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Abstract

Detection of patterns in images with classifiersusrently one of
the most important research topics in computeromisiMany
practical applications such as face detection existrecent work
even suggests that any specialized detectors ¢erger-point
detectors) can be approximated by very fast detectiassifiers.
In this paper, we analyze the requirements on tedikh are
needed when experimenting with detection classifiend we
present a general framework which was created Ifdl finese
requirements. This framework offers high perfornenfor
training, high variability, elegant handling of dmuration and it
is able to meet all the requirements which ariseerwh
experimenting with almost all possible kinds of edgion
classifiers. The framework offers good testing srpp full
supporting infrastructure and some useful trairatgprithms and
features. We offer this framework for research addcational
purposes and we hope it will allow lower initia@stments when
experimenting with detection classifiers.
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1 Introduction

Detection of 2D patterns in images has many realdvo
applications ranging from camera orientation to potar-human
interaction. In past years, many purpose specifit application
specific detectors were proposed. Many of thosssiflars were
carefully designed by experienced scientist andinemegs to
achieve high detection rates and at the same time |
computational cost. Examples of such detectorsaneus corner
detectors or other interest point detectors [Mijazigk and
Schmid 2004, Kadir and Brady 2001], road sign detsc
[Escalera et al. 1997], and the frontal face detebased on a
cascade of boosted classifiers by Viola and Ja2@81]. Some of
the detectors (mostly the face detectors) usetstriof classifiers
which employs a mechanism of attention of focushSdetectors
use simple and fast classifiers to reject the mmostmon negative
samples and then they use gradually more compbssifiers to
deal with the more difficult and rare negative s&sp

When designing detectors of 2D patterns for remkti
applications, the demands for high precision andv lo
computational cost and the effort to optimize bothlthem at the
same time, consumes most of the development tineeemly
Sochman and Matas [2007] have proposed a unifigmioaph
how to emulate behavior of any existing detectorskguential
classifier which is optimal in terms of computabrtomplexity
for desired detection precision. They argue th&enusing their
approach, it is possible to skip the process ofmopation and
finding a fast and still precise enough approxiomtito the
original detector, which can be sometimes very ialiff for
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humans. Instead, the main effort is put into figdan suitable set
of features which are then automatically combinedo ia
WaldBoost ensemble. In their work, they report thhaey
managed to automatically create classifiers emrmgétvo interest
point detectors, Hessian-Laplace [Mikolajczyk arothi8id 2004]
and Kadir-Brady [2001] saliency detector, while iaging 70x
faster detection times over the original Kadir-Bralktector.

Considering the wide area of application of classibased 2D
pattern detectors and the amount of research effeested into
this area in recent years, it is surprising thdy emnimal publicly

available support for researchers in this fieldvailable. This fact
is in high contrast to classification and patteatognition in
general, where research tools and libraries [IK@SMM, Matlab

toolkits, Yet Another Learning Environment and mantkiers are
generally known and used.

The lack of specialized tools is most restraininghe beginning
of the research, as training and testing of deteatiassifiers has
some special characteristics which result in thet faat it is
necessary to invest a lot of effort before any expents can be
conducted. Usually, some set of tools or a fram&wwoviding
annotation and extraction of samples from imagestdtrapping,
handling of special representations of samples. (entegral
image, frequency image), feature extraction, nomima
suppression, testing, etc. has to be created ianadv Some care
has to be also given to memory and computatiorfidiericy.
Otherwise the experiments may be constrained bifaie time
or equipment.

To our knowledge, the only publicly available arsbful tool for
training of detection classifiers is the impleméioia of cascade
of boosted classifiers with extended set of Hdee-Ifeatures
[Lienhart, and Maydt 2002] which is similar to thaiginal

algorithm used by Viola and Jones [2001] in theonfal face
detector. This implementation is available as at par the

OpenCV library. Unfortunately its use as a base research
efforts is relatively limited, as it is not well demented, it is not
modular enough and it does not provide good supjpart
evaluation of results.

Due to all the facts mentioned before, we havetedea general
framework which can be used as a base for res@atble field of
detection classifiers.

The rest of this paper is structured as followsstFsome of the
current approaches to training of detection classif are

described in Section 2. In Section 3, demandsriaxgerimental
framework are formulated and analyzed. Generalgdesieas of
the created framework are presented and some aftésesting

parts are described in more detail in Section 4&dation 5, some
results achieved with current algorithms implementa the

framework are presented together with discussiorieafning

efficiency. Finally, the paper is concluded andamsldor future
work are presented in Section 6.

2 Detection classifiers

The first practically applicable real-time detecté2D patterns in
video based on classifiers was the frontal faceaiet proposed



by Viola and Jones [2001]. This detector combinesascade of
boosted classifiers with Haar-like features andozeh image
representation called the integral image to reashfélse positive
rates and very low average computational cost.

Each stage of the cascade in the Viola and Jonesxtde (see
Figure 1) is a single classifier trained by AdaBoakyorithm
[Freund and Schapire 1997] which is tuned to rdgdctportion of
background samples (e.g. true negative rate (TNR)5F while
keeping almost all face samples (e.g. false negatite (FNR) =
0.001). All the samples which are not rejected &rgher
processed by following stages of the cascade. Dutiaining,
background samples are bootstrapped after eacle $tam a
large pool of images to keep the size of negatraiinhg set
constant. This cascade reaches very low averagsifitation
time thanks to the fact that the majority of sareptassified
during scanning of images correspond to backgrodfgb very
low false positive rate (FPR) is reached this way.

Search
Window

Not a Face
Figure 1. The schema of detection cascade.

The cascade structure of the detector provides doenke-off
between precision of classification and averageisiet time;
however, it still is not enough for real-time agplions. Viola and
Jones achieved further significant speed-up bygusimple weak
classifiers which use Haar-like features (see Jigibese features
can be computed very fast and in constant timeef@ry scale
when integral image is used.

[ o [

Figure 2. The basic Haar-like features which weseduby Viola
and Jones [2001] in their frontal face detector.

The original approach by Viola and Jones was suwesaty
extended by many researches who mostly focuseckreibin
modifying the cascade structure to make better afsgained
information Bochman and Matag004a, Xiao et al. 200§ or on
extending the set of Haar-like featuresefhart and Maydt 2002,
Mita et al. 2005], optimizing the precision-speexhde-off
[Sochman and Mat2005],0n better search in the feature space [Li
et al. 2002, Sochman and Mata®004, or on using more
discriminative features (e.g. PCA) in the lategsta[Zhang et al.
2004] where Haar-like features may not bring muandbit
anymore due to the very difficult decision problem.

Approaches to face detection which differ signifita more from
the Viola and Jones detector were also proposecheSy them
reach high detection rates, but they usually dopmovide real-
time performance. Some of such approaches uselneiveorks
[Rowley et al. 1998] or support vector machines NB\{Ratsch
et al. 2004].

The area of face detectors based on classificaid®D patterns
has been already very well explored and the passiekeds of

future research can be very well extrapolated fthe previous
research. On the other hand, the use of detectassifiers for
other tasks, such as interest point detection, iislaively new
topic. Fortunately, the ideas from face detectoesim most cases
general enough to apply also to detection of otpatterns.
Evidence for this conclusion can be found in therkvof
Sochman and Matas [2007] where they use WaldBdgstithm
with Haar-like features to emulate the Hessian-bepldetector.
This approach is the same as they use for facetimi¢Sochman
and Matas 2005]. The only difference when they eteulthe
Kadir-Brady [2001] detector is that they extend s$le¢ of features
by energy features.

3 Research Framework Design Choices

Experimenting with 2D pattern detection classifiél@s many
specifics which need to be considered when desigran

experimental framework. Some of the specifics adisectly from

the nature of the task. These include the need nobtating

objects in images, handling of image data, testing created
classifiers by scanning of images and also usinges&ind of

non-maxima suppression to post-process the ravetiteie from

scanning. Other requests come from the trainingrilgns which
are used. These requests include the need of astiagiing
mechanism and the need of an importance samplirgpanésm.
Further, multiple representations of samples mapdmsied to be
able to evaluate different types of features affitly. The
framework should be also modular enough to allompse

addition of new features and classification aldpms and to allow
the coexistence and combination of these individpatts in

classifiers. Let's now look at some of the aspéattaore detail.

The basic function of the experimental frameworkoading of
samples. There are some fundamental differenceSom the
positive samples (patterns of interest) and negasamples
(background) are obtained.

The positive samples are usually extracted fromdkemotated
images. The framework should be able to processh suc
annotations and cut out the samples. On the othed,hwhen
conducting larger number of short experiments (&uging of
parameters), it is desirable to cut the samples@gprocess step.
Some of the works [Xiao et &003]suggest that it is beneficial to
extend the positive dataset by applying randomsfaamations
(e.g. affine transformation or noise) to the antemtapositive
samples. In such case, it may be desirable to mg®rtance
sampling or even bootstrapping [Sochman and Mz@as]on the
positive set. To make this possible, applying of trandom
transformations must be integrated into the framkvinstead of
applying the transformations as an of-line prepsecgtep. When
emulating corner point detectors and other similatectors, it
may be desirable to integrate the emulated detedtio the
framework to gain more flexibility for experiments.

When training detectors, large amounts of backgiosamples
are needed (up to bilions). It is not possible ¢efk all of these
samples in memory or to store them individuallye Background
samples must be definitely obtained at random joositfrom
larger images on demand during the training. Howeitestill

may not be effective to keep all the source imagesemory and
some mechanism to exchange the images should hédedo
When training face detectors, the background sangee
ususally extracted from images which do not contaig faces.
However, being able to cut background samples froages with
annotated objects of intereset may provide betl@ssification
performance and it is necessary when training fangle corner



point detectors. The loading of background sampilag consume
a significant part of training time, especially safering that

during bootstrapping, it is necessary to classifysamples by the
partially trained classifiers. Fortunately, it isgsible to paralelize
this part efficiently.

Some of the algorithms, especially the boostingrilgms which
are used to train detection classifiers, are venple. Compared
to that, the bootstrapping mechanism which is usedll of the
algorithms, may pose a significant additional @ftorimplement.
This fact suggests that the framework should peadcommon
bootstrapping mechanism which could be used bytthiaing

algorithms. The same is true for importance sargplin

The fact, that many of the detection classifierg ttaar-like
features which can be evaluated in constant tirdegendent on
their size, offers a possibility to represent taenples as indexes
into integral representation of the source imagemfwhich the
samples are cut. This approach is, however, vengtcaining. It
requires all of the source images to be loaded émary at all
times and it significantly reduces possibilitiesusfng other types
of features and other types of classifiers. Sudttisn also limits
the possibility of applying random transformationts the
annotated data. A more suitable solution is toalesall samples
to single size.

There also should be multiple representations ef shmples
available. The integral images are suitable forrHiaa features,
but other features need different representatiams efficient
evaluation. Basic gray-scale representation shbeldvailable to
be used by algorithms like SVM and neural netwahd features
like Local Binary Patterns (LBP)Ojala and Pietikainen 19%@&and
PCA. Frequency representation is suitable for Gaatmvelets
and for other filters. Even color information car heeded in
some cases. It is not desirable to keep all ofé¢peesentations at
all times, but rather to create them on demandeafuires and
classifiers. In some cases, it may be even benkffor the
features or classifiers to have the possibilityattach some kind
of “user” data to the samples. For example, in ¢thse of the
Local Rank Differences (LRD) [Zettk et al. 2007], sums of
rectangular areas of only few different sizes carcdmputed only
once and stored to significantly speed-up theitmgiprocess.

The main testing procedure for detection classfieonsists of
multi-scale scanning of images, non-maxima supjesand
comparing the detections with a ground truth. Tdasic testing
procedure is used for all kinds of detectors arst #he reported
measures are usually the same. That is the reasomhich any
framework for experimenting with detection clas=i§i should
provide this method of testing for any classifitratt can be
created in it. To make it possible, the sampleshavbe loaded
and represented during testing in the same wayasgitraining
(rescaled to single size, the same representatigaitable). This
may not be the most efficient way to scan imaggseeally when
using Haar-like features, but it is the only way keep the
framework general.

The general test provided by the framework shoelideally able
to produce ROC, DET and precision-recall curve fiaultiple
lengths of a classifier (if it has multiple stagel)should also
provide average speed of a classifier and it sholotl a curve
describing the amount of samples which reach tlivihual
stages of the classifier.

It is desirable that the framework provides somepsut for
logging information about the training process. sThiformation

may for example include the fraction of area ungezcision-
recall curve after each stage, amount of alreaalysdied positive
and negative samples and speed and duration oirigai

In general, it is necessary that the framework éslutar as much
as possible. It must be possible to add new legralgorithms,
features, test and sources of data individuallyexit any need of
understanding the rest of the framework. It mustlse possible
to combine different features and classificatiogoathms into
single detector. Only when these conditions are ihet possible
to efficiently use such framework for research.

4 Framework Description

Based on the analysis which is discussed in theiqure section,
we have created a framework for research on detectassifiers
of 2D patterns. The main design objective was tovige a

flexible and general framework which can be usedadsigh-

performance basis for experiments in this fieldoter objective
was to allow good portability between hardware aodftware

platforms. Finally any inherent dependencies on roencial

libraries and tools were avoided to allow usinghs framework
for research and possibly educational purposes owithany
expenses. The last requirement is valid espedialthe case of
developing countries.

Considering all of the objectives (especially phbittty, high

performance and modularity), C++ was chosen as riost
appropriate development language. Significant aiggnof using
C++ is also the fact that many freeware or operrc&C/C++
libraries and tools exit. Currently library libxmi2 used in the
framework to load configuration and store resu@\UPIot is
used to visualize results and some optional partiseoframework
use the OpenCV library. Additionally OpenMP appiica

programming interface can be used to boost perfocamaon
shared-memory multiprocessor platforms.

The structur e of the framework

The framework itself consists mostly of definitioointerfaces
which allow adding of new parts almost in plug-gidy fashion.

These interfaces are available for all parts offtamework which

are expected to be experimented with. These parisde sources
of samples, features, testing methods, bootstrgppand

importance sampling, cascade-like algorithms, statgessifier

algorithms, weak learning algorithms, trained dféess and weak
hypotheses.

The part of the framework which provides loadingsafmples has
three levels. The topmost level provides a unifavay to load

samples from a dataset and is used by the traalgagithms. The
middle level corresponds to subsets of samples hwhice

available in a dataset. The objects correspondinthé subsets
distribute requests for samples between individpalsical

sources of samples which form the bottom level. Types of

individual sources of samples are hidden behind eaegl

interface and thus new types of sources of sangaasbe easily
added. The structure of this part of the frameweak be seen in
Figure 3.
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Figure 3. The part of the framework which take®azfrloading
samples.

Interfaces that form the part of the framework whis dedicated
to training of the detection classifiers is showrfigure 4. These
interfaces provide abstraction for most of the petelent parts of
training algorithms which follow the idea of thecéadetector by
Viola and Jones [2001]. These cascade-like algosttuse a
bootstrapping mechanism for loading of samples. Samples
can be subsequently passed to stage learning thigsriwhich

create monolithic classifiers. These algorithmsratgeon fixed
set of samples, but can use provided importanceplgagmto

speed-up training.

The weak learning algorithms, which are normallgdiby the
stage learning algorithms, create individual wealpdtheses.
Although only domain partitioning weak hypothes&cHapire
and Singer 1999] are supported, the generalith@ftamework is
not reduced. The reason for this is that all thekveypotheses
can be very well approximated by the domain partitig

hypotheses. Not much difference exists between stege

classifiers and weak hypotheses — both can beectégtthe same
algorithms. The reason for the existence of twassp interfaces
is that the weak hypotheses contain equivalentigfisavalues
from the original discrete AdaBoost algorithm [Fnduand

Schapire 1997] which are set by the boosting algms. Finally,

the weak learning algorithms use features to tmansthe image
data.

During training, objects which contain multiple feses are used
and the individual features are accessed by unigeger indices.
This allows efficient evaluation of features likalé®r wavelets or
LRD which can share certain computations betwedividual
features. When the best feature is selected, agctobpntaining
only this single feature is created. Such objedtiither wrapped
by a weak hypothesis and attached to the stagsifaéasWhen
the stage classifier is finished, it is attachedhe cascade-like
classifier. The interfaces of classes which cardmbined into a
classifier and their relations are shown on fidaire

The structure of the training part of the framew@kspecially
designed to fit the algorithms similar to the cakcaf boosted
simple classifiers; however, this structure is alable to
accommodate most other approaches by skipping sufimits
parts. For example, SVM or neural networks canniggémented
as stage learning algorithms and they can use #te fitom
samples directly. Another example is the WaldBaalgbrithm
which does not use stage learning algorithms, Ises wirectly
weak learners.

----- Cascad-like algorithm: »| Bootstrappin

;

Data sourc

\ 4
Stage learning algorithr
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Figure 4. The interfaces which form the trainingt jpd the
framework together with their dependencies.
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Figure 5. The interfaces which are defined in thenework to
provide support for created classifiers.

Samples

All the samples in the framework are representedniyvidual
objects which are chained into linked lists. Thisriuch different
to general classification environments, where dasaare usually
represented by matrices of floating-point values.

Representing of samples as individual objects pes/possibility
to structure the information and store multipleresentations of
the original data as well as any other additiomdbrmation.
Samples can be currently represented in the frametwp gray-
scale images, integral images, and frequency imagéso,
information, such as class of the sample, its weghich is used
by boosting algorithms), standard deviation of [sxeor
identification of the exact origin of the sampleg(ethe name of
the source image and position within it) can beestanto the
sample object. Additionally, the samples provideegal purpose
storage which can be used to store temporal infomar even
additional non-visual information connected to saenple.

Testing

The framework provides an interface which allowsrago create
test of their own. Currently, the framework congain
implementations of two tests. One of them is desiigto test
individual samples and the other is a scanning Whien testing,
samples are loaded from a data source in the sayesvduring
training. This implies that the test does not hdirect control
over which samples are loaded and does not nedgskaow



where the samples are from exactly. This is notadlpm when
testing on individual samples, since a single sufseen the data
source can in this case contain samples of onblesiciass. But it
must be dealt with in the case of scanning testhasubset from
which the samples are loaded has to contain atxsotows from
the scanned images. The sub-windows which are ifdabg0
contain the pattern of interest have to be furthecessed by
some non-maxima suppression algorithm and fin&kyresulting
detections have to be compared to a ground trutbtation.

The implemented scanning test achieves this thamkbe fact
that the framework provides the possibility to los@mples in
linear order and that the samples that are cut froages receive
an identification string which contains the nametloé source
image file, position in the image and size of thréginal sub
window. Based on the textual identification, an rappiate
annotation file is found and loaded. Also, the posiand size of
the sample is extracted from the identificatioimstr

Configuration

The framework, as it has been described up tgthiigt, lacks one
crucial feature to become really useful research fthe missing
feature is the possibility to define experimentssome external
configuration file. Such task would be very simflé was not
necessary to maintain the independency betweennthedual

parts of the framework. However, the framework oles quite
an elegant support for configuration.

To store the configuration information, the framekvases XML

files in which each XML node corresponds to a singbject.
During initialization, the XML file is parsed bybkml2 library

which produces a tree structure representing thetend of the
XML file. This tree structure is consequently presed by
constructors of objects in the framework. When astictor
processes an xml node, it offers the child nodesotioer

constructors. An object of specific class is créaialy when the
constructor receives xml node of appropriate ndfaeh interface
which is defined in the framework has a functiosigsed to it
which, when given an XML node, tries to create ofgef classes
which implement that interface. This way, it is f@iént to

register new classes in appropriate loading funstiand then all
configuration information can be processed in theiistructor.

Parall€elization

When analyzing algorithms which are similar to dnigiinal Viola

and Jones algorithm, it can be identified thattiEla of weak
classifiers consumes the most significant parhefttaining time.
The framework offers a way to reduce this time laragiel

execution of this part. When multiple weak learnars defined,
the framework is able to assign each of them t@rsd¢p thread
and execute them in parallel while achieving alntiogtar speed-

up.

Another part of the training algorithms which comas
significant amount of time is bootstrapping. Thiartpis also
parallelized in the framework. During bootstrappiegch thread
is loading samples from separate physical sourtearoples and
classifies the samples by the provided classifier.

5 Results
Currently, the whole basic infrastructure of thanfiework is

implemented as well as many of the variable pditte available
boosting algorithms are AdaBoost and GentleBoostmFthe

detection classifiers, the framework contains digsscascade
and the WaldBoost algorithm [Sochman and Matas R0®IS0

some weak learners were implemented — e.g. decist@s and
histogram weak learners. Haar-like features, LRI &BP are
also available. The framework further provides sauppfor

loading of samples from multiple sources and supfmrtesting
by scanning images.

The testing procedure which is currently implemdnte the
framework is able to scan
suppression which was suggested by Sochman ands j2a8a7].
The testing procedure creates receiver operatiragacteristic
(ROC), detection error trade-off curve (DET) andgision-recall
curve for multiple stages of the tested classifiers also able to
plot the dependency of average speed of the dessif the
length of the classifier.

To demonstrate the capabilities of the framework have trained
a WaldBoost classifier for frontal face detectioask. The
classifier was trained on 5000 hand-annotated fadesh were
divided into training and validation sets. Additadly, random
affine transformations were applied to the origisamples until
the sizes of both sets reached 20000 sampleschitaation of
the training algorithm, non-face samples were hgped from
a large pool of images without any faces to keeprthmber of
non-face samples in training and validation s@Q0&00. The final
size of the classifier was set to be 1000 and lfifeaavalue which
defines the False Negative Rate of the resultingsifier was set
to 0.1.

The progress of fraction of area under precisi@aliecurve on
the training and validation set can be seen inreigu Figure 7
shows the amount of negative samples which reaeimthividual
stages of the classifier.

The classifier was tested on MIT+CMU frontal facgaset. The
classifier needed to evaluate on average 5.4 wgpétheses per
window to make a decision. The graph describingedpef the
classifier can be seen in Figure 8. The ROC andptkeision-
recall curve which describe the performance of dlassifier on
the test dataset can be seen in Figure 9 and urd-it0. Finally,
graphical representation of the detections candes $n Figure
11.
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Figure 6. The area under precision-recall curvéhertraining and
validation sets for the in individual stages of thessifier.

images and use non-maxima
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Figure 8. Speed of the classifier.

0.8

0.7

0.6

0.5

0 100 200 300 400 500

Figure 9. The ROC curve on the MIT+CMU frontal fatsaset.
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Figure 10. The precision-recall curve on the MIT+QKtontal
face dataset.

One of the objectives of the framework was to rediph

performance for training of detection classifiefdis objective
was reached by optimal use of cache memory duraiging of

weak classifiers, by optimized evaluation of featurand by
parallelization. We measure the speed of trainirfigweak

classifiers as number of features which are evetuger second
during the training (features per second). All theasurements
were performed on a blade server with two Intel iXd€5245

quad core processors running at 2.33GHz.

&
espingcedure

When using Haar-like features with simple weak less, the
framework was able to reach speed 60M featuresgmemd while
running in a single thread. With LRD, the framewagached
speed of 45M features per second. Speeds when ngirini

multiple threads were also measured. For this tdsir-like

features were used with more complex weak classifi¢he

results can be found in Figure 11. It can be skahthe speedup
is almost linear and reaches 640 % of the speeingfe thread
when all 8 threads are used. The speed of boopstrgpvas

measured to be 3,5M samples per minute for theddaclassifier
when using single thread.

Figure 11. Visual output of the implemented t



Number 1 2 3 4 5 6 7 8
of threads
Speed 42| 80| 116 148 160 198 286 270
Figure 11. Speed during training of weak classffer different
numbers of threads. The results are in millionswafluated
features per second.

6 Conclusion and Future Work

This paper presents a framework which was desigodze used
as a base for research on detection classifie2®qgfatterns. This
framework offers high-performance in training, higariability,

good configurability and it is able to meet all thejuirements
which arise when experimenting with almost all fploleskinds of
detection classifiers. At this point, the framewarKers good
testing support, full supporting infrastructure asdme useful
training algorithms and features which allow tragf classifiers
with high precision of detection and low computagibcost.

Anyone who plans to participate in research of ciaie

classifiers can find in this paper a basic analysfs the

requirements for tools that are needed for condgakperiments
in this field. This information should be useful decide if it is
effective to create new tools or it is more effeetio search for
tools which have been already created. If the latéound to be
true, we encourage you to contact us, as the framewhich we
described in this paper is freely available foressh and
educational purposes.

At this point, the framework itself is finished ararther work
will be mostly focused on increasing precision bé ttrained
classifiers. This may be achieved by implementingwn
algorithms and new features or by integrating liesalike libsmv
into the framework.

Currently, data which is suitable for frontal fadetection is
prepared and ready to use. In the future, we wamxtend the
experiments to other detection problems such actieh of out-
of-plane rotated faces or emulation of existing neor point
detectors.
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