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This article develops an afflne-scaling method for linear programming in standard primal form.

Its descent search directions are formulated in terms of the null-space of the linear programming

matrix, which, in turn, is defined by a suitable basis matrix. We describe some basic properties of

the method and an experimental implementation that employs a periodic basis change strategy

in conjunction with inexact computation of the search direction by an iterative method, specifi-

cally, the conjugate-gradient method with diagonal preconditioning, The results of a numerical

study on a number of nontrivial problems representative of problems that arise in practice are

reported and discussed.

A key advantage of the primal null-space affine-scaling method is its compatibility with the

primal simplex method. This is considered in the concluding section, along with implications for

the development of a more practical implementation.

Categories and Subject Descriptors: G. 1.6 [Numerical Analysis]: Optimization—1inear pro-

gramming

General Terms: Algorithms

Additional Key Words and Phrases: Conjugate gradients, diagonal preconditioning, interior-point

algorithm, null-space affine scaling, primal method

1. INTRODUCTION

Since the development of the simplex method by Dantzig in 1947, research in

linear programming has been very intensive in developing mathematical

theory, new algorithms, and efficient and practical implementations. In 1984,

Karmarkar discovered a new method for linear programming called the

projective-scaling method. In contrast to the vertex-following simplex method,

which relies on the combinatorial structure of a linear program, the projective

method moves through the interior of the feasible polytope. Although cur-
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rently less evolved than the simplex method, it has the theoretical advantage

of polynomial-time convergence.

Many offshoots of Karmarkar’s method have been proposed and studied by

researchers since the original discovery. Three main categories are

projective-scaling methods, affine-scaling methods, and path-following meth-

ods. Affine scaling was originally proposed by Dikin [ 1967] and rediscovered

by several researchers, and the path-following method was originated by

Megiddo [1989] in a pioneering paper using a logarithmic barrier approach.

This article centers on the affine-scaling method. We define T(x) = y + Qx

to be an affine transformation if both y c R n and Q is an n x n nonsingular

matrix. In an affine-scaling method, the variables are scaled by an n x n

nonsingular diagonal matrix through the affine transformation. This method

is further classified into two main categories: range-space and null-space

affine-scaling methods. Barnes [1986] and Vanderbei et al. [1986] proposed a

range-space version of the affine-scaling method in primal form. Adler et al.

[1986] proposed and studied an affine-scaling method in dual form, which

can be shown to be of the null-space 1 type (see Nazareth [ 1987b]). Under

nondegeneracy assumptions, Barnes and Vanderbei et al. established conver-

gence results independently, and the viability of their methods was tested on

small dense problems. For the dual affine-scaling method, Adler et al. [1986]

and Nlehrotra [1989] showed encouraging computational results on large

sparse practical problems.

Nazareth [ 1987b] proposed a null-space version of the affine-scaling method

in primal form and tested its viability on small dense problems. (In the rest

of our discussion we shall call this method “the null-space affine-scaling

method.”) Its descent direction is defined in the null-space of the matrix A.

This method possesses several distinguishing properties and certain advan-

tages over the other afflne-scaling methods. One significant advantage of the

null-space version over the range-space version of the affine-scaling method

is that the descent direction can be approximated by an iterative method, i.e.,

it does not have to be computed exactly,

The merits of using the primal form versus the dual form, Adler et al.

[1986], also require consideration. The primal null-space affine-scaling method
is applied directly to the standard primal form of linear program, whereas the

dual affine method requires that problems be reformulated (implicitly) into

the dual form. Most practical problems are formulated and solved on the

primal form. Frequently, the solution sought needs not be an optimal solution

but rather a “good” approximate solution to the problem. Primal algorithms
are certainly to be preferred in this situation. In contrast, dual algorithms

must accurately find a dual optimal solution in order for its dual to be a

primal feasible optimal solution. An advantage of the dual affine-scaling

method over the primal is that an initial starting point is more easily

obtained, and the method seems to be less sensitive to the choice of starting

1Note that the range-space version of the affine-scaling method on the standard dual form does

not exist; see Nazareth [1993].
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point, in contrast to the primal affine-scaling method, as will be discussed in

a later section. In the dual affine-scaling algorithm, a fixed-basis matrix

corresponding to the identity matrix is used, making it possible to use direct

factorization methods to obtain the search direction. The primal null-space

affine-scaling algorithm is more reliant on iterative methods (when the basis

is varied). Finally, recall that the primal and dual simplex algorithms are not

really competitors because they complement one another, i.e., both are needed

in the mathematical programming repertoire, and the same holds true for

primal and dual affine-scaling algorithms.

The purposes of this article are to describe some basic properties of the

null-space affine-scaling method and to examine its applicability to practical

problems. As mentioned above, the method works directly on the standard

primal form of a linear program and computes the descent search direction

inexactly using a conjugate-gradient method with diagonal preconditioning.

Additionally, a “basis change strategy” is employed to form a new basis (like

a basis in the simplex method [Dantzig 1963]) periodically. One of our main

objectives here is to study the practicality of this combination of very basic

strategies. In these level-2 experiments (see Nazareth [1985] for terminology),

the experimental implementation is tested on a number of nontrivial publicly

available test problems; see Gay [1986]; and our results are discussed in

detail.

A key advantage of the null-space affine-scaling method is its compatibility

with the primal simplex method. This is discussed in general terms in the

concluding section within the context of implications of our results for the

development of a more practical (level-3) implementation.

This article is organized as follows. We review briefly the null-space

affine-scaling method in Section 2 and give some important properties of this

method in Section 3. In Section 4, the null-space affine-scaling algorithm and

the conjugate-gradient algorithm are given. Section 5 describes details of the

experimental implementation. Computational results of the null-space

affine-scaling method on a number of practical problems are presented in

Section 6. Compatibility with simplex techniques and conclusions are dis-

cussed in Section 7.

2. THE NULL-SPACE AFFINE-SCALING METHOD

We begin by reviewing the null-space affine-scaling method given in Nazareth

[MN%]. Considerthe following linear program (LP) in standard form:

minimize cTx

sot. Ax = b (1)

X20,

where c and x are n-dimensional vectors; b is an i-n-dimensional vector; and

A is an m X n matrix of full row rank with m < n. We define the set

{x >0: AX = b} to be the interior of the set {x >0: Ax = b} relative to the
affine space {x : Ax = b}. We shall assume that the linear program (1) is

bounded with a nonempty interior.
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Let x“ >0 be any interior point such that Ax” = b. We define z“ - cTxO

and E - n – m. The linear program (1) can be rewritten as

minimize CT(X – x“) + 2°

s.t. A(x – X“) = O (2)

X>o.

One approach to defining a suitable local (reduced) model, when dropping

inactive bounds at x“, is to augment the objective function by a quadratic

regularizing term with a metric that defines a measure of distance relative to

x“. By employing this, we obtain

minimize CT(X – x“) + +(x – x0) TD~2(x – x“) + z“
(3)

s.t. A(z –x”) = O,

where DO G diag[x~, . . . . x;] > 0. An alternative way to characterize (3) is to

say that it defines a suitable local quadratic approximating model. Note that

it has only equality constraints and can therefore be solved explicitly.

The solution of the equality-constrained quadratic problem (3) is given by a

Karush-Kuhn-Tucker (KKT)-type system, namely,

(4)

and this KKT-type system can be solved by various means. The null-space

approach discussed in this article is one such means.

Let Z be an n X E matrix of full column rank for which AZ = O, i.e., Z

spans the null space of A, and make a transformation of variables

X= X”+ ZAX8, (5)

where AX8 E R’-m.

By making the transformation of variables given by (5) in (3), we obtain the

fo~~owing quadratic local reduced r,Lodel

minimizeAIS ~ ~n-. (ZTc)TAx~ + ~lix:ZTD~z.Z~x~ + 2°, (6)

which is an unconstrained quadratic problem. Note that the dimension of the

variable A x~ in this reduced model is (n — m) X 1. The minimizing point is

given by

(7)(ZTD;2Z)Ax~ = –zTc,

and the associated descent direction in the original space is

Ax =ZAx~ = –Z(ZTD~2Z)-l ZTc. (8)

When a feasible step is taken in the direction given by (8), a better solution

is determined. Basically this constitutes one cycle of the null-space affine-

scaling method.
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It is easily shown that the direction Ax defined by (8) can be equivalently

expressed in range-space form, namely,

[
Ax = –DO 1 –DOAT(AD; AT)-l Al@@ (9)

This is the form of the affine-scaling direction proposed by Vanderbei et al.

[1986].

Note that when (Z~D: 22) in (8) is replaced by the identity matrix, one

obtains the simpler so-called Wolfe reduced-gradient direction. A related

reduced-gradient form of Karmarkar’s projective scaling direction is the

primary focus of a computational study of Shanno and Marsten [19881.3

For a broader discussion of the foregoing affine-scaling approaches, see

Nazareth [ 1987b].

3. PROPERTIES OF THE METHOD

In this section we present some important properties of the null-space

affine-scaling method. Properties given in Sections 3.2, 3.3, and 3.4 are

implicit in Nazareth [ 1987b]; but our discussion is more systematic, and in

particular, it highlights the basis change strategy (discussed in more detail in

Section 5.4). Proposition 3.1.1 and the proof of Proposition 3.5.1 are new, and

these two propositions hold the key to effective implementation of the null-

space affine-scaling method.

3.1 Finite Bound for Ax

As pointed out by Stewart [1988], it is possible to choose D;z with IID; 2 II = 1

such that the factor (ZTD~ 22) 1 in (8) is arbitrarily large. However, he has

shown that if X is a matrix of full column rank and if D is any diagonal

matrix with positive elements, then IIPD II and IIXJ II are bounded indepen-

dently of D, where X~ = (X~llX)-lX~D and PD = xx~ = x(x~~x)-lx~~.

Here II. II is the Euclidean vector norm or the spectral matrix norm. Using

these results, we show that Ax in (8) is well behaved if the linear program (1)

is bounded.

PROPOSITION 3.1.1. Assume that the linear program (1) is bounded. Then

Ax in (8) is bounded independently of D~2.

PROOF. We have

Ax = –Z(ZTD~2Z)-l ZTc

—– –Z(ZTD~2Z)-l ZTD~2D~c.

Since the problem is bounded, IID~cll is bounded by a constant independently

of DO. TO show A x is bounded, it suffices to show that the matrix

2This uses Karmarkar’s special canonical form of the linear program, and it is not necessarily a

direction of descent with respect to c.

3The results obtained were not encouraging. A null-space Karmarkar-type projective-scaling

algorithm, which uses a “projected-gradient” direction more like (8), was also studied on a single

example, almost as an afterthought to the main computational investigation. This seemed to

offer more hope, but was not pursued further.
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Z(Z~D~ 22)- lZ~D~ 2 is bounded. By construction, Z has full column rank,

and D; 2 is a diagonal matrix with positive elements. Hence, by the Stewart

result quoted above, Z(ZTD~ 22)- lZTD~ 2 is bounded if we let X = Z and

D = D~2. Thus, Ax is bounded. ❑

3.2 Search Direction with Any Choice of Basis

Now let Z be defined to be

z. H–B-ls

IzX~ ‘
(lo)

where A - [ B I S] is partitioned as in the simplex algorithm into basic and

nonbasic columns. The difference is that the starting basis B is defined to be

any arbitrary linearly independent set of m columns of A, and since x“ is an

interior point, each basic and nonbasic variable is at a positive level. Without

loss of generality, we can assume that B consists of the first m columns of A.

Since (8) and (9) define the same direction, and since (9) is independent of

the basis, it follows that the search direction given by (8) is independent of

the choice of basis. The starting basis B can either be fixed throughout the

whole operation or changed as often as one wishes to form a new basis. This

valuable freedom enabled us to consider a strategy called the “basis change

strategy,” which will be discussed in detail in Section 5.4.

3.3 Natural Preconditioned

Just like any other interior-point method, the core of this method is: how

efficiently can one solve (7)? Substituting (10) in (7), we obtain the more

convenient computational form

(sT~-TDi2B ‘lS +D;2)Ax~ == –ZTC,

where D~ = diag[ x;, . . . , x;] > 0 and D~ - diag[x~+l, . . ..x~] > 0. After a

transformation of variables defined by

the search direction in the reduced model can be obtained by solving the

equivalent system

[l+i14~]AI~ = –Z, (12)

where

Z = D~ZTc

and

MS = D@ TB-TDB2B-lSD8.

In the implementation of the null-space affine-scaling algorithm (NSASA)

defined in Section 4, the above system of equations (12) will be solved by

using the conjugate-gradient method. This system of equations will be a

well-conditioned problem if one can maintain the size of the elements of D~
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large and the size of the elements of Ds small. The basis change strategy in

Section 5.4 takes this into consideration; a new basis is formed periodically,

and one of the criteria used to form a new basis is the size of the vari-

ables. The transformation (11) implies that Ds is acting as a diagonal pre-

conditioned for the conjugate-gradient method. We call this the natural

preconditioned.

3.4 Approximation of Ax

Ax in (8) defines the direction used in the null-space affine-scaling method,

and A x in (9) defines the direction used in the range-space affine-scaling

method. Although the two directions are mathematically identical, one signif-

icant advantage of the form (8) over the form (9) is that A x~ in (7) can be

approximated without violating feasibility of the next iterate and without

incurring the expense of computing A xs exactly. This can be seen as follows.

If A 2s is an approximation in (7), then the corresponding descent search

direction in the original space is given by A x = 2A is and AA x = O since

AZ = O, i.e., the approximated direction vector Ax is in the space generated

by the columns of Z that span the null space of A.

On the other hand, one can easily see that Ax defined by (9) cannot be

approximated in the foregoing manner, i.e., it must be computed exactly,

suggesting use of a direct technique, e.g., Cholesky or QR factorization. The

approximation of A x~ can be done more advantageously by an iterative

method, one of the most attractive being the method of conjugate gradients

(CG method).

3.5 Descent Property of Ax with inexact CG Method

When each step A xs is approximated by the conjugate-gradient method, one

of the primary concerns is whether the corresponding direction in the original

space yields a descent direction, This is indeed the case, and we show it in the

following proposition.

PROPOSITION 3.5.1. If A xs in (7) is approximated by the CG method and if

Ax; = O is the starting point for the CG method, then the corresponding Ax is

always a strictly descent direction in the original space. Also, A x can be

expressed in the form A x = – Zfl ZTc, where fl is a positive definite matrix.

PROOF. Let f be the quadratic function to be minimized in (6), i.e.,

f’(~xs) = (Z~C)~AXs + (1/2)Ax~Z~~ii 2-ZAXS + z“. Let A xfi be the starting
point of the CG method with Ax: = O. This gives f(A x;) = z“ and Vf(A x:) =

ZTC. If A ZS is an approximation of A xs in (7) by the CG method (i.e., CG is

terminated after any k >0 iterations), then by its intrinsic property of

descent, we always have f(A 2s ) < IIA x;). Since ZTDij ‘Z is positive definite,

(1/2)A2~ZTD~2ZA4s >0. This implies that (ZTc)~A 2s <0 and CTZA is =

CTAx < 0. Thus, A x is a strictly descent direction in the original space.

ACM Transactions on Mathematical Software, Vol. 20, No. 3, September 1994.
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Now, let s = A 2s and y = –ZTC. Then, yTs > 0. We construct a matrix Q

as follows.

We claim that O is a positive-definite matrix. To show this, let z # O ● R‘.

Then, zTf2z = 2T2 + (zTs)2/yTs where E = (1 – (ys~/yTs))z. If z~s # O, then

z~flz > 0 since y~s > 0. On the other hand, if ZTS = O, then 2T2 = ZTZ > 0

since z # O. Either way, ZTO z > 0. Therefore, Q is a positive-definite matrix,

Also, it is obvious that 0 y = s. Since s = A 2s and y = – ZTC, we have

A2~ = – ~ZTc. Thus, Ax = ZA2s = –ZflZTc. El

4. THE NULL-SPACE AFFINE-SCALING ALGORITHM

We present the primal null-space affine-scaling algorithm (NSASA) for linear

programming and the conjugate-gradient algorithm (CGA) that solves the
system of equations to approximate the descent search direction.

Algorithm Al. Null-Space Affine-Scaling Algorithm (NSASA)

Given xO>oandO<O <land

43’={/3,,..., %l}>$={%+,,..., pn)
corresponding to the Index set of basic and nonbasic variables, respectively,

For k = O, 1,2,. . . unhl a stopping criterion is satisfied do

Let fl~ + dlag(xp,, ..., xPm), Ds + diag(xPm+l, ..., Xpn)

Solve [1 + D~STB -‘D528 - ‘SD~]AY~ = – c
using the inexact conjugate-gradient method, Algorithm A2, defined below,

Ax~ + D~Ax~
Ax + ZAx~
(compute step length)

Let a++ max[a> O lx~+aAx>Ol
(U;::y)

-xk+Oa+Ax
(change basis)

Change bass every p Iterations based on the value of Xk+’
and the sparsky of columns of A.

Update @, Y’ and B, S.
End

Algorithm A2. Conjugate-Gradient Algorithm (CGA)

Given ●cGA >0 and JMAX
STEP CGO: Let Ax~ + O

r G –D~ZTc

d~r

(CG Iteration; index j)
j+l

STEP CG1: Form q ~ // + D~STB - ‘DE ‘B - ‘SD~]d by the following steps
W * SD~d
Solve W = w
W+ DB2V

Solve BTV = w
q F D&Tv+ d
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STEP CG2: ~ ~ rrrldrq
Ax~ G Ax~ + /?d
r+e r – pq

If (Ilr+ll < ~c~~ or j > JMAX) Exit
Y + r~rh Irrr
d * r,+ yd
r~r+
j+-j+l

Go to STEP CGI

5. THE EXPERIMENTAL IMPLEMENTATION

Some preliminary level-l (see [Nazareth [1985] for terminology) numerical

experiments with the null-space affine scaling on small dense Kuhn-Quandt-

type problems are described in Nazareth [ 1987b]. These problems were of

symmetric primal-dual form and permitted a fixed-identity or negative-

identity basis matrix corresponding to slack variables to be used throughout.

In this section, we discuss a much more practical implementation of

algorithm NSASA described in the foregoing section. In particular, we discuss

the following: sparse-problem representation, obtaining an initial interior

point, finding a starting basis, the basis change strategy, preconditioning and

stopping criterion for the conjugate-gradient method, and finally, stopping

criterion for the main algorithm.

In these level-2 experiments of a primal null-space affine-scaling method,

our main objective is to demonstrate that the simple and natural diagonal

preconditioned of Section 5.5 along with the basis change strategy of Section

5.4 make the method applicable to realistic problems. We are also interested

in seeing how quickly the method finds an approximate optimal solution.

5.1 Sparse-Problem Representation

The test problems are available in MPS format (see Gay [1986]). In this

format, only nonzero elements are stored, and we use the column list/row

index packed-data structure for the internal representation of an LP matrix.

Readers are referred to Nazareth [1987a] for a more detailed discussion.

When solving the system of equations defined in the null-space affine-

scaling method, we do not form the matrix iVls = DsSTB - ‘Dii ‘B - lSDs

explicitly. What we need are the index sets of basic variables and nonbasic

variables. The detailed steps of computing the descent direction without

forming Ms explicitly are described in Algorithm A2 of Section 4.

5.2 Initial Solution

Any existing interior-point method requires an initial feasible interior point,

which is not readily available in most practical problems. A common practice

is to imbed the original problem in an expanded problem for which an interior

point is easily provided. Furthermore, it is highly desirable that this interior

point be far from the facets of the polyhedral set. We use the above ideas to

initiate our algorithm.
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In order to find an initial guessed solution X“ >0 such that Ax” = b, we

use the following steps. Suppose we = x“ where e is a vector of ones. Then

A( we) = b and ~(b~Ae) = bTb. This implies that p = llb112/lbTAel. Suppose

p“ = max( ~, 1.0) and x“ = woe. If we add an artificial variable u. to the

primal problem, then x = x“ and Ua = w“ gives an interior point of the
expanded problem

minimize CTX + Mu.

“ ‘+[(b~fi”))ua=b

(13)

x, Ua > 0,

where M is a sufficiently large positive number. The variable Ua becomes

zero at a certain iteration (end of Phase-1) or approaches zero as an optimal

solution is approached.

A simpler approach is to set p“ = 1 in the expanded problem, and a third

strategy is to set W“ = IIbll.

The choices p“ = max( p, 1.0) and No = 1 are used in some interior-point

methods. In our method, p“ = IIb II is used, because empirical evidence showed

that this choice gave slightly better convergence results when compared to

the other two.

5.3 Starting Basis

Our method is applied to the form of (1) (and its expanded version (13)), and

an initial starting basis must be provided to initiate NSASA.

To find a starting basis, we utilized as many columns corresponding to

slack variables (inequality constraints) in the original problem as possible

and then augmented these by a set of linearly independent columns using the

LUSOL set of subroutines [Gill et al. 1987] described in the next section.

Such so-called “crashing” procedures for finding a starting basis are standard

in linear programming (see Murtagh and Saunders [1983], for example).

5.4 Basis Change Strategy

We propose to change the basis periodically. The rationale behind our strat-

egy is based on the following observations and experimental results:

—In NSASA, we need to solve the system [ I + D,YSTB ‘DB ‘B- lSD~]A %~ =
—E using the CG method, where D~ - diag( X61, . . . . xPm) and D~ ~

diagixflm+ l,... , XPn). Clearly this system of equations will define a well-

conditioned problem if the basis matrix B is chosen so as to maintain the

size of elements of llB large and the size of elements of ~~ closer to zero.

Here, D~ is acting as a preconditioned for the conjugate-gradient method.

—When a basis that differed greatly from a true optimal basis was kept

fixed, preliminary experiments showed that increasing numbers of

conjugate-gradient iterations were required to satisfy the stopping crite-
rion. Also, these iteration counts were substantially large. When the basis

was closer to the optimal basis, the number of conjugate-gradient steps

was drastically reduced.
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—If a problem is nonclegenerate, then an optimal solution (vertex) consists of

basic variables whose values are all strictly positive. When a sequence of

points x 1, x 2, x 3, . . . is generated and converges to an optimal solution,

sooner or later the components of x k corresponding to the indices that are

nonbasic at optimality will go to zero. (Note, however, that most problems

are highly degenerate.)

—In CGA, two systems of equations involving the basis B need to be solved,

which implies that a factorization of B is inevitable for reasons of effi-

ciency. Therefore, we want B to be as sparse as possible.

These points suggest a strategy of changing basis periodically (not too often

because of factorization cost) based on the following.

(1) Size of elements of x‘.

(2) Sparsity of the basis matrix.

To obtain a new basis we sort the components of x k from largest to

smallest and form a subset of A, e.g., the first m + r columns, based on this

sorting where r is a small positive integer. Then, apply LUSOL to identify m

linearly independent columns.

The LUSOL subroutines are similar to those of Reid [1976] for factorizing a

sparse square matrix. However, an important feature of LUSOL is that it can

factorize a rectangular (possibly singular) sparse matrix and can identify

columns that are linearly independent. Additionally, the factorization is

performed based on sparsity to avoid substantial growth of nonzero elements,

i.e., if there are two or more dependent columns and if one of them must be

included in a basis, then LUSOL selects the one with the most sparsity.

These new features are crucial to our experiments.

It is possible that the first set given to LUSOL might not contain m

linearly independent columns (when a problem is dense, almost always, the

first set contained m linearly independent columns). If this happens, we may

either keep searching by appending another subset of columns from the

remaining set or keep the previous basis for the new iterations. In our initial

experiment, we append another subset of columns even though this process is

somewhat inefficient.

When either this strategy is used or a starting basis needs to be provided, a

certain number of factorization of subsets of columns of A are inevitable,
e.g., every p iterations; see Section 6.1. Although factorization is what one

wants to avoid whenever possible, these processes can be rationalized by the

following arguments. In most interior-point methods, the number of itera-

tions required to find a good approximate optimal solution seemed negligible

with varying problem size, and most of them are within 50 iterations (see, for

example, Adler et al. [1986]). If we assume that our interior-point method

also takes within 50 iterations for most of the problems and if we let p = 5,

then the number of factorization required in our basis change procedure is

approximately 10. NOW, suppose the simplex method is used to solve a

large-scale problem, and the number of iterations required is 5000. If the

basis matrix is refactorized every 25 iterations, then the total number of
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basis factorization is 200. In comparison, 10 additional factorization appear

to be insignificant. If the basis change strategy proves to be efficient, then the

cost of using additional factorization will have paid off.

5.5 Preconditioning and Stopping Criterion for the CG Algorlthm

When a CG algorithm is used, it is strongly recommended that a good

preconditioned be employed in order to enhance convergence. As mentioned

in Section 3.3, one of the characteristics of our method is that it possesses

a natural preconditioned (i.e., D~ is acting as a diagonal preconditioned). In

our implementation, we employ no other preconditioned for the conjugate-

gradient algorithm. Thus, we seek to investigate the effect of using the

diagonal preconditioned and the basis change strategy together. We use a

very simple stopping criterion for the CG algorithm; namely, we terminate

the CG algorithm when either IIr+ II < •c~~ or j > JMAX, where j is the

number of CG iterations. However, much more sophisticated strategies are

possible.

5.6 Stopping Criterion

In the simplex method, an optimal solution is found in a finite number of

steps. For an interior-point method the process is infinite. To terminate the

main loop of our algorithm, we check the relative improvement of the

objective-function value. Given a small positive tolerance c, the null-space

affine-scaling algorithm is terminated when

lcTXk _ ~TXk–ll

lCTXk-l\ < ‘“

Then x* = x k will be an approximate optimal solution for the given problem.

Note that this stopping criterion is very rudimentary, but adequate for our

experiments. In practice, the stopping criterion should be based on the

optimality conditions of the linear program.

6. COMPUTATIONAL RESULTS

6.1 Test Problems and Parameters Used

The implementation of NSASA is tested on a number of netlib test problems

provided by Gay [1986]. To reduce computational costs of these level-2

experiments we chose the smaller, but nevertheless realistic, problems in this

collection. These problems are in the standard form and have no explicit

upper-bounded variables. The problems are available in MPS format. Table I

displays the details of the problems tested. Problem names are displayed in

the first column of the table, and the second column gives the number of rows

without including the objective function. The next two columns show the

number of less-than-or-equal-to and greater-than-or-equal-to inequality con-

straints, respectively. The number of variables excluding slacks is given in

column 5. Column 6 contains the number of nonzero elements of A, and

finally, the last column displays the objective-function value obtained from

MINOS version 5.0 [Murtagh and Saunders 1983].
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Table I. Problem Statistics

Problem Rows L G Columns Nonzeros Objective

Afiro 27 19 0 32 88 –4.6475314e+02

Adlittle 56 40 1 97 465 ~.~z4~4gGe+oj

Scagr7 129 38 7 140 553 –2.3313893e+06

Share2b 96 83 0 79 730 –4.1573224e+02

Sharelb 117 28 0 225 1182 –7.6589319e+04

ScTapl 300 0 180 480 2052 1.4122500e+03

13eaconfd 173 33 0 262 3476 3.3592486e+04

Scsd6 147 0 0 1350 5666 5.0500000e+Ol

NSASA was implemented in Fortran, and the computational testing was

done on a DEC VAX 3500 under the VMS version 5.3 operating system in

double-precision arithmetic. The parameter settings are as follows. The step

size parameter /3 = 0.97 throughout the iterations. It is used to keep the next

iterate within the interior of the feasible region (strictly positive). The

algorithm is terminated when the relative improvement in the objective

function falls below ~ = 1.0 x 10-8. The artificial variable cost M is set to be

1.0 x 106 for all runs. ec~~ = LO X 10-3 and JMAX = 3h are used to

terminate CGA. A new basis is formed based on the two criteria in Section 5.4

every p iterations, and we used the relatively conservative choice p = 5.
Also, ~“ = IIb II is used for the initial starting point as discussed in Section 5.2.

6.2 Results

Table II summarizes results obtained by running our implementation of

NSASA. In the rest of this section, “iteration” refers to the iteration taken by

NSASA. When we refer to the iteration of the conjugate-gradient algorithm,

we use “CG iteration.” Column 3 shows the total number of iterations

required to satisfy the stopping criterion in Section 5.5. The average number

of CG iterations required is given in column 4, and the approximated optimal

objective value is recorded in the last column. The number of Phase 1

iterations in column 2 is obtained by checking if the value of the artificial

variable v. < 1.0 X 10-14 when the step length /3 = 1.0. Whenever this hap-
pened, ZJa is dropped, and Phase 2 is started.

We also present more detailed results for two of these problems, AFIRO in

Table III and SHARE2B in Table IV. These tables show how the CG iteration

count changes for each NSASA iteration with different choice of JMAX, the

upper bound for CG iterations (see Section 6.1). For these two tables, the first
column represents the iteration count of NSASA. The three pairs of remain-

ing columns give the number of CG iterations and the objective-function

value when no upper bound is imposed on the CG iteration count and
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Table II. Null-Space Afhe-Scaling Test Statistics

Problem Phase 1 Tot al Avg Num CG Objective Value

Afiro 3 20 13 –4.6475115e+02

Adlittle 6 40 35 2.2834384e+05

Scagr7 8 39 30 –2.3313898e+06

Sha;e2b
! , , ,

6 24 25 –4.1572770e+02 1
I 1

Sharelb 19 81 35 –7.6589315e+04

ScTap 1 6 94 78 1.4122679e+03

13eaconfd 37 37 36 3.3592491e+04

Scsd6 1 39 87 5.0512982e+Ol

Table 111, Problem: Mro

K CG Obj.(JMAX = m) CG Obj.(JMAX = 3fi) CG Obj.(JMAX = 2A)

1 32 2.3653822e+08 18 2.3653430e+08 12 2.3676490e+08

2 40 4.8262286e+07 18 4.8358506e+07 12 4.6285100e+07

3 36 –9.3131798e-01 18 -l.7073753e+O0 12 1.7121071e+06

4 30 -1.2079128e+02 18 –1.2171494e+02 12 –5.2526923e+O0

5 26 –3.0965928e+02 18 -3.0805632e+02 12 –1.1630458e+02

6 13 -3.9866114e+02 10 –3.9904504e+02 12 –3.2044357e+02

7 15 –4.5265653e+02 12 -4.5266613e+02 12

8

–3.9632306e+02

18 –4.5722590e+02 14 –4.5726766e+02 12 –4.5166146e+02

9 17 –4.6131904e+02 14 –4.6141904e+02 12 –4.6006155e+02

10 19 –4.6253329e+02 15 –4.6259895e+02 12 –4.6292963e+02

11 13 –4.6428699e+02 12 –4.6428771e+02 12 –4,6453942e+02

12 17 -4.6462129e+02 13 –4.6462455e+02 10 –4.6465373e+02

13 15 –4.6471190e+02 11 –4.6471946e+02 11 -4.6472550e+02

14 13 –4.6474542e+02 8 –4.6474505e+02 6 –4.6474266e+02

15 9 –4.6474993e+02 5 –4.6475023e+02 6 –4.64751 13e+02

16 9 –4.6475068e+02 10 –4.6475094e+02 9 –4.6475166e+02

17 11 –4.6475090e+02 10 -4.6475111e+02 10 -4.6475180e+02

18 9 –4.6475093e+02 12 –4.6475114e+02 11 –4.6475182e+02

19 10 –4.6475093e+02 10 –4.64751 14e+02 9 –4.6475183e+02

20 10 –4.64751 15e+02 10 –4.6475183e+02

~C~ I 352 I 256 214
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Table IV. Problem: Share2b

I Iil CG I Obj.(JMAX = m) I CG I Obj.(JMAX = 3X) I CG I ObJ.(JklAX = 2fi) 1

11 230 I 1.5913898e+07 I 27 I 1.9647906e+07 [ 18 I 3.6095128e+07 ]

2 141 5.6078344e+06 27 7.1894776e+06 18 1.8721292e+07

3 107 2.0113111e+06 27 2.2956270e+06 18 l.1384775e+07

4 93 5.0848943e+05 27 7.l160889e+05 18 6.4830991e+06

5 110 1.2090517e+05 27 1.5411370e+05 18 3.8509546e+06

6 111 –3.4433222e+02 27 –3.4389535e+02 18 2.2653503e+06

7 79 –3.6351291e+02 27 –3.6217538e+02 18 1.5069221e+06

8 94 –3.8680363e+02 27 –3.8502709e+02 18 1.l103877e+06
c11 110 I -4.0268746e+02 I 27 / –3.924234fk+02 \ 18 i 7.586 X944e+05 ~. I 1 1 I J

10 I 129 I -4.1071041e+02 I 27 I –3.9755083e+02 ] ~8 I 6.4458520e+05

111 251 –4.1310748e+02 I 27 ] –4.0fi57880e+02 I 18 I 2.8658951e+05

12 24 - L . .--..,--- ,“- -, . ..---.-”- --- -- ---------- , - A

13 26 –4.1535714e+02 27 –4.1331999e+02 18 –3.4969574e+02
14 25 -4.1563907e+02 27 –4.1400489e+02 18 –3.5789990e+02
15 29 -4.1569468e+02 27 –4.1528013e+02 18 –3.6574079e+02
16 10 –4.1572499e+02 11 -4.1545760e+02 18 –3.8545580e+02
,- . I –4.1572806e+02 ] 13 I -4.1 56359 !%+02 I 1s 1 –?,.9579.516e+02 I11 Y

1 1
18 4 -4.1572818e+02 12 –4.1567479e+02 18

19

–3.9992117e+02

5 –4.1572821e+02 12 –4.1571021e+02 18 –4.0117390e+02

20 4 -4.1572821e+02 10 -4.1572481e+02 18 -4.0246273e+02

21 4 –4.1572844e+02 8 –4.1572753e+02 18 –4.1 137699e+02

22 4 -4.1572847e+02 4 -4.1572768e+02 18 -4.1429755e+02

23 4 –4.1572848e+02 4 –4.1572769e+02 18 –4.1513307e+02

24 4 –4.1572848e+02 5 -4.1572770e+02 18 -4.1558688e+02 I!
25 18 –4.1562062e-

26 12 -4.1570085e-

27 10 –4.1572464e-
28 12 –4.1573058e-
90 9 —A 1 <7’2nC90.

L=u

+02
+02
+02
+02

-. . -.1”! ”””.. +02
30 2 –4.1573063e+02

31 3 –4.1573076e+02

32 2 –4.1573077e+02
99 4

A ‘ ‘7’’’77”+02
+02

O.J I I I I I ‘t I —’i. Adle. ullt

34 I 21 –4.1573077e

when an upper bound is imposed with JMAX = 36 and JMAX = 26,

respectively.

6.3 Discussion

The results tabulated in Tables III and IV illustrate how the iteration count

can change with different settings of parameters and the interplay between

terminating the CG early and the total NSASA iteration count. The last lines

of Tables III and IV give the total number of CG iterations for each case. An
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important feature of NSASA is that the cost of each outer K iteration varies

and that when the inner iteration cost is made cheaper (lower value of JMAX)

one can expect the NSASA total number of iterations to go up, but not by too

much. Also, toward the end, the number of CG iterations can go down

dramatically, so that the corresponding outer iteration is much cheaper. This

means that it does not matter if the NSASA iteration count goes up a little.

(Other problems behaved similarly and are not reported.)

The accuracy we obtained in Table II is consistent with the stopping

criterion for NSASA given in Section 5.6. Observe that in each case the

number of significant digits obtained plus the order of magnitude of the

optimal objective value equals or exceeds 7 or 8 (recall choice of e = 10-8).

For example, for Afho, we have 5 digits of accuracy plus 3 (order of magni-

tude of optimal objective value is about 103) giving 8. With Adlittle we have 2

digits of accuracy plus 5 equals 7. Sometimes we do much better, for example,

Sharelb, Scagr7, and Beaconfd. The one exception is Scsd6. Here we have

only 3 digits of accuracy, but the order of magnitude of the optimal objective

value is 102. For this problem, the accuracy can be increased by adjusting

parameters, for instance, decreasing value of cc~k. (See Section 6.1.) How-

ever, we do not seek full accuracy, because in any practical implementation,

we envision cleaning up with the primal simplex method, as will be discussed

in the next section. From the two problems in Tables III and IV, the

convergence characteristics of our method show that it has the ability to find

an approximate optimal solution quickly. Hence, for the purpose of a more

practical approach, the NSASA algorithm could have been terminated much

earlier than the number of iterations given in Table II. (In Table II, JMAX = 3

h.)

For the conjugate-gradient algorithm, one can expect that a good precondi-

tioned can lead to very rapid convergence, often after 0(6) CG iterations

(see Golub and Van Loan [ 1989]). For 6 of the 8 problems we tested, excluding

the problems Sharelb and ScTapl, the average order of CG iterations was

2.33 X A to obtain approximate optimal values given in Table II. These

results imply that the natural diagonal preconditioned along with the basis

change strategy worked well on these 6 problems, and the method required a

very low number of CG iterations. The total number of iterations of NSASA

required for each of these problems was less than or equal to 40.

The strategies we used did not work well all the time and for different

reasons. Problems Share lb and ScTap 1 illustrate some of the drawbacks of

the experimental implementation of our method. Share lb required 81 itera-

tions. The basis change and diagonal-preconditioning strategies worked well

for this problem, but we found that our method is sensitive to the starting

point for this problem. When W“ = 10* Ilbl/ is used instead of ~“ = 11611,the

number of iterations required was only 52 for the same degree of accuracy of

the objective-function value. When the exact CG algorithm is used, with

varying starting points, the number of iterations required for the same

degree of accuracy of the objective-function value ranged from as high as 180

to as low as 41. The case of 180 iterations corresponds to the choice p“ = 1,
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and 41 iterations corresponds to the choice p“ = 5.0 X 104 at the starting

point. The problem ScTapl required 94 iterations. When a problem is highly

degenerate, the basis change strategy can yield a new basis that is no better

or even worse than the old basis, i.e., the new basis remains very different

from the true optimal basis. Also, if the system of equations to be solved by

the CG algorithm is very ill conditioned, then the use of the diagonal

preconditioned may not be good enough. When this happens, a large number

of CG iterations is required. This in turn causes more NSASA iterations,

when the maximum number of CG iterations is limited to 3 h.

To summarize, we found:

—The descent direction can be computed inexactly with a relatively small

number of CG iterations.

-A good approximation to the optimal solution can be found quickly.

—A good starting point that works for all problems is a subject that remains

to be explored.

—A simple combination of strategies is workable. The basis change strategy

could be more adroitly employed either when problems are highly degener-

ate or the system of equations to be solved is ill-conditioned. Employing a

better preconditioned such as an incomplete Cholesky factorization [Golub

and Van Loan 1989] rather than the natural diagonal preconditioned may

enhance the effectiveness of the method. Some interesting connections with

preconditioners discussed in Gill et al. [1992] are also worth exploring.

7. COMPATIBILITY WITH THE SIMPLEX METHOD

The initial flurry of excitement and the great strides made in the study of

interior-point methods in the eighties, which some felt might even sweep

aside much of the earlier algorithmic work in linear programming, have given

way to a more balanced view. It is now recognized that the repertoire of

computational linear programming has been greatly broadened, but that the

simplex method continues to play a key role. Indeed, the development of

interior-point methods has helped to stimulate the reexamination and en-

hancement of simplex techniques.

From the preceding sections of this article, it should be clear that the

null-space affine-scaling method and the primal simplex method share much

of the machinery of the reduced-gradient approach and are highly compatible

with one another. (For additional background, see Nazareth [1987a] and

Murtagh and Saunders [1983].) This is a key advantage of the NSASA

approach and can be exploited in various ways.

A simple yet effective approach is to pick up from a particular basis found

by the NSASA algorithm and clean up with the “pegged-variable” extension

of the simplex method, which is able to use an interior point (see Nazareth

[1987a] for details).

A much more ambitious approach is explored in Kim and Nazareth [1992],

where the two approaches are hybridized within the framework of Dembo
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and Sahi [1984]. In effect, the simplex method and NSASA are used in

combination in a multiple-pricing strategy. The hybridized method is initi-

ated with a given feasible solution and a partition of the constraint matrix A

into three parts that correspond to basic, superbasic, and nonbasic variables

(terminology of h!Iurtagh and Saunders [19831). The partition is done based

on a given feasibility tolerance O < 8< 1 and the value of the component of

the feasible solution. The simplex computation of reduced costs (pricing),

utilizing basic and nonbasic columns, is used to identify suitable candidate

columns, and NSASA, utilizing basic and superbasic columns, is used to

make rapid progress within a subset of columns selected. Note that the two

methods, simplex and NSASA, share exactly the same basis matrix. This

kind of approach was explored in a preliminary way and some computational

results were obtained; see Kim [1991]. Note that this also has a lot in

common with so-called “build-up” and “build-down” strategies; see Dantzig

and Ye [1990] and Ye [1990]. Some recent suggestions of Tseng [1992] on

“partial affine scaling” are also relevant in this context.

Some of the characteristics and advantages of the hybridized method are as

follows.

—The method can be initiated from any point: interior, vertex, or on a facet

of the feasible polytope,

—It includes both pure simplex and pure interior-point methods as special

cases and employs partial and multiple pricing.

—It exploits the fact that NSASA finds an approximate solution quickly and

shares common machinery with the simplex method (same basis matrix).

At this point, the development is very preliminary, and much more needs

to be done. However, we think the approach has a great deal of potential.

The experimental implementation described in this article was based on

problem setup modules from LPKIT (see Nazareth [1986]), LUSOL routines

described in Section 5.3, as well as other homegrown modules. The results are

sufficiently encouraging to warrant the development of a much more practical

level-3 implementation. We believe that the best way to achieve this would be

to directly extend MINOS [Murtagh and Saunders 1983], because the code

already contains much of the machinery needed to incorporate null-space

affine-scaling interior-point techniques. Our research lays the foundation for

this substantial and worthwhile further undertaking.

Finally, we note that the preconditioned-CG approach developed here can

be adapted to solve Karush-Kuhn-Tucker-type systems arising in other inte-
rior methods, for example, the primal-dual predictor-corrector method (see

Lustig et al, [1992]).
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