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ABSTRACT
IP blacklists are a spam filtering tool employed by a large
number of email providers. Centrally maintained and well
regarded, blacklists can filter 80+% of spam without having
to perform computationally expensive content-based filter-
ing. However, spammers can vary which hosts send spam
(often in intelligent ways), and as a result, some percent-
age of spamming IPs are not actively listed on any black-
list. Blacklists also provide a previously untapped resource
of rich historical information. Leveraging this history in
combination with spatial reasoning, this paper presents a
novel reputation model (PreSTA), designed to aid in spam
classification. In simulation on arriving email at a large uni-
versity mail system, PreSTA is capable of classifying up
to 50% of spam not identified by blacklists alone, and 93%
of spam on average (when used in combination with black-
lists). Further, the system is consistent in maintaining this
blockage-rate even during periods of decreased blacklist per-
formance. PreSTA is scalable and can classify over 500,000
emails an hour. Such a system can be implemented as a
complementary blacklist service or used as a first-level filter
or prioritization mechanism on an email server.

1. INTRODUCTION
Roughly 90% of the total volume of email on the Internet

is considered spam [5], and IP-based blacklisting has become
a standard tool in fighting such influxes. Spammers often
control large collections of compromised machines, botnets,
and vary which hosts act as the spamming mail servers. As
a result, some 20% of spam emails received at a large spam
trap in 2006 were not listed on any blacklist [21].

Blacklists provide only a static view of the current (or
recently active) spamming IP addresses. However, when
viewed over time, blacklists provide dense historical (tem-
poral) information. Upon inspection, interesting properties
emerge; for example, more than 25% of the IPs once listed
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on the blacklist were re-listed within 10 days, and overall,
45% were re-listed during the observation period.

It is known that spamming IP addresses exhibit inter-
esting spatial properties. Previous studies have shown that
spamming IPs are distributed non-uniformly throughout the
address space [19, 21, 28], and they can often be clustered
into spatial groups indicative of spamming behavior. For
example, AS-membership has been shown to be a strong
predictor of spamming likelihood [11], as well as BGP pre-
fixes, and the host-names of reverse DNS look-ups [19].

In this paper we propose a novel method to combine black-
list histories with spatial context to produce predictive repu-
tation values capable of classifying spam. Our model,
Preventive Spatio-Temporal Aggregation (PreSTA), mon-
itors blacklist dynamics, interpreting listings as a record of
negative feedback. An entity (i.e., an IP address) is then
evaluated based on its own history of negative feedback and
the histories of spatially related entities. Spatial adjacency
is multi-tiered and defined based on multiple grouping func-
tions (e.g., AS-membership, subnet, etc.). A reputation
value is computed for each grouping, and these are com-
bined using a standard machine learning technique to pro-
duce ham/spam classifications.

We implemented PreSTA and analyzed incoming email
traces at a large university mail server. We found that
PreSTA can classify an additional 50% of spam not iden-
tified by blacklists alone while maintaining similar false-
positive rates. Moreover, when PreSTA is used in com-
bination with traditional blacklists, on average 93% of spam
is consistently identified without the need for content-based
analysis. This result was found to be stable: As the un-
derlying blacklist suffers large deviations in detection ac-
curacy, PreSTA maintains steady-state performance. Fur-
ther, PreSTA is highly scalable: Over 500,000 emails an
hour can be scored using a single-threaded implementation
on a commodity server.

We do not propose that PreSTA can (or should) replace
context-based filtering. Instead, PreSTA can be leveraged
just as blacklists are today – as a preliminary filter to avoid
more computationally expensive analysis. Use-cases could
include a complimentary service to blacklists (perhaps im-
plemented by the blacklist provider) or an email prioritiza-
tion mechanism for overloaded mail servers.

PreSTA’s applicability is not confined to email spam de-
tection. Related work has already shown PreSTA reputa-
tions helpful in prioritizing edits and detecting vandalism on
Wikipedia [30], and PreSTA may be further applicable to
an entire class of dynamic trust management problems [9,



29] that are characterized by the need for decision-making
in the presence of uncertainty and partial-information.

2. RELATED WORK
Spam filtering based on network-level properties of the

source IP address is a popular choice for mitigating spam.
Unlike content-based filters (e.g., those based on Bayesian
quantifiers [24]), these techniques tend to be computation-
ally inexpensive while achieving relatively good performance.

IP blacklists [3, 7] are one such network-level filtering
strategy. Blacklists are collections of known spamming IP
addresses collated from various institutions (e.g., large email
providers). They tend to be well-regarded because they are
maintained by reputable providers and incorporated into
many email server’s. Blacklists are only a static snapshot of
spamming hosts, but over time, IP addresses are listed, de-
listed, and re-listed. It is precisely this history that PreSTA
leverages in generating IP reputation.

Filtering based on blacklists alone is imperfect [25]. List-
ing latency is a commonly cited weakness [20], as is incom-
pleteness. One study reported that 10% of spamming IPs
observed at a spam-trap were not blacklisted [23]. Such sit-
uations motivate PreSTA; in these partial knowledge sce-
narios, an unlisted IP address can be viewed in terms of
its previous listings (if any) and its spatial relation to other
known spamming IPs.

The non-uniform distribution of spamming IPs on the In-
ternet is a well-studied phenomenon. Spamming IPs tend to
be found near other spamming IPs [23] and in small regions
of the address space [21]. Most such IPs tend to be short-
lived [28]; further supporting the use of spatial relationships.
Although PreSTA employs basic spatial measures in its pre-
liminary implementation, more advanced relationships could
be exploited, such as those suggested in [11, 19]. Addition-
ally, dynamically shaped groups could be used [27].

A key difference between PreSTA and similar work is
its combination of temporal history provided by blacklists
and the spatial dynamics of spamming IPs. Perhaps the
closest related system is SNARE by Hao et al. [11]. In addi-
tion to demonstrating interesting spatial measures (includ-
ing geographic distance), SNARE utilizes simple temporal
metrics to perform spam filtering (e.g., the time-of-day an
email was sent) and applies a lightweight form of aggregation
(e.g., mean and variance) to detect abnormal patterns. In
contrast, PreSTA’s temporal computation has more depth,
aggregating time-decayed compounding evidence that en-
codes months of detailed blacklisting events. Indeed, [11]
identifies many valid measures of spamming behavior, but
is incapable of Internet-wide scalability due to a reliance on
high-dimensional learning. PreSTA spam detection com-
putes over a single feature, IP address (and groups thereof),
and is extremely scalable with high accuracy.

Similar techniques are claimed by two commercial ser-
vices: Symantec [26] uses “IP reputation” in its security soft-
ware, and SenderBase [12] by Ironport uses spatial data to
build IP reputations. The procedures are proprietary, so a
detailed comparison is not possible. However, the binary
output of the public-facing query mechanisms correlate well
with PreSTA’s classifications.

PreSTA can also be examined in the context of general-
purpose reputation systems/logics, such as EigenTrust [16]
or TNA-SL [14]. A key difference involves the nature of feed-
back; namely, PreSTA considers only negative feedback.

Conventional algorithms aggregate over both positive and
negative feedback, and feedback is indefinitely retained and
associated with a single discrete event. PreSTA utilizes ex-

piring feedback, where a negative observation (e.g., sending
spam) is valid for some finite duration (the blacklist period),
after which, it is discarded.

3. REPUTATION MODEL
Although our presentation of PreSTA is focused on the

domain of spam detection, it is important to note that
PreSTA defines a general reputation model. There are two
requirements for potential applications: (1) Access to a his-
tory of negative feedback (as achieved via IP blacklists); and
(2) the ability to define spatial partitions over entities (as
achieved via the IP address hierarchy). The reputation val-
ues computed consider both the history of negative feedback
for an individual entity and those of related entities.

In the temporal dimension, a history of negative feedback,
stored in a feedback database, is required. An entity is con-
sidered active in the database when an associated negative
feedback has been recently received (i.e., the entity is listed
on the blacklist). After some interval, the feedback expires,
and the entity is considered inactive (i.e., the entity is de-
listed from the blacklist). A query to the database returns
an entire history of active and inactive events, to which a
decay function is applied. The function weighs distant and
recent events appropriately and permits compounding evi-
dence to accumulate against entities.

A set of grouping functions define spatial relevance. A
grouping function maps an entity to other entities that share
behavioral properties. More than one grouping function can
(and should) be defined, and they may be singular in na-
ture (i.e., an entity is in a group by itself). The temporal
history of each spatial grouping is considered, resulting in
multiple reputation values. These component reputations
are then combined so that a single entity is evaluated based
on multiple contexts of negative feedback.

In the remainder of this section the model is formalized.
First, the computation and its normalization are discussed,
and following that, the feedback database is presented.

3.1 Reputation Computation
The goal of the reputation computation is to produce a

quantified value that captures both the spatial and temporal
properties of the entity being evaluated. Spatially, the size
of the grouping must be considered, and temporally, the
history of negative feedback must be weighted in proportion
to its spatial relevance.

To capture these properties, three functions are required
– two temporal and one spatial:

• hist(α, G, H) is a temporal function returning a list
of pairs, (tin, tout), representing listings from the feed-
back history, H , according to the grouping of entity
α by grouping function G. The values tin and tout

are time-stamps bounding the active duration of the
listing. Active listings return (tin,⊥).

• decay(tout, h) is a temporal function that exponen-
tially decays input times using a half-life h, and it takes
the form 2−∆t/h where ∆t = tnow − tout is of the same
unit as h. It returns a value in the range [0, 1], and for
consistency, decay(⊥, h) = 1.



• size(α, G, t) is a spatial function returning the mag-
nitude, at time t, of the grouping defined by G, of
which α is/was a member. If G defines multiple group-
ings for α, only the magnitude of one grouping is re-
turned. The choice of group is application specific.

Raw reputation can be defined as follows:

raw rep(α, G, H) =
X

(tin,tout)∈
hist(α,G,H)

decay(tout, h)

size(α, G, tin)
(1)

This computation captures precisely the spatio-temporal
properties required by PreSTA. Temporally, the listing his-
tory of an entity/group is captured at each summation via
the hist() function, and events occurring recently are more
strongly weighted via the decay() function. Spatially, group-
ing function G defines the group membership, and each sum-
mation is normalized by the group size.

When two or more grouping functions are defined over the
entities, multiple computations of raw rep() are performed.
Each value encodes the reputation of an entity when con-
sidered in a different spatial context. How to best combine
reputation is application specific, and for the spam applica-
tion, machine learning techniques are used (see Sec. 5.7).

The values returned by raw rep() are strictly compara-
ble for all spatial groupings defined by G and the history
H . High values correspond to less reputable entities and
vice-versa. However, it is more typical for reputation sys-
tems [14, 16] to normalize values onto the interval [0, 1]
where lower values correspond to low reputation and vice-
versa. Ultimately, machine learning does not require nor-
malized values. Such values do, however, enable the model
to be consistent with other reputation systems and provide
an absolute interpretation that permits manually-authored
policies (e.g., allow access where reputation > 0.8).

Normalization requires knowledge of an upper bound on
the values returned by raw rep(). This cannot be generally
defined when the de-listing policy is non-regular. However,
if listings expire after a fixed duration d (or a greatest lower-
bound for d can be computed), then it is possible to compute
an upper bound. Such a bound is found by considering
an entity who is as bad as possible; one that is re-listed
immediately after every de-listing, and thus, is always active
in the feedback database. Considering a grouping of size 1,
the raw rep() computation reduces to a geometric sequence:

MAX_REP = 1 +
1

1 − 2−d/h
(2)

Similarly, the same worst case reputation occurs for groups
of larger size, however, instead of a single entity acting as a
bad as possible, the entire group is simultaneously re-listed
immediately following each de-listing. Normalized reputa-
tion is now defined as:

rep(α, G, H) = 1 −

„

raw rep(α,G, H)

MAX_REP

«

(3)

This reputation computation can be modified depending on
the entities being evaluated or the nature of the negative
feedback database. For example, one can eliminate spatial
relevance by using grouping functions that define groups of
size 1. Or, one can eliminate all temporal aspects by defin-
ing the return of decay() as a constant (C). Both such us-
ages are later employed in spam detection; the former due

to dynamism in IP address assignment, and the latter due
to properties of the blacklist in question. Note that when
decay(tout, h) = C, MAX_REP = decay(⊥, h) + C.

3.2 Feedback Database
The feedback database, H , depends on the nature of feed-

back available. PreSTA is most adept at handling expiring

feedback like that present in IP blacklists. By definition,
an expiring feedback occurs when an entity is active (listed)
in the database before removal (de-listed) after a finite du-
ration. In this case, H is a record of the entries/exits of
listings such that the active database can be reproduced at
any point in time.

Feedback can also be discrete, where negative feedbacks
are associated with a single time-stamp. This is the model
most often seen in general-purpose reputation management
systems [14, 16]. In such cases, hist() always returns pairs of
the form (tin,⊥), and thus the associated listings do not de-
cay. A discrete database can be transformed into a compat-
ible H by setting an artificial timeout x, (e.g., (tin, tin +x)).
Further, listings should not overlap (i.e., an entity having
multiple active listings). Spam blacklists are inherently non-
overlapping, and pre-processing can be applied over feed-
backs when this is not the case.

4. SPAM DETECTION SETUP
As presented, PreSTA defines a general model for rep-

utation. Here, we apply PreSTA for the purpose of spam
detection. Two properties of spam and IP blacklists are well
leveraged by PreSTA. First, spammers are generally found
“near” other spammers, and their identifiers, IP addresses,
can be spatially grouped based on the IP address hierarchy.
Second, blacklists are a rich source of temporal data.

It should be noted that other sources of negative feedback
besides IP blacklists could be employed by PreSTA. Any
manner of negative feedback associating spamming and IP
addresses is sufficient. IP blacklists, however, are a well-
regarded and generally trusted source of negative feedback.
They are centrally maintained and reputation computed over
them can be seen as a good global quantifier. IP blacklists
do have weaknesses, and readers should take care not to
associate these flaws to the PreSTA model.

4.1 Data Sources

Blacklists: To collect blacklist data, we subscribed to a
popular blacklist-provider, Spamhaus [7]. The arrival and
exit of IP addresses listed on three Spamhaus blacklists (up-
dated at thirty-minute intervals) were recorded for the du-
ration of the experiment:

• Policy Block List (PBL): Listing of dynamic IP
addresses (e.g., those provided by large ISPs such as
Comcast or Verizon).

• Spamhaus Block List (SBL): Manually-maintained
listing of IPs of known spammers/organizations. Typi-
cally these are IPs mapping to dedicated spam servers.

• Exploits Block List (XBL): Automated listing of
IPs caught spamming; usually open proxies or ma-
chines that have been compromised by a botnet.

As the latter two blacklists contain IP addresses known to
have participated in spamming, only these are used to build
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reputation. The PBL is a preventative measure (however,
it is used when examining blacklist performance) which lists
hosts that should never be sending email, on principle.

The mechanism by which a blacklist entry occurs, be it
accurate or otherwise, is beyond the scope of this work. Re-
moval from the blacklist takes two forms: manual de-listing
and timed-expiration. Given its rigorous human mainte-
nance, the SBL follows the former format. The XBL, on
the other hand, defaults to a more automated time-to-live
de-listing policy. Empirical evidence shows the bulk of such
listings expire 5-days after their appearance (see Fig. 1).
However, in the case a blacklisted party can demonstrate
its innocence or show the spam-generating exploit has been
patched, manual removal is also an option for the XBL. Man-
ual de-listings can complicate the calculation of MAX_REP,
but as we will show, worst case spamming behaviors are
rarely realized, permitting strong normalization.

AS Mappings: For the purpose of mapping an IP address
to the Autonomous System(s) (AS(es)) that homes or orig-

inates it, CAIDA [2] reports are used. These are compiled
from Route Views [8] data and are essentially a snapshot of
the BGP routing table.

Email Set: The timestamp and connecting IP address of
approximately 31 million email headers were collected at
the University of Pennsylvania’s engineering email servers
between 8/1/2009 and 12/31/2009. The servers host ap-
proximately 6,100 accounts, of which roughly 5,500 serve
human-users, while the remaining are for various adminis-
trative and school uses (e.g., aliases, lists, etc.).

A considerable number of emails (2.8 million) in the data-
set were both sent and received within the university net-
work. Such emails are not considered in the analysis. Many
intra-network messages are the result of list-serves/aliasing,
and by excluding them, only externally arriving emails are
considered. Our working set is further reduced to 6.1 million
emails when analysis is conducted “above the blacklist,” or
those mails not currently listed on a blacklist (see Sec. 5.1).

A Proofpoint [6] score was provided with each email to cat-
egorize it as either spam or ham (not spam). Proofpoint is a
commercial spam detection service employed by the Univer-
sity whose detection methods are known to include propri-
etary filtering and Bayesian content analysis [24] similar to
that employed by SpamAssassin [1]. Proofpoint claims ex-
tremely high accuracy with a low false-positive rate. Given
no other consistent scoring metric and a lack of access to the
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original email bodies, the Proofpoint score is considered the
ground truth in forthcoming analysis.

4.2 Temporal Properties of Spamming IPs
PreSTA leverages the temporal properties of IP blacklists

by aggregating the de-listings and re-listings of blacklist en-
tries. Fig. 1 displays the analysis of those two statistics. Of
IP-addresses de-listed during the experiment period, 26%
were re-listed within 10 days. Overall, 47% of such IPs were
re-listed within 10 weeks, and it is precisely such statistics
that motivate PreSTA’s use of temporal data.

Given that IP addresses are frequently re-listed, we exam-
ined the rate at which de-listing occurs; 80% of XBL entries
were de-listed at, or very close to, 5 days after their entry
(Fig. 1). Even so, this 5-day interval is not fixed. Despite a
non-exact expiration, MAX_REP is well computed using d = 5
(days). Raw reputation values rarely exceeded the calcu-
lated MAX_REP (less than 0.01% of the time).

The SBL requires a manual confirmation of innocence
before de-listing can occur and has no consistent listing
length. Thus, MAX_REP computation cannot proceed as with
the XBL. Instead, the strong assurance provided by de-
listing events can be leveraged in reputation calculation. A
de-listed IP was verified to be non-spamming, and so there
is no reason to decay entries as they exit the list. Formally,
∀tout, decay(tout) = 0, but as previously, decay(⊥) = 1. In
such circumstances, the MAX_REP value for such IPs is com-
puted as 1 (i.e., the IP address is currently listed).

Adjusting the decay() function in this way permits the
reputations’ of SBL IPs to be based solely on spatial prop-
erties. This is a feature of the reputation model, as it allows
for flexibility in weighing context when it comes to spatial
and temporal information. In a similar way, one can focus
solely on temporal properties by defining singular groups,
and both produce useful spam classifications (see Sec. 5.7).

4.3 Spatial Properties of Spamming IPs
The hierarchical nature of IP address assignment provides

natural spatial groupings for use by PreSTA. Starting at the
lowest level, a local router or DHCP service assigns IP ad-
dresses to individual machines. The selection pool is likely
well-bounded to a subnet (i.e., a /24 or /16). In turn, these
routers operate within an ISP/AS, which get their alloca-
tions from Regional Internet Registries (RIRs), whose space
is delegated from the Internet Assigned Number Author-
ity [4] (IANA). A clear hierarchy exists, and at each level, a



Figure 3: PreSTA Spam Detection Architecture

unique reputation can be applied. We focus our groupings
at the following three levels: (1) the AS(es) that home(s)
the IP, (2) the 768-IP block membership (a rough approxi-
mation of a subnet), and (3) the IP address itself.

Despite its easily partitioned nature, it remains to be
shown that the IP assignment hierarchy provides relevant
groupings. Previous work and anecdotal evidence suggest
that AS-number is one of the strongest identifiers of spam-
mers. Indeed, entire AS/ISPs, such as McColo [17] and
3FN [18], have been shut down as a result of their malicious
nature. Moreover, in [11], AS-level identifiers were used as
a reliable indicator of spamming hosts – indicating that 20
ASes host nearly 42% of spamming IPs.

At the subnet level, it was found that groupings of 768 IP-
addresses (i.e., three adjacent /24s) well contain malicious
activity (see Sec. 5.5 for details). Fig. 2 visualizes the quan-
tity of of XBL listings in /24 blocks of the address space
for an ISP in Uzbekistan. Clearly, there is strong variance
across the address space – some regions are highly listed
while others are not. The AS-level reputation of this ISP
is comparatively poor due to the quantity of listings, but
within the address space, certain block-level reputations are
ideal. This suggests that AS-level reputation alone may be
too broad a metric.

Finally, using a grouping function that singularly groups
entities effectively removes spatial relevance from reputation
computation. Intuitively, the reputation of a single IP ad-
dress should be considered because many mail servers use
static addresses. However, the often dynamic nature of ad-
dress assignment implies that unique IP addresses are not
singular groupings, but rather, could represent many differ-
ent machines over time. A recent study reported that the
percentage of dynamically assigned IP addresses1 on the In-
ternet is substantial and that 96% of mail servers using dy-
namic IPs send spam almost exclusively [31].

5. SPAM IMPLEMENTATION
In this section the implementation of PreSTA for spam

detection is described. It is designed with three primary
goals: It should produce a classifier that is (1) lightweight;
(2) capable of detecting a large quantity of spam; and (3)
do so with a low false-positive rate. Design decisions are
justified with respect to these goals. Further, the practical
concerns of such an implementation are discussed.

The work-flow begins when an email is received and the
connecting IP address and timestamp are recorded. Assum-
ing the IP is not actively blacklisted, PreSTA is brought to
bear. The IP is mapped to its respective spatial groupings:
itself, its subnet, and its originating AS(es). Reputations

1Recall that Spamhaus’ PBL blacklist is essentially a listing
of dynamic IP addresses. It is constructed mainly using ISP-
provided data, and as such, is far from a complete listing.

are calculated at each granularity and these component rep-
utations are supplied as input to a machine-learning clas-
sifier trained over previous email. The output is a binary
ham/spam label along with each of the three component
reputations – all of which may be used by a client applica-
tion. This procedure is now described in detail, and a visual
reference of the PreSTA work-flow is presented in Fig. 3.

5.1 Traditional Blacklists
In Sec. 4.1 the Spamhaus blacklists were introduced. They

not only provide the basis on which reputations are built,
but in an implementation of PreSTA, it is natural to apply
them as intended – to label emails originating from currently

active IPs as spam. When applied to the email data-set, the
blacklists (PBL included) captured 91.0% of spam with a
0.74% false-positive rate. This detection rate is somewhat
higher than previous published statistics2 [15].

Had the intra-network emails not been excluded from anal-
ysis, the blacklists would have captured a similar 90.9% of
spam emails with a much-reduced 0.46% false-positive rate.
The exclusion of such emails, while inflating false-positive
rates, permits concentration only on the more interesting set
of externally-received emails and does not bias results. The
usage of blacklists (independent of spatio-temporal proper-
ties), enables fast detection of a large portion of spam emails
with minimal time and space requirements – the active list-
ing requires roughly 100MB of storage.

Given the temporal statistics presented in Sec. 4.2, we also
experimented with increasing the blacklists’ listing period
to determine if simple policy changes could greatly affect
blacklist performance. This was not the case; increasing the
active duration of expired listings (but not those suspected
of being manually de-listed) by 5 days increased the detec-
tion rate less than 0.05%, and longer listing durations show
minimal accuracy improvements at the expense of significant
increases in false-positive rates.

5.2 Historical Database
Before reputation can be calculated, a historical feedback

database must be in place. As described, Spamhaus black-
lists are retrieved at 30-minute intervals. The diff is cal-
culated between consecutive copies and time-stamped en-
tries/exits are written to a database. When a new listing
appears, the spatial groups (IP, subnet, and AS(es)) that IP
is a member of are permanently recorded. For example, if
IP i was blacklisted as a member of AS a, that entry will
always be a part of a’s blacklist history.

Roughly 1GB of space is sufficient to store one month’s
blacklist history (the XBL has 1.0–1.5 million IPs turn over
on a daily basis). Fortunately, an extensive history is not

2Our analysis of blacklist performance is from a single-
perspective and may not speak to global effectiveness.
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required given the exponential decay() function3. For ex-
ample, given a 10-day half-life, a 3-month old XBL entry
contributes 0.6% the weight of an active listing. Lengthy
histories offer diminishing returns. To save space, one should
discard records incapable of contributing statistical signifi-
cance. Further, such removal saves computation time be-
cause the smaller the set hist() returns, the fewer values
which must be processed by raw rep().

5.3 Grouping Functions
Given an entity (IP address) for which to calculate repu-

tation, three grouping functions are applied:

• IP Function: An IP is a group in and of itself, so
such a grouping function mirrors its input.

• Subnet Function: IP subnet boundaries are not pub-
licly available. Instead, an estimate considers blocks
of IP addresses (we use the terms “subnet-level” and
“block-level” interchangeably). IP space is partitioned
into /24s (256 IP segments), and an IP’s block group-
ing consists of the segment in which it resides as well
as the segment on either side; 768 addresses per block.
Thus, block groupings overlap in the address space,
and a single IP input returns one block of IPs (three
/24s). Although such estimations may overflow known
AS boundaries, these näıve blocks prove effective.

• AS Function: Mapping an IP to its parent AS(es) re-
quires CAIDA [2] and RouteViews [8] data. Note that
some AS boundaries overlap in address space and some
portions of that space (i.e., unallocated portions) have
no resident AS whatsoever. An IP can be homed by
any number of ASes, including none at all, the techni-
cal considerations of which are addressed in Sec. 5.5.
The function’s output is all the IPs homed by an AS(es)
in which the input IP is a member. Each returned IP is
tagged with the parent AS(es), so a well-defined subset
of the output can be chosen.

5.4 Decay Function
The decay function (Sec. 3.1) controls the extent to which

temporal proximity factors into reputation. It is configured
via its half-life, h. If h is too small, reputations will decay
rapidly and provide little benefit over using blacklists alone.
Too large an h will cause an increase in false positives due
to stale information.

3This minimal history requirement was of benefit to this
study. Reputations must warm-up before their use is appro-
priate. Indeed, collection of blacklist data began in 5/2009,
three months before the first classifications.

A good half-life will maximize the difference between the
reputations of spam and ham email. Analyzing email pre-
dating the evaluation period, the reputation-CDFs for both
spam and ham emails (as in Fig. 6) were plotted using differ-
ent h, seeking to maximize the area between the curves. In
Fig. 4 the calculations from these experiments are presented.
A value of h = 10 (days) was found optimal and this value is
used in the spam application4. With the half-life established
and having chosen d = 5 (days), MAX_REP= 4.14.

As described previously, two separate decay() functions
are employed depending on whether a listing appeared on
the SBL or the XBL. Manually maintained, de-listing from
the SBL is not decayed, but the XBL is decayed using the
aforementioned 10-day half-life. A special flag attached to
each time pair returned by hist() allows both listings to be
used in combination.

5.5 Reputation Calculation
Given the feedback database (Sec. 5.2), output (sets of IP

addresses) of the three grouping functions (Sec. 5.3), and
the decay function (Sec. 5.4), reputation may now be calcu-
lated at each granularity, returning three reputation values.
Calculation closely follows as described in Sec. 3.1.

Calculation of IP-level and subnet-level reputation is
straightforward per the reputation model with size() = 1
and size() = 768, respectively. The particulars of AS-level
calculation are more interesting. An IP may be a member
of any quantity of ASes, including none at all. If an IP is
multi-homed, the conservative choice is made by selecting
the most reputable AS-level reputation. Those IPs mapping
to no AS form their own group, and the reputation for this
group is designated as 0 because, in general, unallocated
space is only used for malicious activity (see Sec. 7). In this
spatial grouping, size() is not constant over time. Instead,
magnitudes are pre-computed for all AS using CAIDA data
and updated as BGP routes change.

5.6 Calculation Optimizations
PreSTA must calculate reputation efficiently to achieve

the desired scalability. It should not significantly slow email
delivery (latency), and it should be capable of handling
heavy email loads (bandwidth). Caching strategies and other
techniques that support these goals are described below:

• AS Value Caching: Reputations for all ASes are
periodically recalculated off-line. Calculation is (rela-
tively) slow given that hist() calls return large sets.

• Block/IP Value Caching: Similarly, block and IP
reputations can be cached after the first cache miss.
Cache hit rates are expected to be high because (1)
an email with multiple recipients (i.e., a carbon copy)
is received multiple times but with the same source IP
address, and (2) source IP addresses are non-uniformly
distributed. For the 6.1 million (non-intra-network,
non-blacklisted) emails in the working data-set, there
are 364k unique IP senders and 176k unique ‘blocks.’

• Cache Consistency: Caches at all levels need to be
flushed when the blacklists are updated (every 30 min-
utes), to avoid inconsistencies involving the arrival of

4Although it was found unnecessary, h could be optimized
on an interval basis, much like re-training a classifier. How-
ever, experiments showed minor variations of the parameter
to be inconsequential.



new listings. As far as time-decay is concerned, a dis-
crepancy of up to 30 minutes is inconsequential when
considering a 10-day half-life.

• Whitelisting: There is no reason to calculate reputa-
tion in trusted IP addresses, such as one’s own server.
Of course, whitelists could also be utilized in a feed-
back loop to alleviate false-positives stemming from
those entities whose emails are misclassified.

Using these optimizations, the PreSTA implementation is
capable of scoring 500k emails an hour, with average email
latency on the order of milliseconds5. Latency and band-
width are minimal concerns. Instead, it is the off-line pro-
cessing supporting this scoring which is the biggest resource
consumer. Even so, the implementation is comfortably han-
dled by a commodity machine and could easily run adjacent
to an email server. Pertinent implementation statistics, such
as cache performance, are available in Sec. 6.4.

5.7 Reputation Classification
Extraction of a binary classification (i.e., spam or ham)

is based on a threshold strategy. Emails evaluated above
the threshold are considered ham, and those below are con-
sidered spam. Finding an appropriate threshold can be
difficult, especially as dimensionality grows, as is the case
when classifying multiple reputation values. Further, a fixed
threshold is insufficient due to temporal fluctuations; as
large groups (botnets) of spamming IPs arise and fall over
time, the distinction between good and bad may shift.

A support vector machine (SVM) [13] is employed to de-
termine thresholds. SVM is a form of supervised learn-
ing that provides a simple and effective means to classify
multiple reputation values. The algorithm maps reputation
triples (a feature for each spatial dimension) from an email
training set into 3-dimensional space. It then determines the
surface (threshold) that best divides spam and ham data-
points based on the training labels. This same threshold
is then applied during classification. The SVM routine is
tuned via a cost metric that is correlated to the eventual
false-positive rate of the classifier.

The classifier is adjusted (re-trained) every 4 days to han-
dle dynamism. A subset of emails received in the previous
4 days are trained upon, and the resulting classifier is used
for the next 4 day interval. The affect of different training
periods has not been extensively studied. Clearly, large pe-
riods are not desired; the reputation of distant emails may
not speak to the classification of current ones. Too short a
period is poor because it requires extensive resources to re-
train so frequently. Analysis found 4-day re-training to be a
good compromise. However, the re-training period need not
be fixed, and future work will explore re-training rates that
adjust based on various environmental factors.

At each re-training, 10,000 emails (5% of the non-intra-
network, non-blacklisted email received every 4 days) were
used, and emails were labeled as spam/ham based on the
Proofpoint score. In a more general use case, there would
be some form of client feedback correlated across many ac-
counts that can classify spam post-delivery and train various
spam detectors. Since we do not have access to such user
behavior, correlation statistics, or any external spam filters,

5Statistics are based on a single-threaded implementation.
Concurrency and other programming optimizations would
likely improve PreSTA’s performance and scalability.
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Figure 5: XBL Size Relative to Global Rep.

the provided Proofpoint values are assumed.
Post-training, the false-positive (FP) rate of the classi-

fier is estimated by measuring the error over the training
set (assuming one does not over-fit the training data). The
estimated FP-rate is a good indicator of the true FP-rate,
and the SVM cost parameter is adjusted to tune the ex-
pected FP-rate. All classifier statistics and graphs hereafter
were produced with a 0.5% tolerance for false-positives (over
the classification set), as this simplifies presentation. This
FP-rate (0.5%) is a reasonable setting given that blacklists
are widely accepted and achieved a 0.74% FP-rate over the
same dataset. Additionally, these rates are somewhat in-
flated given the decision to exclude intra-network emails,
which are unlikely to contribute false-positives (the black-
list FP-rate was reduced one-third to 0.46% with their in-
clusion). In Sec. 6.5, the trade-off between the FP-rate and
spam blockage is examined in greater depth.

6. EXPERIMENTAL ANALYSIS
Experimental analysis begins by examining component

reputations individually. From there, two case studies are
presented which exemplify how PreSTA produces metrics
outperforming traditional blacklists in both spatial and tem-
poral dimensions. Finally, the detection results of the
PreSTA spam filter are presented.

To best simulate a real email server load, it is assumed
emails arrive in the order of their timestamps and are eval-
uated relative to this ordering. Additionally, cache popula-
tion/flushing and classification re-training are performed at
the relative time-intervals outlined in the previous section.

6.1 Blacklist Relationship
In examining how reputations quantify behavior, we apply

a simple intuition: One would expect to see a clear push-pull
relationship between an entity’s reputation and the number
of corresponding entries on the blacklist. To confirm this
hypothesis, the size of the XBL blacklist6 was graphed over
time and compared to the average reputation of all ASes.
Results are presented in Fig. 5. An inverse relationship is
observed, confirming the hypothesis. When the number of
listings decreases, reputation increases – and vice versa.

6.2 Component Reputation Analysis
In order for component reputations (IP, block, and AS) to

be useful in spam detection they must be behavior predictive.
That is, the reputations of ham emails should exceed those

6The XBL is the driving force behind reputation. The SBL
is also a contributor, but is orders of magnitude smaller.
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of spam emails. This relationship is visualized in the CDFs
of Fig. 6. All component reputations behave as expected.
Fig. 6 also displays the benefit of multiple spatial groupings.
While 90% of spam emails come from IPs that had ideal
reputation (i.e., a reputation of 1) at the time of receipt,
this is true for just 46% of blocks, and only 3% of AS.

The CDFs of Fig. 6 imply that each component reputa-
tion is, in and of itself, a metric capable of classifying some

quantity of spam. However, it is desirable to show that each
granularity captures unique spam, so that the combination
of multiple reputations will produce a higher-order classi-
fier of greater accuracy. In Fig. 7, the effectiveness of each
component reputation is presented. The percentage of spam
caught is “above the blacklist,” or more precisely, the per-
centage of spam well-classified by the reputation value that
was not identified by the blacklist alone7. Crucially, the
combined performance (the top line of Fig. 7), exceeds that
of any component, so each spatial grouping catches spam the
others do not. On the average, PreSTA is able to capture
25.7% of spam emails not caught by traditional blacklists.

We are also interested in determining which grouping pro-
vides the best classification. AS-level reputation is the most
stable of the components, individually capable of classifying
an additional 10-15% of spam above the blacklist. However,
during periods of increased PreSTA performance, it is often
the block and IP levels that make significant contributions.
This is intuitive; AS-level thresholding must be conservative.
Given their large size, the mis-classification of an AS could
result in an unacceptable increase in the FP-rate. Mean-
while, the cost associated with a mis-prediction is far less
for block and IP groupings.

These results suggest that considering more spatial di-
mensions should increase performance, that is, when there
are non-overlapping classifications. However, there are di-
minishing returns. Each additional component reputation
requires increased resources in evaluation and classification.

7Given the inclusion of traditional blacklist filtering, the pri-
mary concern is those emails that are not actively listed.
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An application should seek a minimal set of dimensions to
best represent and classify its data.

6.3 Case Studies
Two case studies exemplify the types of spam behavior

able to evade blacklists, yet captured via PreSTA. First,
Fig. 8 shows the temporal sending patterns of a single spam-
ming IP address. This IP was blacklisted twice during the
course of the study (as indicated by shaded regions), and the
time between listings was small (≈ 2 days). The controller of
this IP address likely used blacklist counter-intelligence [22]
to increase the likelihood that spam would be delivered: No-
tice that no spam was observed when the IP was actively
listed, but 150 spam emails were received at other times.

Traditional blacklist are reactive, binary measures that do
not take history into account. During the intermittent pe-
riod between listings, as far as the blacklist is concerned,
the spamming IP is an innocent one. However, as shown in
Fig. 8, the IP-level reputation metric compounds prior evi-
dence. Thus, if PreSTA had been in use, the intermittent
influx of email likely would have been identified as spam.

Secondly, Fig. 9 visualizes a case study at the AS-level
utilizing both spatial and temporal dimensions. In the early
stages of data collection anomalous activity was noticed at
a particular AS (AS#12743)8. Even when compared to the
other four worst performing ASes during the time block,
ASN-12743’s drop in reputation is astounding. Nearly its
entire address space, some 4,500 addresses, were blacklisted
over the course of several days – likely indicative of an ag-
gressive botnet-based spam campaign. After this, the repu-
tation increases exponentially (per the half-life), eventually
returning to innocent levels.

With traditional blacklists, an IP must actually send spam
before it can be blacklisted. In the ASN-12743 case, this
means all 4,500 IPs had some window in which to freely
send spam. However, as the IPs were listed in mass, the
reputation of the AS drops at an alarming rate, losing more
than 50% of its value. Had PreSTA been implemented, the
reputation of the AS (and the blocks within) would have
been low enough to classify mails sourced from the remain-
der of the space as spam, mitigating the brunt of the attack.

6.4 Implementation Performance
An important aspect of PreSTA is its scalability, and

to best evaluate this our PreSTA simulation mimicked the

8PTK-Centertel, a major Polish mobile service provider.
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normal processing of a mail server. The blacklist history
and cached reputation scores were regulated so that only the
knowledge available at the time of arrival is used to evalu-
ate an email. PreSTA requires a warm-up period to gather
enough temporal knowledge to process correctly; hence, his-
torical blacklist storage began three months prior to the first
email being scored.

The effectiveness of the cache and the latency of the sys-
tem is also of interest. Caching is highly effective: 56.8% of
block-level calculations are avoided, and 43.1% are avoided
at the IP-level (recall that all AS-level calculations are per-
formed off-line and then cached). The reputation of an in-
coming email is calculated in nearly real time, with the av-
erage email being processed in fractions of a second. Under
typical conditions, over 500,000 emails can be scored in an
hour, using commodity hardware.

Re-training the classifiers and rebuilding the AS-cache are
the most time consumptive activities. Fortunately, training
new classifiers takes only minutes of work for a 10,000 email
training set, and only needs to be performed every 4 days.
Re-training is also done off-line and does not affect current
scoring. Rebuilding the AS reputation cache must be done
every 30 minutes, once new blacklist data is available, but
it need not delay current scoring as the previous AS-level
reputations are still relevant (at most 30 minutes old).

6.5 Spam Mitigation Performance
The spam detection capabilities of PreSTA are summa-

rized in Fig. 10. On average, 93% of spam emails are iden-
tified when used in conjunction with traditional blacklists.
This may seem to be a nominal increase over blacklists alone;
however, the inset of Fig. 10 is more intuitive – PreSTA
blocks between 20% and 50% of those mails passing the
Spamhaus blacklists, with a 25.7% average (identical to the
top line of Fig. 7). Had PreSTA been implemented on our
university mail server during the study, it would have caught
650,000 spam emails that evaded the Spamhaus blacklists.

Most interestingly, PreSTA provides consistent and
steady state detection. For example, consider the signif-
icant variations in blacklist performance seen throughout
the study (for example, in late August 2009 and in mid-
November 2009). PreSTA is nearly unaffected during these
periods and may be a useful stop-gap during variations in
blacklist accuracy. While the blockage-rates of the blacklists
fluctuate 18% over the course of the study, PreSTA is far
more consistent, exhibiting just 5% of variance. Further,
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it is likely that continued analysis will show similar varia-
tions in blacklist performance. Periods of high de-listing are
likely followed by periods of high re-listing as spammers try
to maximize the utility of available IPs.

Ultimately, the performance attainable by the classifier is
dependent on the number of false-positives (FPs) tolerated.
To this point, the FP-rate has been fixed at 0.5%; how-
ever, as exemplified in Fig. 11, the FP-rate is tune-able and
strongly correlates with the blockage rate. The plot is gener-
ated over a characteristic interval of email from mid-October
2009, and is akin to the precision/recall graphs common in
machine-learning. We remind readers that the decision to
exclude intra-network emails from the dataset (see Sec. 5.1)
significantly inflates the presented FP-rates.

7. EVASION AND GAMESMANSHIP
To be effective, PreSTA must be robust to evasion and

gamesmanship – an entity should be unable to surrepti-
tiously influence its own reputation. Given the use of IP
blacklists as a feedback source, the most effective way to
avoid PreSTA is to avoid getting blacklisted. However, such
a technique is not fail-safe; a single evasive entity may still
have poor reputation at broader granularity. When neg-
ative feedback exists, and an IP has been blacklisted, the
best recourse is patience. Over time, the weight of the list-
ing decays. As such, there is no way to evade PreSTA in
the temporal dimension.

However, spammers are migrant and the spatial dimen-
sion affords greater opportunities. While IP and block mag-
nitudes are fixed, an AS controls the number of IPs it broad-
casts. An actively evasive AS would ensure its entire allo-



cation is broadcasted. More maliciously, a spammer may
briefly hijack IP space they were not allocated in order to
send spam from stolen IPs. Such spectrum agility was shown
by [21] to be an emergent spamming technique. Fortunately,
if the hijacked IP space was not broadcasted (i.e., unal-
located), emails from these IPs would map to the special
grouping “no AS”, whose reputation is zero (per Sec. 5.5).
However, if the hijacked space was broadcasted by a rep-
utable AS, evasion may be possible. Fortunately, [21] ob-
serves the use of unallocated space is most prevalent.

The previous scenario can be described as a sizing at-

tack and is of most concern to PreSTA. The entities being
evaluated should not be able to affect the size of their spa-
tial groupings. However, this attack is only effective when
the group size is non-singular, and an simple mitigation
technique is to always include a grouping function defining
singular groups. Further, an implementation should assign
persistent identifiers to entities. When identifiers are non-
persistent, PreSTA could fall victim to a Sybil attack [10]
since an entity could evade negative feedback by simply
changing identifiers.

8. CONCLUSIONS
In this paper, we have introduced PreSTA, a novel repu-

tation model designed to combine the rich historical informa-
tion of blacklists and the spatial relationships of spamming
IPs. We have shown PreSTA reputations to be an effective
measure for classifying spam, identifying up to 50% of spam
not caught by blacklists alone. Our preliminary implemen-
tation, which combines PreSTA with blacklists, mitigates
93% of spam on average and is stable – reducing the effects
of blacklist fluctuations. Finally, PreSTA proves scalable
and is able to efficiently handle production email workloads,
processing over 500k emails an hour.

Having demonstrated PreSTA’s proficiency in the field
of spam detection, one must consider how this capability is
best utilized. Although we make no claims it can (or should)
replace content-based filtering, PreSTA could be applied as
an initial filter or grey-listing mechanism. Alternatively, the
system could be used to prioritize the processing of incoming
email in high-volume situations. Since it is based on central-
ized blacklist information, PreSTA could be installed as a
parallel service provided by blacklist providers.

Further, PreSTA’s applicability is broader than email
spam. PreSTA has already proven effective in the detection
of Wikipedia vandalism [30] and shows promise in other do-
mains ranging from prioritization of BGP announcements to
reputation for web-based service mash-ups. Any service that
requires dynamic decision making and has access to records
of historical feedback is a candidate. Ultimately, PreSTA
reputations may be utilized as an effective means of perform-
ing dynamic access-control and mitigating malicious behav-
ior, two extremely relevant issues as service paradigms shift
to more distributed architectures.
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