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1. INTRODUCTION

The rapid numerical solution of elliptic equations is an important problem in

numerical analysis with many practical ramifications in the applied sciences.

In this paper we present algorithms for the solution of certain elliptic

problems in two dimensions. The methods are “fast” in the sense that they

are built on a rapid direct solution to the Poisson equation in a regular

domain. In several disciplines where numerical models are important, elliptic

equations must be solved repeatedly, perhaps thousands of times, with

different forcing functions but in the same geometry. The software package

has been designed to be especially efficient for such problems.

This section contains a brief discussion of the algorithms used. In Section 2

the difference forms of the equations are explicitly stated, and in Section 3

the software package itself is described. This includes a brief description of

each subroutine; a longer description of the calling parameters and argu-

ments for one routine are given in the Appendix. Example driver routines for

each algorithm are included in the package. Section 4 provides a brief

description of the performance of certain aspects of the routines.

1.1 Analytic Foundation

The building block for all of the algorithms presented in this paper is a

method for the rapid solution of Poisson’s equation in a regular domain, to

wit:

v+) = f, (1.1)

where f is a given source and + is the required solution. Various rapid direct

methods for solving this equation exist, notably, the Fourier transform

method, the method of cyclic reduction, and a combination of both—the

FACR class of methods (see, e.g., Swarztrauber [1977]). The generalization to

the Helmholtz equation,

(V2 - A)tj=f, (1.2)

is straightforward. The FISHPACK software package [ Swarztrauber and

Sweet 1979], which uses cyclic reduction, provides efficient solvers for this

type of problem.

A number of packages for solving elliptic problems using iterative or

relaxation methods exist [Rice and Boisvert 1985], but are generally not as

efficient as direct solvers based on FACR or similar methods. However, for

self-adjoint problems of the form

V.(g(x, y)v+) =f, (1.3)

where the diffusion function g is spatially varying, the iterative procedure

f-vg-v*n
72+.+1 =

g

(1.4)

has proved to be an efficient and robust method [Concus and Golub 1973;

Pares-Sierra and Vallis 1989]. Given a first guess for +, the right-hand side is
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treated as a known source, and a fast solver is employed to determine the

next iterate of ~. Often, very few (1– 10) iterations are required for an

accurate result. The eficiency of the iteration is due to the use of the

Laplacian as a preconditioned.

The fast solution of the Poisson and Helmholtz problems in irregular

domains can be achieved with the capacitance matrix method [Hockney 1970;

Proskurowski and Widlund 1976], implemented, for example, by Proskurowski

[1983]. For a detailed description of the capacitance matrix method as

implemented here; see Cummins and Mysak [1988]. It is most easily de-

scribed for the Poisson problem (1. 1), with a trivial generalization for the

Helmholtz problem. The essence of the method lies in replacing boundary

conditions by appropriately chosen source terms (a pseudosource) on the

right-hand side. Problem (1. 1) is first solved in an enclosing rectangular

region # with the given source over the irregular domain Y, yielding values

of @ on d> of @~, say. This is equivalent to a solution over the irregular

domain with boundary conditions * = t~. Therefore, the addition of this to a

solution to the homogeneous problem

with @l = – @~ + ~ on dy, will yield the desired solution to the Poisson

problem with boundary values ~ on %X

The solution to the homogeneous problem on Y is found by first obtaining

the appropriate Green’s function or inverse capacitance matrix, G. The

columns of G are determined by solving (1.1) repeatedly, each time with a

unit source at a different grid point along d>. Then we may obtain the correct

pseudosource f. on d~ by noting that

+– *b = Gf.. (1.6)

Given ~$, the full solution to the problem on Y is finally obtained as a

solution to the equation

where the equation is actually solved on ~. The values of f outside the

domain of interest and the boundary conditions on ~ do not matter. In fact,

the solution is obtained with zero values on the boundary on W outside the

domain of interest.

Our implementation involves first determining the Green’s function for the

given irregular area. The subroutine may then return without calculating the

full solution, in which case it must be called again with the Green’s function

as an input parameter in order to compute the solution. This allows the

solution to a problem in an unchanging domain with a varying source or

diffusion function to be found with only a single calculation of the Green’s
function. Alternatively, the Green’s function and solution may be computed

by a single call to the subroutine.
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The capacitance-iteration (CI) method [Pares-Sierra and Vallis 1989] com-

bines the capacitance matrix method with the iterative method (1.4), enabling

solutions to be obtained for elliptic equations of the form of (1.3) in irregular

domains. The algorithm implemented here is “Method 1“ of Pares-Sierra and

Vallis [1989]. The Green’s function for the Laplacian operator is found, just as

for the Poisson problem. Then, given an estimate for the solution @‘, we use

~,hn+l = f- Q*nvg
(1.8)

to obtain a better solution,

a boundary source

/?’

on ~. Using the Green’s function, we then obtain

f, =G-’(@- v,) (1.9)

and obtain an intermediate solution on Y using

f-vtjn.vg
v2*n+l = +f,. (1.10)

g

A single step in the iteration procedure consists of the successive application

of steps (1.8)–(1.10’). Note that in steps (1.8) and (1.10) the Poisson equation is

obtained (directly) in ~ and that it is the use of the pseudosource f. that

yields the correct solution in Y. The process is repeated until satisfactory

convergence is achieved.

The iterative procedure may be characterized as an outer iteration, with

the Laplacian acting as a preconditioned. The convergence properties of the

procedure are not fully understood, although they may be expected to be

similar to those of the problem in a rectangular domain, discussed by Concus

and Golub [1973], which does not involve the use of the capacitance matrix

step. In particular, convergence is not guaranteed for all diffusion functions g

(even if one-signed). However, our experience suggests that the procedure is
actually very robust, with convergence achieved for highly discontinuous

functions g; some empirically determined convergence properties are dis-

cussed in Section 4.

This package consists of routines that solve both the constant coefficient

(i.e., Poisson and Helmholtz) and variable coefficient problems in irregular

domains. Clearly, the constant coefficient problem is just a special case of the

more general problem, and one could use the same routine with g - 1.
However, for most applications it is more convenient and faster to have

different solvers. The package also includes a separate routine to solve the

nonconstant coefficient problem in a rectangular domain, without use of the

capacitance matrix methodology. We do not explicitly document a routine to

solve the Poisson or Helmholtz equations in a regular domain, since there are

many available [Swarztrauber and Sweet 1979]. The included subroutine

POISS (or an easily modified version of RECCN) may, however, be used for

this purpose. The routines are designed to be very straightforward to use;
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generally, a call to a single subroutine is all that is needed. The limitations of

the algorithms presented here are that the boundary of the region is a

polygon described by lines parallel to, or diagonal to, the mesh points, and

only Dirichlet conditions may be applied. (Note that a package for the

Helmholtz equation in a more general irregular domain is available

[Proskurowski 1983].)

The cost of preprocessing (the capacitance matrix calculation) varies ap-

proximately as pnz log n, where p is the number of irregular boundary points

and n is the number of grid points across the whole domain. (This is because

the inverse capacitance matrix is obtained by solving the Poisson equation p
times, with a &function source at each irregular boundary point.) The

solution cost per iteration scales approximately as nz log n. The number of

iterations is largely independent of resolution and in typical cases is between

2 and 10, depending on the convergence parameter(e) tolerance and the first

guess. Storage requirements increase as Inz + p2,where 1 is a small integer,

differing slightly in each code.

2. DIFFERENCE EQUATIONS AND NUMERICAL DETAILS

In this section the explicit difference forms of the equations are given. In all

cases, boundary conditions on @ are specified along dY (Dirichlet boundary

conditions), and Cartesian coordinates are used.

Define the coordinates x, = iA x and y] = jA y, where Ax and A y are the

discretization intervals in the x and y directions, and let ~,,j denote ~(x,, y~).

It is useful to define the following difference operators:

~(~, + AX, YJ) + @(x, – AX, Y1) – 2@(x,, yJ)

(Ax)z
>

2.1 Helmholtz Equation

The second-order-accurate finite-difference approximation to Helmholtz’s

equation is

8X%*,,, + 8JJ*Z,, – A*,,, =fz,,. (2.1)

This equation must be satisfied at each grid point within >.
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2.2 Variable-Coetlicient Elliptic Equation

The finite-difference form of ( 1.3) is

Note that the diffusion function is staggered with respect to the source

function and the solution.

2.3 Convergence Criteria

The capacitance iteration algorithm (1.4) is assumed to have converged when

the inequalities

ll@n- $n-lll

Ilvnll < e
(2.3a)

and

Ilslfb’) -fll

Ilfll < E
(2.3b)

are both satisfied, where II . II denotes the L2 norm over the rectangle and S

denotes the elliptic operator. That is, both the relative residual and change in

iterates must be small. If II fl I = O, then the second criterion is replaced by

IIL( 0’)11/11 on II < ● . The convergence parameter, e, must be specified by the

user. With four-byte words (“single precision” on most, but not all, computers,

or REAL* 4, and about 7 digits of accuracy), values of ~ from 10’3 to 10 5 are

recommended; much smaller values do not improve the accuracy of the

solution. With eight-byte words (“double precision,” or REAL* 8, and about 15

digits of accuracy), values of ● down to 10- 12–10- 13 are possible. (With

higher resolution, i.e., a larger number of grid points, the smallest usable

value of ~ tends to increase.) Use of double precision is recommended for the

iterative algorithms if high accuracy is required.

If the iteration is failing to converge, then the subroutine will attempt to

detect this and exit. In particular, if II@‘ – @n- 11/11~)’- 1 – ~ n -2 II does not

decrease almost monotonically, the iteration will exit (although this feature

may be overridden and the iterations forced to continue).

3. PACKAGE DESCRIPTION

3.1 General Remarks

The package consists of three user-callable FORTRAN subroutines, plus a

fast Poisson solver and some Linpack routines [Dongarra et al. 1979] used by

the capacitance matrix procedures. (Double-precision versions of all the sub-

routines are included in the package. These routines generally have identical
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names except that the prefix “D” is appended.) The Poisson solver (POISS)

uses a fast direct method and is a modification of one written by

C. Temperton (personal communication). There is normally little need to call

it or the Linpack routines directly. Users may with little effort substitute

their own packages if there is an efficient local implementation of these

routines. This may be easiest for the Linpack routines-, where some installa-

tions have efficient machine-coded versions, although the effect of these on

this package will be minimal. The package here is complete and contains no

machine-dependent code. POISS performs sine transforms in the x-direction

and then solves the resulting tridiagonal system in the y-direction. The sine

transforms are done with a mixed radix FFT allowing prime factors up to 5.

This permits some flexibility in the choice of the number of grid points in the

x-direction. The routines also allow for different grid spacings in the x- and

y-directions. Some subroutines have been optimized for vectorization on

Alliant and Cray vector computers, and compiler directives are inserted

where appropriate. These have no effect on the operation on nonvectorizing

computers.

The routines are designed with the intention of keeping the definition of

the irregular domain geometry simple for the user. The boundary curve of the

irregular domain is assumed to lie along the discrete nodes of a two-dimen-

sional mesh. An embedding rectangle of mesh points is defined, and grid

points along any portion of the boundary of the irregular domain that

coincide with the edges of the rectangle are referred to as the “regular”

boundary points. Boundary points that do not lie on the edges of the rectangle

are referred to as the “irregular” boundary points. Two one-dimensional

arrays are defined to supply the routines with the coordinates of the irregular

boundary points. Simply or multiply connected domains are easily defined in

this way. The Dirichlet boundary values at the regular and irregular bound-

ary points are also supplied to the routines through one-dimensional arrays.

The size of the capacitance matrix increases as the square of the number of

irregular boundary points. To keep the size of this matrix to a minimum, the

irregular domain should be positioned within the embedding rectangle in

such a way as to maximize the number of regular boundary points and to

minimize the number of irregular boundary points. Illustrative examples are

given in the comments of the code itself.

For the nonseparable solvers in irregular domains a “MASK” array must

also be supplied by the user. The values of this array must be 1 inside the

domain of interest and O elsewhere, including the boundary points. (A check

is made that this condition is consistent with the definition of the irregular

boundary.) The main purpose of this array is to define the domain of interest

and to ensure that convergence checks are made only within that domain. It

does not preclude multiply connected domains or multiply unconnected do-

mains.

To apply the solvers, just a single call to a subroutine is required. If the

subroutine is being called for the first time, the inverse capacitance matrix is

generated and factored. This matrix, in general, depends only on the geome-
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try of the domain and, in the case of the Helmholtz equation, also on the

constant A. The routine then obtains the solution for the given right-hand

side. Provided that the geometry and A do not change, the inverse capac-

itance matrix need not be evaluated on subsequent calls to the subroutine,

even with different source functions and different diffusion functions. This

enables subsequent solutions to be obtained much more rapidly than the first

time.

3.2 Subroutine and Variable Definitions

Three subroutines are available, plus double-precision analogues:

—(D)CAPC solves the Helmholtz equation in irregular, polygonal domains.

—(D)CAPCN solves the variable coefficient self-adjoint elliptic equation (1.3)
in irregular, polygonal domains.

—(D)RECCN solves the variable coefficient self-adjoint elliptic equation (1.3)
in a rectangular domain.

In addition, the package contains

—POISS: a fast Poisson solver, utilizing the FACR(0) algorithm; and

—LINPACK: a selection of Linpack routines.

The user normally calls (D)CAPC, (D)CAPCN, or (D)RECCN. The LIN-

PACK and POISS routines are included in the code and are called by the

main routines. These both contain appropriate single- and double-precision

code. The LINPACK (or even the POISS) routines may be separated from the

other routines by the user, if the substitution of faster machine-dependent

versions is desired. The naming of the LINPACK routines is standard.

The calling parameters for the variable-coefficient elliptic solver (D)CAPCN

are outlined in the Appendix. The calling parameters for the two other

routines are not included here, but are generally similar to the one presented

below. A detailed description of these is found in the software. Three test

(driver) programs, one for each of the routines, are included in the package.

4. RESULTS AND PERFORMANCE

In this section we briefly describe the performance of the package on various

test problems. All of the results here use an IBM RS/6000 with the XLF
FORTRAN compiler, although all of the code is written in FORTRAN 77 and

results vary little from machine to machine. First, we describe the output for

a simple test problem.

The routine listed in the Appendix is a driver for CAPCN and solves (1.3) in

the domain 0 = [x – 0.51 + Iy – 0.51<0.375, embedded in the unit rectangle.

The discretization interval is 1/16, although this maybe changed easily. The

source function is given by ~( x, y) = cos m-x X sin 2 n y; the diffusion function

is given by g(x, y) = e’+y; and the value of CCON, the tolerance, is 10-4.
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Table I. Number of Iterations Required in CAPCN as a Function of Value C
in the Diffusion Function g( x, y) = e‘ +Y – C, for Two Values of

Convergence Parameter CCON.

c – 1000 – 100 – 10 0 0.5 1.0 1.4 1.6 1.8 1,867
Number of iterations with CCON = 110’4 33 455 6 7 8 9 12
Number of iterations with CCON = 110-10 45 71111 13 15 17 22 27

The source function is f( .x,y) = cos(~x ) x sin(2 my ), and the resolution is 16 X 16. Results vary
little with resolution.

The output of the code is as follows:

ITERATION 1 ANORM = 1.0000 RESIDUAL = 6.03776E-02
ITERATION 2 ANORM = .10641 RESIDUAL = 6.53740E-03
ITERATION 3 ANORM = 1.24130E-02 RESIDUAL = 8.2605E-04
ITERATION 4 ANORM = 1.84225E-03 RESIDUAL = 1.08370E-04
ITERATION 5 ANORM = 2.24527E-04 RESIDUAL = 1.93784E-05
ITERATION 6 ANORM = 3.28904E-05 RESIDUAL = 1.50112E-05
NUMBER OF ITERATIONS REQUIRED = 6
NUMBER OF CORRECT DIGITS IN RESIDUAL = 4.82
NORMALIZED L2 NORM OF RESIDUAL = 1.50112E-05
LARGEST ABSOLUTE RESIDUAL = 1.25202E-05 AT (I, J) = 1112

The value of ANORM is the normalized L2 norm of the difference between

successive iterations, see Eq. (2.3a). The RESIDUAL is the normalized L2

difference between the source function and the computed left-hand side of Eq.

(2.3b). The actual values are slightly machine dependent, but decrease with
each iteration. When ANORM and the RESIDUAL are both less than CCON,

the iterations cease. Printing these diagnostics is optional (determined by the

value of IWRITE, disabled for IWRITE = O).

The driver code then uses the computed solution and the diffusion function

to reconstruct the source function. The normalized L2 residual between this

and the original, and the largest absolute residual, are reported. These values

are somewhat machine dependent, being the difference between two approxi-

mately equal values. The number of correct digits is the logarithm to base 10

of the L2 norm. The L2 norm is normalized by the source function, whereas

the largest absolute residual is not and, therefore, may appear large if the

source term is large. The value of the L2 norm of the residual can be no

greater than the value of the specified tolerance.

Table I gives the number of iterations required for two values of the

tolerance parameter CCON, with a diffusion function given by exp( x + y) –

C, where C is allowed to vary, for a problem at a resolution of 16 x 16. The

smaller value of the convergence parameter CCON requires that double

precision (REAL* 8) be used. The number of iterations increases both as the

convergence parameter CCON is made smaller and as the problem ap-

proaches singularity. (The diffusion function must be positive where MASK

= 1, which restricts C to the interval – cc < C < exp(O.625) = 1.868.)
To examine the properties of the iterative convergence and the expense of

the capacitance matrix solver, it is most illustrative to use RECCN and CAPC
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separately. Table II illustrates how the rate of convergence varies with

resolution using RECCN in double precision. In general, there are three

factors that determine the accuracy of a solution, namely, the truncation

error of the discretization (here controlled by the grid resolution), the conver-

gence parameter, and machine precision. For this problem, at a given conver-

gence parameter there is little dependence on the resolution of either the

residual (the difference between the original source and that computed from

the numerical solution) or the rapidity of convergence. The error in the

solution (the difference between the computed and the analytic solutions)

decreases with the square of the grid interval, characteristic of second-order-

accuracy numerical methods. The error cannot always be reduced by decreas-

ing the convergence parameter if the resolution is too coarse, although the

residual may be made as small as machine precision allows. There is, of

course, no gain in making the convergence parameter smaller than machine

precision, and for this reason double precision is recommended if accuracy is

required. (All single-precision routines use generic calls to elementary func-

tions, like sin or log, and on many machines the single-precision code maybe

automatically compiled to run in double precision or to run on 64-bit ma-

chines automatically at that precision, if required.)

Table III illustrates how, for a continuous diffusion function, the number of

iterations required for convergence does not depend on the resolution, but on

the properties of the diffusion function itself The number of iterations is

almost constant with resolution, but increases as the gradient of the diffusion

function increases with the parameter D. Table IV illustrates the perfor-

mance with a discontinuous diffusion function. In this case the grid is covered

with a checkerboard pattern: the transition between checkerboard squares is

one grid point in each case. For each column of the table, the problem is the

same (i.e., the boundaries of the subregions coincide), and only the resolution

varies. Here, the number of iterations varies weakly with resolution.

In the algorithms implemented here, we do not employ any additional

acceleration or preconditioning methods [Concus and Golub 1973]. Extensive

experimentation revealed that, although in some cases they may improve

convergence, no general choice proved robust and satisfactory. However, note

that, for the test problem in Table III, scaling the problem following Concus

and Golub [ 1973] may enable convergence at higher values of D, and for

particular cases users may wish to modify the code to employ such methods.

There are clearly some diffusion functions for which the method as imple-

mented will not converge.
The preprocessing time, that is, the time taken to set up the capacitance

matrix, is illustrated using CAPC. Table V illustrates the time taken at

various resolutions to obtain the matrix and then to solve Poisson’s equation

in the domain 0 E Ix – 0.51 + Iy – 0.51 < 0.375. For a single solution of the

problem, the preprocessing time is a substantial fraction of the total time,

especially at high resolution, but will become small for multiple solutions.

Theoretically, we expect the preprocessing time to scale approximately as NP

N2 log N, and the solving time to scale approximately as N 2log N where N
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Table II. Performance of RECCN at Various Resolutions in Double Precision with
g(x, y) = 2 + cosnx x cosmy and f(x, y) = –27r2 sinrx x sinwy(2 + 2cos7rx X COSTY)

~ = 10–4 ● = 10–s

Number Number
of of

Resolution iterations Residual Error iterations Residual Error

16 X 16
32 X 32
64 X 64
128 X 128
256 X 256
512 X 512
1024 X 1024

5
5
5
5
5
5
5

1.6010-5
1.7310-5
1.7410-5
1.7610-5
1.7710-5
1.7710-5
1.7710-5

3.1210-3
7.8110-4
1.9410-4
4.7010-5

1.1710-5
5.5010-6
5.4710-0

10
10
10
10
10
10
10

2.2510-10
2.6510-10
2.7610-10
2.7810-10
2.8010-1°
3.3610-10
1.6610-9

3.1210-3
7.8010-4
1.95 10-~
4.8810-5

1,2210-5
3.0510-6
7.6210-7

The analytical solution is *(x, y) = sin wx x sin n y. Residual is the normalized L2 norm of the
difference between the original source, f, and that computed from the numerical solution (eq.
(2.3b)), while Error is the normalized Lz norm of the difference between the numerical and
analytical solutions. The table illustrates the variation of accuracy with resolution and with the
convergence parameter e.

Table III. Number of Iterations Required for Convergence in RECCN at
Various Resolutions in Double Precision

Value of D

Resolution 1 2 3 4 5 6

16 X 16 11 17 26 44 86 *

64 X 64 11 17 26 45 94 *

256 X 256 11 17 26 46 94 *

1024 X 1024 11 17 26 46 95 A

The diffusion function is g( x, y ) = e~t$+YJ,and the source term is f(x, y) = cos TX X sin~2y.
CCON = 10’8. Asterisks indicates nonconvergence.

Table IV. Number of Iterations Required for Convergence in RECCN at
Various Resolutions

Number of checkerboard squares per side

Resolution 4 8 16 32

8x8 25
16 X 16 29 27
32 X 32 53 42 28
64 X 64 65 56 43 29
128 X 128 76 69 58 45
256 X 256 86 80 71 60
512 X 512 97 92 85 75

The diffusion function is a checkerboard pattern, with alternating squares with values in each of
1 and 10. The source function is that for Table III. CCON = 1.2 10-10. The entries in each
column of the table solve the same problem at different resolutions.
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Table V. Efficiency of CAPC at Various Resolutions

NP Preprocess Solve time

NX, NY (number of time NP x
Preprocessing Preprocess

(resolution) irregular points ) time Solving time Solve time time

16,16 24 0064 0.0055 11.6 2.06
32,32 48 0.43 0.019 22.6 212
64,64 96 3.6 0.077 470 205

128,128 192 32.0 0.33 970 198

The preprocessing time (in CPU seconds) and the time to process, or solve, are hsted at four
different resolutions. The ratio of the preprocessing time to solving time 1s also presented The
value of the last column should be asymptotically constant.

is the linear dimension of the total domain and NP is the number of

irregular boundary points. These are approximately satisfied. The method is

well suited to situations such as numerical models, where the solution must

be obtained many times in a given geometry, for then the preprocessing time

can become negligible. For such models the iterative algorithms (CAPCN and

RECCN) are also well suited, because a good first guess is often available. In

such cases only a few iterations may be required to achieve acceptable

accuracy.

APPENDIX. CALLING SEQUENCE FOR CAPCN

Here we give the calling parameters for CAPCN. Additional information is

given in the code itself, where the details for RECCN and CAPC may also be

found. The sequences for the double-precision versions are identical.

CALL

(D)CAPCN( F, G, U, P, WORK, MASK, TRIGS) NX,NY,DX,DY,C,CHARGE, IPS,
VP, IP,JP,NP,ICFLAG> BA,BB,BC,BD,ITMAX, CCON,NITT,
IWRITE,IERROR)

Input Variables

F Real array dimensioned NX by NY. The forcing function. Values of F
outside the domain of interest (MASK = 0) may be set to any value.
This array is unchanged on exit.

G Real array dimensioned NX-1 by NY-1, containing the values of the
diffusion function. G should be positive within the mregular domain
(defined by MASK = 1). Over those regions of the rectangle that are
outside the irregular domain (MASK = 0), G may be set to any value.
This array is unchanged on exit.

P Real array dimensioned NX by NY. The initial estimate to the solu-
tion; if the user does not have an initial estimate, this array may be
set to zero. The array is overwritten on exit.

WORK Real array dimensioned NX by NY. A work-space array.
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MASK

Nx

NY

NP

DX

DY

CHARGE

BA

BB

BC

BD

VP

1P

JP

ICFLAG

CCON

ITMAX

IWRITE

Integer array dimensioned NX by NY. This array is used to identify
the mesh points within the rectangle that lie inside the polygonal
domain(s) in which solutions are required. The user must set
MASK(I,J) = 1 for all values inside the irregular domain (i.e., where a
solution is required) and set MASK(I,J) = O for other points, includ-
ing boundary points. The mesh of grid points so defined coincides with
the source function and the solution. This array is unchanged on exit.

Integer constant. The number of grid points in the x-direction. The
value of NX is restricted such that (NX-1) is of the form (2 L* 3J * 5k ),
where i is an integer greater than or equal to 1 and where j and k
are integers greater or equal to O.

Integer constant. The number of points in the y-direction.

Integer constant. The number of irregular boundary points.

Real constant. The discretization interval in the x-direction.

Real constant. The discretization interval in the y-direction.

Real array dimensioned NP. A work-space array.

Real array dimensioned NY. The boundary values on the regular
boundary at (I = 1, J = 2,NY-1).

Real array dimensioned NY. The boundary values on the regular
boundary at (I = NX, J = 2,NY-1).

Real array dimensioned NX. The boundary values on the regular
boundary at (I = l,NX, J = 1).

Real array dimensioned NX. The boundary values on the regular
boundary at (I = l,NX, J = NY).

Real array dimensioned NP. The boundary values on the irregular
boundary.

Integer array dimensioned NP. The coordinates in the x-direction of
the irregular boundary points. The condition 1< 1P(N) < NX must
hold for all N. The coordinates of the irregular boundary must not
coincide with the boundaries of the rectangular domain.

Integer array dimensioned NP. The coordinates in the y-direction of
the irregular boundary points. The condition 1< JP(N) < NY must
hold for all N. Note: the order in which the irregular grid points are
specified is immaterial. However, all grid points must be distinct.
Failure to ensure this will result in error condition IERROR = 7.

Integer constant. A flag: if ICFLAG = O, the routine will compute the
inverse capacitance matrix, C, and the pivot indices, IPS. If ICFLAG
= 1, the routine will compute the inverse capacitance matrix, C, and
the pivot indices, IPS, and solve the elliptic problem. If ICFLAG = 2,
the routine will only solve the elliptic problem, assuming that prepro-
cessing has already been done. ICFLAG is set to 2 on return.

Real constant. The convergence criterion for the iteration. Iterations
will proceed until solutions are achieved to any accuracy determined
by CCON, until a lack of convergence is detected, or until the maxi-
mum number of iterations is reached.

Integer constant. The absolute value, IITMWI, determines the maxi-
mum number of iterations permitted. If negative values of ITMAX are
supplied, the routine suppresses the iterative check on convergence.

Integer constant. Logical unit number to which to write out the
iteration number and convergence conditions. If IWRITE = O, this
output is suppressed.
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Output Variables

u

NITT

c

IPS

TRIGS

IERROR

Real array dimensioned NX by NY. The solution in the irregular
domain with U(IP(N),JP(N)) = VP(N) for N = 1, NP on the irregular
portion of the boundary, and also with U(l,J) = BA(J) for J = 2, NY;
U(NX,J) = BB(J) for J = 2, NY-1; U(I,l) = BC(I) for I = 1, NX; and
U(I,NY) = BD(I) for I = 1, NX.

Integer constant. The number of iterations required to get the solution
within the prescribed margin of error given by CCON.

Real array dimensioned NP by NP. The (factored) inverse capacitance
matrix. This array is set by calling the routine with ICFLAG = O or 1.
The array should not be altered on successive calls to the routine with
different right-hand sides.

Integer array dimensioned NP. An integer vector of pivot indices. This
array also should not be altered on successive calls with different
right-hand sides.

Real array dimensioned 2* (NX- 1). A real vector of coefficients required
by the FFT routine employed by the Poisson solver. This array is set on
the first call to the routine or when the flag ICFLAG = O or 1 is set. It
must not be altered between successive calls to the routine when
ICFLAG = 2.

Integer constant. An error flag on in~ut variables. On return values of
IERROR may be interpreted & follows:

IERROR = O—Normal status. No error detected.

IERROR = l—Value of NX-1 or NY-1 is less than 8.

IERROR = 2—Illegal value for NX. See description of NX for allowed
values.

IERROR = 3—Illegal value for 1P or JP. See descriptions for allowed
values.

IERROR = 4—Boundary points in 1P or JP are inconsistent with the
MASK array.

IERROR = 5—Illegal value for ICFLAG.

IERROR = 6—An illegal value (zero or negative) of G detected inside
the domain.

IERROR = 7—An error occurred while trying to factor the inverse
capacitance matrix. The matrix is probably singular.
This will arise if there are duplicate boundary points.

IERROR = 8—Maximum number of iterations reached.

IERROR = 9—Nonconvergence of the iteration detected.

IERROR = 1O—CCON is not positive.

IERROR = n-Illegal value for DX or DY.

Note: Error checking is normally done only on the first call to the routine or

when preprocessing is done. It may be forced by setting IERROR = – 1.
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