, and illustrate

how that affects the practical applicability of Predicate

Migration.

The “global” cost model presented in [HS93a] proved

to be inaccurate at modelling query plans in practice,

and was discarded in Montage. In the global cost model,

the selectivity of a join node has the same effect on

both inputs to the join. In practice this is inaccurate.

Consider an equi-join of two relations R and S on

primary keys, where R has cardinality 100 and S has

cardinality 1000. According to [SAC+ 79], the selectivity y

of this join is &, because we can expect each tuple of

R to find one match in S. But note that the join’s

output does not contain & of the tuples from either

R or S; it in fact selects all tuples of R, and one-tenth

of the tuples of S. Thus in our estimates we need to

allow the selectivity of a join node to be different for

each input stream to the join, something the global cost

model cannot capture.

Instead of the global cost model, Montage uses a more

flexible estimate of selectivity that can be different for

each input, and a simpler (non- “global”) estimate of

cost per tuple of each input. These modifications do not

affect the Predicate Migration algorithm or the proofs

of optimality in [He192]. Given two relations R and S,

and a join predicate J of selectivity y s over them, we

represent the selectivity y of J over R as s . {S}, where

{S} is the number of tuples that are passed into the join

from S. Similarly we represent the selectivity of J over

S as s . {R}. In Section 5.2 we review the accuracy of

these estimates in practice.

The cost of a selection predicate is its cost per tuple,

as stored in the system metadata. The cost of a join

predicate per tuple (the “differential” cost) also needs to

be computed, and this is only possible if one assumes a

linear cost model for joins. Particularly, for relations R
and S the join costs must be of the form k{ R}+l{S}+m;

we do not allow any term of the form j{ R}{ S}. We

proceed to demonstrate that this strict cost model is

sufficiently robust to cover the usual join algorithms.

Recall that we treat traditional simple predicates as

being of zero-cost; similarly here we ignore the CPU

costs associated with joins. Taking this into account,

the costs of merge and hash joins given in [Sha86] fit our

criterion.z For nested-loop join with an indexed inner

2Actually, we ignore the V% savings available in merge join due

to buffering. We thus slightly over-estimate the costs of merge join

relation, the cost per tuple of the outer relation is the

cost of probing the index (typically 3 1/ 0s or less), while

the cost per tuple of the inner relation is essentially zero

— since we never scan tuples of the inner relation that

do not qualify for the join, they are filtered with zero

cost. So nested-loop join with an indexed inner relation

fits our criterion as well.

The trickiest issue is that of nested-loop join without

an index. In this case, the cost is j{ R}\S[+ k{R} +

l{ S}+rn, where ISI is the number of blocks scanned from

the inner relation S. Note that the number of blocks

scanned from the inner relation is a constant irrespective

of expensive selections on the inner relation. That is, in

a nested-loop join, for each tuple of the outer relation

one must scan every disk block of the inner relation,

regardless of whether expensive selections are pulled up

from the inner relation or not. So nested-loop join does

indeed fit our cost model: IS I is a constant regardless of

where expensive predicates are placed, and the equation

above can be written as (jlSl + k){R} + /{S} + m.3

Therefore we can accurately model the differential costs

of all the typical join methods per tuple of an input.

Linear cost models have been evaluated experimen-

tally for nested-loop and merge joins, and were found

to be relatively accurate estimates of the performance

of a variety of commercial systems [DKS92]. Unfortu-

nately, our strict linear cost model does not apply to

joins in which the primary join predicate is expensive.

In such joins, the cost formula has an additional term

CP{R}{ S}, where CP is the cost of evaluating the ex-

pensive join predicate on a tuple. In order to integrate

Predicate Migration with such joins, one needs to sacri-

fice some accuracy in cost estimation. We postpone dis-

cussion of cost estimations for expensive primary” joins

until Section 5.2, since our estimation technique was

chosen as a result of the experiments described below.

4 Predicate Placement Schemes, and

The Queries They Optimize

In this section we analyze four algorithms for handling

expensive predicate placement, each of which can be

easily integrated into a System R-style query optimizer.

We begin with the assumption that all predicates are
initially placed as low as possible in a plan tree, since

this is the typical default in existing systems.

4.1 PushDown with Rank-Ordering

In our version of the traditional selection pushdown

algorithm, we add code to order selections. This

for the purposes of predicate placement.

3This assumes that plan trees are left-deep, which is true for

most systems including Montage. Even for bushy trees this is not

a significant limitation: one would be unlikely to have nested-loop

join with a bushy inner, since one might as well sort or hash the

inner relation while materializing it.

328

Query 1:
SELECT

FROM

WHERE

AND

t10.al
tlo, t3
t3.al = tlO. ual

costly 100(tlO. ual) < O;

~ PushDown
= PullRank
u Predicate Migration
m Pullup

Figure 3: Query execution times for Query 1.

enhanced heuristic guarantees optimal plans for queries

on single tables.

The cost of invoking each selection predicate on a

tuple is estimated through system metadata. The selec-

tivity of each selection predicate (i.e. the percentage of

tuples expected to satisfy the predicate) is similarly es-

timated, and selections over a given relation are ordered

in ascending order of the metric

selectivity – 1
rank =

cost

Such ordering is easily shown to be optimal for selec-

tions [HS93a], and intuitively makes sense: the lower

the selectivity of the predicate, the earlier we wish to

apply it, since it will filter out many tuples. Similarly,

the cheaper the predicate, the earlier we wish to apply

it, since its benefits may be reaped at a low cost.

Thus a crucial first step in optimizing queries with

expensive selections is to order selections by rank. This

represents the minimum gesture that a system can make

towards optimizing such queries, providing significant

benefits for any query with multiple selections. It can

be particularly useful for current 00 DBMSS, in which

the typical ad-hoc query is a collection scan, not a join.

For systems supporting joins, however, PushDown may

often produce very poor plans, as shown in Figure 3. All

the remaining algorithms order their selections by rank,

and we will not mention selection-ordering explicitly

from this point on. In the remaining sections we
focus on how the other algorithms order selections with

respect to joins.

4.2 Pullup

PullUp is the converse of PushDown. In PullUp, all

selections with non-trivial cost are pulled to the very top

of each subplan that is enumerated during the System R

algorithm; this is done before the System R algorithm

chooses which subplans to keep and which to prune.

The result is equivalent to removing the expensive

predicates from the query, generating an optimal plan

for the modified query, and then pasting the expensive

predicates onto the top of that plan.

PullUp represents the extreme in eagerness to pull

up selections, and also the minimum complexity re-

quired, both in terms of implementation and running

time, to intelligently place expensive predicates among

joins. Most systems already estimate the selectivity of

selections, so in order to add PullUp to an existing op-

timizer, one needs to add only three simple services:

a facility to collect cost information for predicates, a

routine to sort selections by rank, and code to pull se-

lections up in a plan tree.

Though this algorithm is not particularly subtle, it

can be a simple and effective solution for those systems

in which predicates are either negligibly cheap (e.g. less

time-consuming than an 1/0) or extremely expensive

(e.g. more costly than joining a number of relations in

the database). It is difficult to quantify exactly where

to draw the lines for these extremes in general, however,

since the optimal placement of the predicates depends

not only on the costs of the selections, but also their

selectivities, and on the costs and selectivities of the

joins. Selectivities and join costs depend on the sizes
and contents of relations in the database, so this is

a data-specific issue. PullUp may be an acceptable

technique in Main Memory Database Systems, for

example, or in disk-based systems which store small

amounts of data on which very complex operations are

performed. Even in such systems, however, PullUp can

produce very poor plans if primary joins are expensive,

or if join selectivities are greater than 1. The latter

problem can be avoided by using function caching,

described in section 5.1.

Query 2 (Figure 4) is the same as ,Query 1, except t9
is used instead of t3. This minor change causes PullUp

to choose a suboptimal plan. In this case, since t9. ual

has more values than tlO. ual, the join of t9 and t10

has selectivity 1 over t10. As a result, pulling up the

costly selection provides no benefit, and increases the

cost of the join of t9 and t 10. All the algorithms pick

the same join method, but PullUp incorrectly places the

costly predicate above the join. Note, however, that this

error is nearly insignificant, especially in comparison

to the error made by PushDown in Query 1. This
is because the costly 100 function requires 100 random

1/0s per tuple, while a join typically costs at most a

few 1/0s per tuple. The lesson here is that in general,

if primary joins are not expensive, over-eager pullup is

less dangerous than under-eager pullup. As a heuristic,

it is safer to overdo a cheap operation than an expensive

329

Query 2:
SELECT t10.al

FROM tlO, t9
WHERE t9,al = tlO. ual

AND costly 100(t10.ual) < O;

Query 3:
SELECT t10.al

FROM t9, t10
WHERE t9.al = tlO. ual

AND costly l(tlO. ual) < O;

m PoshDown
m PrdlRank
= Predicate Migration
m Pullup

Figure 4: Query execution times for Query 2.

one.

On the other hand, one would like to make as few

over-eager pullup decisions as possible. As we see

in Figure 5, over-eager pullup can cause significant

performance problems for some queries, even though it

is a “safer bet” in general than under-eager pullup. In

the remaining heuristics, we attempt to find a happy

medium- between PushDown and PullUp.

4.3 PullRank

Like PullUp, the PullRank heuristic works as a subrou-

tine of the System R algorithm: every time a join is

constructed for two (possibly derived) input relations,

PullRank examines the selections over the two inputs.

Unlike Pullup, PullRank does not always pull selections

above joins; it makes decisions about selection pullup

based on rank. The cost and selectivity of the join are

calculated for both the inner and outer input, generat-

ing an inner-rank ,and outer-rank for the join. Any se-

lections on the inner input that are of higher rank than

the join’s inner-rank are pulled above the join. Simi-

larly, any selections on the outer input that are of higher

rank than the join’s outer rank are pulled up.

This algorithm is not substantially more difficult

to implement than the PullUp algorithm — the only

addition is the computation of costs and selectivities

for joins, as described in Section 3.2. Because of its

simplicity, and the fact that it does rank-based ordering,

we had hoped that PullRank would be a very useful

heuristic. Unfortunately, it proved to be ineffective in

many cases. As an example, consider the plan tree

for Query 4 in Figure 6. In this plan, the outer rank

of J1 is greater than the rank of the costly selection,

so PullRank would not pull the selection above J1.

However, the outer rank of J2 is low, and it may be

0

Figure 5: Query

u PushDown

m PullRank
cz Predicate Migration
m Pullup

execution times for Query 3.

Query 4:
SELECT t3.a100

FROM t3, t6r t10
WHERE tlO. ual = t6.al

AND t3. ual = t10.al

AND costly 100(t3.al) < 10;

t6

t3

Figure 6: A three-way join plan for Query 4.

appropriate to pull the selection above the pair J1 .J2.

PullRank does not consider such multi-join pullups.

In general, if join nodes are decreasing in rank while

ascending a root-to-leaf path in a plan tree, then it may

be necessary to consider pulling up above groups of joins,

rather than one join at a time. PullRank fails in such

scenarios.

PullRank is an optimal algorithm for queries with

only one join. Unfortunately, PullRank does indeed fail

in many multi-join scenarios, as illustrated in Figure 8.

Since PullRank cannot pull up the selection in the plan

of Figure 6, it chooses a different join order in which the

expensive selection can be pulled to the top (Figure 7).

This join order chosen by PullRank is not a good one,

however, and results in the poor performance shown in

Figure 8. The best plan used the join order of Figure 6,

330

J
rank = -.000865 COStlY

inner rank = -19.477

t3

tlo t6

Figtire 7: Another three-way join plan for Query 4.

m PushDown
m PullRank
= Predicate Migration
D Pullup

Figure 8: Query execution times for Query 4.

but with the costly selection pulled to the top.

4.4 Predicate Migration

The details of the Predicate Migration algorithm are

presented in [He192] , and we only review them

here. The Predicate Migration algorithm repeatedly

applies the Series-Parallel Algorithm using Parallel

Chains [MS79] to each root-to-leaf path in the plan

tree until no progress is made. In essence, Predicate

Migration augments PullRank by also considering the

possibility that two primary join nodes in a plan tree

may be out of rank order, e.g. join node Jz may

appear just above node J1 in a plan tree, with the

rank of J2 being less than the rank of J1 (Figure 6).

In such a scenario, it can be shown that J1 and J2

should be treated as a group for the purposes of pulling

up selections — they are composed together as one

operator, and the group rank is calculated:

selectivity(J1 J2) – 1
rank(J1 J2) =

cost(J1 J2)

selectivity(Jl) . selectivity JZ) – 1

= cost(J1) + selectivity(J1) . cost(J2)”

Selections of higher rank than this group rank are pulled

up above the pair. The Predicate Migration algorithm

forms all such groups before attempting pullup.

Predicate Migration is integrated with the System R

join-enumeration algorithm as follows. We start by

running System R with the PullRank heuristic, but

one change is made to PullRank: when PullRank

finds an expensive predicate and decides not to pull

it above a join in a subplan, we mark that subplan

as unpruneable. Subsequently when constructing larger

sub plans, we mark a subplan unpruneable if it cent ains

an unpruneable subplan within it. The System R

algorithm is then modified to save not only those

subplans which are rein-cost or “interestingly ordered”;

it also saves those subplans which are unpruneable.

In this way, we assure that if multiple primary joins

should become grouped in some plan, we will have

maximal opportunity to pull expensive predicates over

the group. At the end of the System R algorithm, a set

of plans is produced, including the cheapest plan so far,

the plans with interesting orders, and the unpruneable

plans. Each of these plans is passed through the

Predicate Migration algorithm, which optimally places

the predicates in each plan. After reevaluating the costs

of the modified plans, the new cheapest plan is chosen

to be executed.

A drawback of Predicate Migration is the need to

consider unpruneable plans. In the worst case, there

is an expensive predicate in every subplan that does

not get pulled up, so that every subplan is marked

unpruneable. In this scenario the System R algorithm

exhaustively enumerates the space of join orders, never

pruning any subplan. This is still preferable, however,

to the LDL approach of adding joins to the query, and

has not caused us untoward difficulty in practice. Even

in the worst-case scenario where no subplans can be

pruned, Montage plans a 5-way join with expensive

predicates in under 8 seconds on our SparcStation 10.

The payoff of this investment in optimization time

is apparent in Figure 9.4 Note also that Predicate

Migration is the only algorithm to correctly optimize

each of Queries 1-4.

5 Theory to Practice:

Implementation Issues

The four algorithms described in the previous section

were implemented in the Montage DBMS. In this

section we discuss the implementation experience, and

some issues which arose in our experiments.

The Montage “Object-Relational” DBMS is based
on the publicly available POSTGRES system [SK91].

4For Query 5, PullAll used up all available swap space and

never completed. This happened because PullAll pulled the costly

eelection on t3 above the costly join predicate. The result of this

was to call the costly join predicate on all tuples in the cross-

product of t7 and the subtree containing t3, t6, and t10. In

addition to resulting in many function calls, this extremely bad

plan filled up our entire swap space with predicate cache entries.

331

Query 5
SELECT t3.alo(l

FROM t3, t6, tlO, t7

WHERE tlO. ual = t6.al

AND t3. ual = t10.al

AND costly 100(t3.al, t7.a100) = O

AND costly 100(t3.al) < 10;

03

PushDown
PullRank
Predicate Migration
Pullup

Figure 9: Query execution times for Query 5.

Montage extends POSTGRES in many ways, most sig-

nificantly (for our purposes) by supporting an extended

version of SQL and by bringing the POSTGRES pro-

totype code to an industrial grade of performance and

reliability.

The full Predicate Migration algorithm was originally

implemented by the author in POSTGRES, an effort

that took about two months of work — one month

to implement the PullRank heuristic, and another

month to implement the Predicate Migration algorithm.

Refining and upgrading that code for Montage actually

proved more time-consuming than writing it initially

for POSTGRES. Since Montage SQL is a significantly

more complex language than POSTQUEL, some modest

changes had to be made to the code to handle sub queries

and other SQL-specific features. More significant,

however, was the effort required to debug, test, and

tune the code so that it was robust enough for use in a

commercial product.

Of the three months spent on the Montage version

of Predicate Migration, about one month was spent up-
grading the optimization code for Monta6e. This in-

volved extending it to handle SQL sub queries, mak-

ing the code faster and less memory-consuming, and

removing bugs that caused various sorts of system fail-

ures. Another week was required to implement predi-

cate caching (described below), and the remaining time

was spent fixing subtle optimization bugs.

Debugging a query optimizer is a difficult task, since

an optimization bug does not necessarily produce a

crash or a wrong answer; it often simply produces a

suboptimal plan. It can be quite difficult to ensure that

one has produced a minimal-cost plan. In the course

of running the comparisons for this paper, a variety of

subtle optimizer bugs were found, including the obser-

vation that the global cost model is inaccurate in prac-

tice. Typically, bugs were exposed by running the same

query under the various different optimization heuris-

tics, and comparing the estimated costs and running

times of the resulting plans. When Predicate Migration,

a supposedly superior optimization algorithm, produced

a higher-cost query plan than a simple heuristic, it typ-

ically meant that there was a bug in the optimizer.

The lesson to be learned here is that benchmarking

is absolutely crucial to thoroughly debugging a query

optimizer. It has been noted that a variety of

commercial products still produce very poor plans

even on simple queries [Nau93]. Thus benchmarks —

particularly complex query benchmarks such as TPC-

D [TPC93] — are critical debugging tools for DBMS

developers. In our case, we were able to easily compare

our Predicate Migration implementation against various

heuristics, to ensure that Predicate Migration always

did at least as well as the heuristics. After many

comparisons and bug fixes we found Predicate Migration

to be stable, generally producing plans that were as

cheap or cheaper than those produced by the simpler

heuristics.

5.1 Predicate Caching

It is undesirable to repeat complex computations. In

Montage, we avoid this through a predicate caching

scheme, similar to the one proposed in [HS93a], but

different in a few key ways. Contrary to the assertions

of [HS93a], predicate caching is not a requirement for

using Predicate Migration. Choosing to use predicate

caching merely requires changes in rank calculations, to

reflect the selectivity of a join on values rather than

on tuples. Given a join predicate J of selectivity s

over R.cl and LS.C2, the selectivity y of J over R is

s . number-of.values(S. c2), and the selectivity of J over

S is s . number.of.values(R.cl). In addition, we bound

selectivities under predicate caching by 1. This reflects

the savings of predicate caching: even if the output of

the join has more tuples than either input, it has no

values that do not appear in the inputs, and thus it

cannot produce more than 100’%oof the values from each
input.

The implementation of predicate caching was rela-

tively simple. In Montage, associated with each expen-

sive predicate is a main-memory dynamic hash table,

which stores the return value of the predicate for each

binding of its input variables. For example, consider the

following SQL query:
SELECT *

FROM emp

WHERE beard.color(emp. picture) = ‘red’;

Montage stores a hash table keyed on pictures (actu-

ally, on 4-byte “handles” to the pictures), with entries

332

being either true, false or NULL (for beardless people).

Note that it does not cache the results of the expensive

function beard-color (as proposed in [HS93a]); instead

it caches the results of the entire predicate. This is

important because the return types of functions within

predicates may be arbitrarily large derived objects — in

the case of subquery functions, for example, they may

be sets. As an example of how predicate caching works

for subqueries, consider the following:
SELECT ‘name, gpa

FROM student

WHERE student. mother IN

(SELECT name
FROM professor

WHERE professor.dept = student. dept);
Montage does not cache the result of the subquery for

each student tuple. It caches the entire IN predicate.

The hash table for the IN predicate is keyed on (stu-

dent. mother, student. dept) pairs, again with true, false,

or NULL entries. Note that attributes of professor are

not variables here. Each time we run the sub query we

may have different values for student. mot her and st u-

dent. dept, but we will have the same set of values for

all the attributes of professor. Essentially, professor is a

set-valued constant in the predicate.

As an additional optimization, one need not do

predicate caching when it is not beneficial. For each

predicate in a query, one can maintain estimates of the

number of distinct values of the inputs to the predicate,

as well as the number of tuples that will be passed

into the predicate. If the ratio of distinct values to

tuples is 1, then each input tuple will require explicit

computation of the predicate, and predicate caching

can provide no benefit. In such cases predicate caching

should be avoided. This optimization is planned for

Montage, but has not been implemented yet.

Other alternatives exist to our predicate caching im-

plementation, though ours seems to perform reasonably

well for our purposes. One can do per-function caching

instead, as proposed in [Jhi88] and [HS93a]. Function

or predicate caches can be limited in size, using any of a

variety of replacement schemes. Queries can be rewrit-

ten with Magic-Sets techniques [BMSU86, MFPR90] to

avoid the issue of caching entirely, at the expense of ex-

tra joins and common subexpressions. Such alternatives

do not form a focus of this paper, as this space of possi-

ble implementations is large and orthogonal to the space

of optimization techniques explored here. Although thk

is certainly a topic meriting further research, for our

purposes we merely wish to point out that it is easy

and beneficial to implement a reasonable solution.

5.2 Influence of Performance Results on

Estimates

The results of our performance experiments influenced

the way that we estimate selectivities in Montage,

and also the way that we estimate the costs for

expensive primary joins. In Section 3.2 we estimated

the selectivity of a join over table S as s . {R}. This

was a rough estimate, however, since {R} is not well

defined — it depends on the selections which are placed

on R. Thus {R} could range from the cardinality of R

with no selections, to the minimal output of R after all

eligible selections are applied. In Montage, we calculate

{R} on the fly as needed, based on the number of

selections over R at the time we need to compute the

selectivity of the join. Since some predicates over R

may later be pulled up, this potentially under-estimates

the selectivity y of the join for S. Such an under-estimate

results in an under-estimate of the rank of the join for S,

possibly resulting in over-eager pullup of selections on S.

This rough selectivity estimation was chosen as a result

of our performance observations: it was decided that

estimates resulting in somewhat over-eager pullup are

preferable to estimates resulting in under-eager pullup.

This heuristic is based on the existence of predicate

caching in Montage, and also on the assumption that

expensive primary joins will not be nearly as common

as expensive secondary joins and selections.

A similar issue arises when we heuristically try to

cope with expensive primary join predicates in Montage.

Given a join with cost j{ R}{S} + k{R} + 1{S} + m,

consider the differential cost per tuple of S (the cost

per tuple of R is analogous). The differential cost per

tuple of S is j{R} + 1, but since there may be predicates

above relation R which are subject to pullup, we do

not know how to estimate {R}. Again, in Montage we

compute {R} as the current state of {R} while planning,

whatever it may be. This means that we may be under-

estimating {R}, since some predicates may later be

pulled up from {R}. By under-estimating {R}, we are

under-estimating the cost of the join per tuple of S,

which again may cause us to be over-eager in pulling up

selections from S.

This potential for over-eager pullup is similar, though

not as flagrant, as the over-eager pullup in the LDL

algorithm. Observe that if the Predicate Migration

approach pulls up from inner inputs first, then ranks

of joins for inner inputs may be underestimated, but

ranks of joins for outer inputs are accurate, since PUIIUP

from the inner input has already been completed. This

will produce over-eager pullup from inner tables, and

accurate pullup from outer tables, as in LDL. This is

the approach taken in Montage, and note that unlike

LDL, Montage only exhibits this over-eagerness when

there are expensive selections on both inputs to a join.

6 Conclusion

This paper presents a number of predicate placement

algorithms, outlining the class of queries for which

each is sufficiently intelligent. Of the algorithms we

333

~ea,t Eager ~ Most Eager

Figure 10: Eagerness of Pullup in Algorithms

tested in Montage, only Predicate Migration provided

good query plans over a wide range of queries with

expensive predicates. The remaining heuristics each

have their realm of applicability, however, and should be

considered for systems which need to optimize limited

classes of queries.

Adapting the Predicate Migration algorithm for use

in a commercial system required some re-working of

its cost model. Particularly, it was found that the

“global” cost model of [HS93a] was inapplicable in

practice. This paper presents a more realistic model for

costs and selectivities, and integrates that model into

the Predicate Migration algorithm. Some roughness

remains in our selectivity y estimations, and in our cost

estimations for expensive joins. When forced to choose,

we opt to risk over-eager pullup of selections rather than

under-eager pullup. This is justified by our example

queries, which showed that leaving selections too low in

a plan was more dangerous than pulling them up too

high. The algorithms considered form a spectrum of

eagerness in pullup, as shown in Figure 10.

Implementing an effective predicate placement scheme

proved to be a manageable task, and doing so exposed

many over-simplifications that were present in the orig-

inal algorithms proposed, This highlights the complex

issues that arise in implementing query optimizers. Per-

haps the most important lesson we learned in imple-

menting Predicate Migration in Montage was that query

optimizers require a great deal of testing before they

can be trusted. In practice this means that commercial

optimizers should be subjected to complex query bench-

marks, and that query optimization researchers should

invest time in implementing and testing their ideas in
practice.

The limitations of the previously published algo-

rithms for predicate placement are suggestive. Both

algorithms suffer from the same problem: the choice of

which predicates to pull up from one side of a join both

depends on and influences the choice of which predicates
to pull up from the other side of the join. This interde-

pendency of separate branches in a query tree suggests a

fundamental intractability in predicate placement, that

may only be avoidable through the sorts of compromises

found in the existing literature.

7 Acknowledgments

This paper was made possible through the open-

mindedness of Mike Stonebraker, Paula Hawthorn, and

the rest of Montage Software, Their willingness to

allow research in a commercial setting is a model

for the database community. Wei Hong was an

invaluable resource in all aspects of the work. Jeff

Naughton provided regular advice and support, and

was alternately patient and probing as the situation

demanded. The author benefited once again from Mike

Stonebraker’s clear thinking and rich experience. Mike

Olson provided essential technical support when the

author was frantic, thousands of miles from the reset

button. Thanks to Guy Lehman and Laura Haas

for historical information on IBM systems, to Eben

Haber and Janet Wiener for editorial comments, and to

Madhusudhan Talluri, Jeff Naughton and Shivakumar

Venkataraman for sharing machine cycles. Finally,

thanks to the entire staff of Montage for their help with

work and diversion.

References

[BMSU86]

[CGK89]

[CS93]

[CYY+92]

[DKS92]

[He192]

Francois Bancilhon, David Maier, Yehoshua

Sagiv, and Jeffrey D. Unman. Magic Sets

and other Strange Ways to Implement Logic

Programs. In Proc. 5th ACM SIGA CT-

SIGMOD-SIGART Symposium on Princi-

ples of Database Systems, pages 1–15, Cam-

bridge, March 1986.

Danette Chimenti, Ruben Gamboa, and

Ravi Krishnamurthy. Towards an Open

Architecture for LDL. In Proc. 15th In-

ternational Conference on Very Large Data

Bases, Amsterdam, August 1989.

Surajit Chaudhuri and Kyuseok Shim.

Query Optimization in the Presence of

Foreign Functions. In Proc. 19th Inter-

national Conference on Very Large Data

Bases, pages 526-541, Dublin, August 1993.

Hanxiong Chen, Xu Yu, Kazunori Yam-

aguchi, Hiroyuki Kitagawa, Nobuo Ohbo,

and Yuzuru Fujiwara. Decomposition —
An Approach for Optimizing Queries Includ-

ing ADT Functions, Jn~ormation Processing

Letters, 43(6) :327-333, 1992.

Weimin Du, Ravi Krishnamurthy, and
Ming-Chien Shari. Query Optimization in

Heterogeneous DBMS. In Proc. 18th In-

ternational Conference on Very Large Data

Bases, Vancouver, August 1992.

Joseph M. Hellerstein. Predicate Migration:

Optimizing Queries With Expensive Pred&

334

[HS93a]

[HS93b]

[IK84]

[Jhi88]

[KBZ86]

[KZ88]

[LH93]

[MFPR90]

[MS79]

cates. Technical Report Sequoia 2000 92/13, [Nau93]

University of California, Berkeley, December

1992.

Joseph M. Hellerstein and Michael Stone-

braker. Predicate Migration: Optimizing

Queries With Expensive Predicates. In

Proc. A CM-SIGMOD International Confer-

ence on Management of Data, Washington,

D. C., May 1993.

Wei Hong and Michael Stonebraker. Op-

timization of Parallel Query Execution

Plans in XPRS. Distributed and Paral-

lel Databases, An International Journal,

1(1):9-32, January 1993.

Toshihide Ibaraki and Tiko Kameda. Op-

timal Nesting for Computing N-relational

Joins. ACM Transactions on Database Sys-

tems, 9(3) :482-502, October 1984.

Anant Jhingran. A Performance Study

of Query Optimization Algorithms on a

Database System Supporting Procedures. In

Proc. Idth International Conference on Very

Large Data Bases, Los Angeles, August-

September 1988.

Ravi Krishnamurthy, Haran Boral, and

Carlo Zaniolo. Optimization of Nonrecursive

Queries. In Proc. 12th International Confer-

ence on Very Large Data Bases, pages 128–

137, Kyoto, August 1986.

Ravi Krishnamurthy and Carlo Zaniolo. Op-

timization in a Logic Based Language for

Knowledge and Data Intensive Applications.

In Joachim W. Schmidt, Stefano Ceri, and

M. Missikoff, editors, Proc. International

Conference on Extending Data Base Tech-

nology, Advances in Database Technology

- EDBT ’88. Lecture Notes in Computer

Science, Volume 303, Venice, March 1988.

Springer-Verlag.

Guy M. Lehman and Laura M. Haas. Per-

sonal correspondence, November 1993.

Inderpal Singh Mumick, Sheldon J. Finkel-

stein, Hamid Pirahesh, and Raghu Ramakr-

ishnan. Magic is Relevant. In Proc. ACM-

SIGMOD International Conference on Man-

agement of Data, pages 247–258, Atlantic

City, May 1990.

C. L. Monma and J.B. Sidney. Sequencing

with Series-Parallel Precedence Constraints.

Mathematics of Operations Research, 4:215-

224, 1979.

[PHH92]

[SAC+ 79]

[Sha86]

[SK91]

[sto93]

[TPC93]

[U1188]

[YKY+91]

Jeff Naughton. Presentation at Fifth In-

ternational High Performance Transaction

Workshop, September 1993.

Hamid Pirahesh, Joseph M. Hellerstein,

and Waqar Hasan. Extensible/Rule-Based

Query Rewrite Optimization in Starburst.

In Proc, A CM- SIGMOD International Con-

ference on Management of Data, pages 39-

48, San Diego, June 1992.

Patricia G. Selinger, M. Astrahan, D. Cham-

berlain, Raymond Lorie, and T. Price. Ac-

cess Path Selection in a Relational Database

Management System. In Proc. ACM-

SIGMOD International Conference on Man-

agement of Data, Boston, June 1979.

Leonard D. Shapiro. Join Processing in

Database Systems with Large Main Mem-

ories. ACM Transactions on Database Sys-

tems, 11(3):239-264, September 1986.

Michael Stonebraker

and Greg Kemnitz. The POSTGRES Next-

Generation Database Management System.

Communications of the ACM, 34(10), 1991.

Michael Stonebraker. The Mir6 DBMS. In

Proc. A CM-SIGMOD International Confer-

ence on Management of Data, Washington,

D. C., May 1993.

TPC. TPC BenchmarkTM D (Decision

Support). Working Draft 6.0, Transaction

Processing Performance Council, August

1993.

Jeffrey D. Unman. Principles of Database

and Knowledge-Base Systems, volume 1.

Computer Science Press, 1988.

Kenichi Yajima, Hiroyuki Kitagawa,

Kazunori Yamaguchi, Nobuo Ohbo, and

Yuzura Fujiwara. Optimization of Queries

Including ADT Functions. In Proc. 2nd

International Symposium on Database Sys-

tems for Advanced Applications, pages 366–

373, Tokyo, April 1991.

335

