
Framework for Research on Detection Classifiers 
 

Michal Hradiš* 
Faculty of Information Technology, Brno University of Technology 

Abstract 
 
Detection of patterns in images with classifiers is currently one of 
the most important research topics in computer vision. Many 
practical applications such as face detection exist and recent work 
even suggests that any specialized detectors (e.g. corner-point 
detectors) can be approximated by very fast detection classifiers. 
In this paper, we analyze the requirements on tools which are 
needed when experimenting with detection classifiers and we 
present a general framework which was created to fulfill these 
requirements. This framework offers high performance for 
training, high variability, elegant handling of configuration and it 
is able to meet all the requirements which arise when 
experimenting with almost all possible kinds of detection 
classifiers. The framework offers good testing support, full 
supporting infrastructure and some useful training algorithms and 
features. We offer this framework for research and educational 
purposes and we hope it will allow lower initial investments when 
experimenting with detection classifiers.  
 
CR Categories: I.5.2 [Design Methodology]: Classifier design 
and evaluation 
 
Keywords: Detection, Face Detection, Classification, Image 
Processing, Computer Vision, AdaBoost, WaldBoost, Cascade of 
Classifiers, Corner Points, Classifier Evaluation 
 
1 Introduction 
 
Detection of 2D patterns in images has many real-world 
applications ranging from camera orientation to computer-human 
interaction. In past years, many purpose specific and application 
specific detectors were proposed. Many of those classifiers were 
carefully designed by experienced scientist and engineers to 
achieve high detection rates and at the same time low 
computational cost. Examples of such detectors are various corner 
detectors or other interest point detectors [Mikolajczyk and 
Schmid 2004, Kadir and Brady 2001], road sign detectors 
[Escalera et al. 1997], and the frontal face detector based on a 
cascade of boosted classifiers by Viola and Jones [2001]. Some of 
the detectors (mostly the face detectors) use structure of classifiers 
which employs a mechanism of attention of focus. Such detectors 
use simple and fast classifiers to reject the most common negative 
samples and then they use gradually more complex classifiers to 
deal with the more difficult and rare negative samples.  
 
When designing detectors of 2D patterns for real-time 
applications, the demands for high precision and low 
computational cost and the effort to optimize both of them at the 
same time, consumes most of the development time. Recently 
Šochman and Matas [2007] have proposed a unified approach 
how to emulate behavior of any existing detector by sequential 
classifier which is optimal in terms of computational complexity 
for desired detection precision. They argue that, when using their 
approach, it is possible to skip the process of optimization and 
finding a fast and still precise enough approximation to the 
original detector, which can be sometimes very difficult for 

humans. Instead, the main effort is put into finding a suitable set 
of features which are then automatically combined into a 
WaldBoost ensemble. In their work, they report that they 
managed to automatically create classifiers emulating two interest 
point detectors, Hessian-Laplace [Mikolajczyk and Schmid 2004] 
and Kadir-Brady [2001] saliency detector, while achieving 70x 
faster detection times over the original Kadir-Brady detector. 
 
Considering the wide area of application of classifier-based 2D 
pattern detectors and the amount of research effort invested into 
this area in recent years, it is surprising that only minimal publicly 
available support for researchers in this field is available. This fact 
is in high contrast to classification and pattern recognition in 
general, where research tools and libraries like LIBSVM, Matlab 
toolkits, Yet Another Learning Environment and many others are 
generally known and used.  
 
The lack of specialized tools is most restraining at the beginning 
of the research, as training and testing of detection classifiers has 
some special characteristics which result in the fact that it is 
necessary to invest a lot of effort before any experiments can be 
conducted. Usually, some set of tools or a framework providing 
annotation and extraction of samples from images, bootstrapping, 
handling of special representations of samples (e.g. integral 
image, frequency image), feature extraction, non-maxima 
suppression, testing, etc. has to be created in advance. Some care 
has to be also given to memory and computational efficiency. 
Otherwise the experiments may be constrained by available time 
or equipment.  
 
To our knowledge, the only publicly available and useful tool for 
training of detection classifiers is the implementation of cascade 
of boosted classifiers with extended set of Haar-like features 
[Lienhart, and Maydt 2002] which is similar to the original 
algorithm used by Viola and Jones [2001] in their frontal face 
detector. This implementation is available as a part of the 
OpenCV library. Unfortunately its use as a base for research 
efforts is relatively limited, as it is not well documented, it is not 
modular enough and it does not provide good support for 
evaluation of results. 
 
Due to all the facts mentioned before, we have created a general 
framework which can be used as a base for research in the field of 
detection classifiers.  
 
The rest of this paper is structured as follows. First, some of the 
current approaches to training of detection classifiers are 
described in Section 2. In Section 3, demands for an experimental 
framework are formulated and analyzed. General design ideas of 
the created framework are presented and some of its interesting 
parts are described in more detail in Section 4. In Section 5, some 
results achieved with current algorithms implemented in the 
framework are presented together with discussion of learning 
efficiency. Finally, the paper is concluded and ideas for future 
work are presented in Section 6. 
 
2 Detection classifiers 
 
The first practically applicable real-time detector of 2D patterns in 
video based on classifiers was the frontal face detector proposed 

-------------------------------------------- 
*e-mail: ihrais@fit.vutbr.cz 

 



by Viola and Jones [2001]. This detector combines a cascade of 
boosted classifiers with Haar-like features and a novel image 
representation called the integral image to reach low false positive 
rates and very low average computational cost.  
 
Each stage of the cascade in the Viola and Jones detector (see 
Figure 1) is a single classifier trained by AdaBoost algorithm 
[Freund and Schapire 1997] which is tuned to reject fair portion of 
background samples (e.g. true negative rate (TNR) = 0.5) while 
keeping almost all face samples (e.g. false negative rate (FNR) = 
0.001). All the samples which are not rejected are further 
processed by following stages of the cascade. During training, 
background samples are bootstrapped after each stage from a 
large pool of images to keep the size of negative training set 
constant. This cascade reaches very low average classification 
time thanks to the fact that the majority of samples classified 
during scanning of images correspond to background. Also very 
low false positive rate (FPR) is reached this way.  

 
 
 
 
 
 
 
 
 

 
Figure 1. The schema of detection cascade. 

 
The cascade structure of the detector provides good trade-off 
between precision of classification and average decision time; 
however, it still is not enough for real-time applications. Viola and 
Jones achieved further significant speed-up by using simple weak 
classifiers which use Haar-like features (see fig 2). These features 
can be computed very fast and in constant time for every scale 
when integral image is used.  
 

 
 
 

 
Figure 2. The basic Haar-like features which were used by Viola 

and Jones [2001] in their frontal face detector. 
 

The original approach by Viola and Jones was subsequently 
extended by many researches who mostly focused either on 
modifying the cascade structure to make better use of gained 
information [Šochman and Matas 2004a, Xiao et al. 2003] or on 
extending the set of Haar-like features [Lienhart and Maydt 2002, 
Mita et al. 2005], optimizing the precision-speed trade-off 
[Šochman and Matas 2005], on better search in the feature space [Li 
et al. 2002, Šochman and Matas 2004b], or on using more 
discriminative features (e.g. PCA) in the later stages [Zhang et al. 
2004] where Haar-like features may not bring much benefit 
anymore due to the very difficult decision problem.  
 
Approaches to face detection which differ significantly more from 
the Viola and Jones detector were also proposed. Some of them 
reach high detection rates, but they usually do not provide real-
time performance. Some of such approaches use neural networks 
[Rowley et al. 1998] or support vector machines (SVM) [Rätsch 
et al. 2004]. 
 
The area of face detectors based on classification of 2D patterns 
has been already very well explored and the possible needs of 

future research can be very well extrapolated from the previous 
research. On the other hand, the use of detection classifiers for 
other tasks, such as interest point detection, is a relatively new 
topic. Fortunately, the ideas from face detectors are in most cases 
general enough to apply also to detection of other patterns. 
Evidence for this conclusion can be found in the work of 
Šochman and Matas [2007] where they use WaldBoost algorithm 
with Haar-like features to emulate the Hessian-Laplace detector. 
This approach is the same as they use for face detection [Šochman 
and Matas 2005]. The only difference when they emulate the 
Kadir-Brady [2001] detector is that they extend the set of features 
by energy features. 
 
3 Research Framework Design Choices  
 
Experimenting with 2D pattern detection classifiers has many 
specifics which need to be considered when designing an 
experimental framework. Some of the specifics arise directly from 
the nature of the task. These include the need of annotating 
objects in images, handling of image data, testing the created 
classifiers by scanning of images and also using some kind of 
non-maxima suppression to post-process the raw detections from 
scanning. Other requests come from the training algorithms which 
are used. These requests include the need of a bootstrapping 
mechanism and the need of an importance sampling mechanism. 
Further, multiple representations of samples may be needed to be 
able to evaluate different types of features efficiently. The 
framework should be also modular enough to allow simple 
addition of new features and classification algorithms and to allow 
the coexistence and combination of these individual parts in 
classifiers. Let’s now look at some of the aspects in more detail. 
 
The basic function of the experimental framework is loading of 
samples. There are some fundamental differences in how the 
positive samples (patterns of interest) and negative samples 
(background) are obtained.  
 
The positive samples are usually extracted from hand-annotated 
images. The framework should be able to process such 
annotations and cut out the samples. On the other hand, when 
conducting larger number of short experiments (e.g. tuning of 
parameters), it is desirable to cut the samples as a preprocess step. 
Some of the works [Xiao et al. 2003] suggest that it is beneficial to 
extend the positive dataset by applying random transformations 
(e.g. affine transformation or noise) to the annotated positive 
samples. In such case, it may be desirable to use importance 
sampling or even bootstrapping [Šochman and Matas 2005] on the 
positive set. To make this possible, applying of the random 
transformations must be integrated into the framework instead of 
applying the transformations as an of-line preprocess step. When 
emulating corner point detectors and other similar detectors, it 
may be desirable to integrate the emulated detectors into the 
framework to gain more flexibility for experiments. 
 
When training detectors, large amounts of background samples 
are needed (up to bilions). It is not possible to keep all of these 
samples in memory or to store them individually. The background 
samples must be definitely obtained at random positions from 
larger images on demand during the training. However, it still 
may not be effective to keep all the source images in memory and 
some mechanism to exchange the images should be provided. 
When training face detectors, the background samples are 
ususally extracted from images which do not contain any faces. 
However, being able to cut background samples from images with 
annotated objects of intereset may provide better classification 
performance and it is necessary when training for example corner 



point detectors. The loading of background samples may consume 
a significant part of training time, especially considering that 
during bootstrapping, it is necessary to classify the samples by the 
partially trained classifiers. Fortunately, it is possible to paralelize 
this part efficiently.  
 
Some of the algorithms, especially the boosting algorithms which 
are used to train detection classifiers, are very simple. Compared 
to that, the bootstrapping mechanism which is used by all of the 
algorithms, may pose a significant additional effort to implement. 
This fact suggests that the framework should provide a common 
bootstrapping mechanism which could be used by the training 
algorithms. The same is true for importance sampling. 
 
The fact, that many of the detection classifiers use Haar-like 
features which can be evaluated in constant time independent on 
their size, offers a possibility to represent the samples as indexes 
into integral representation of the source images from which the 
samples are cut. This approach is, however, very constraining. It 
requires all of the source images to be loaded in memory at all 
times and it significantly reduces possibilities of using other types 
of features and other types of classifiers. Such solution also limits 
the possibility of applying random transformations to the 
annotated data. A more suitable solution is to rescale all samples 
to single size.  
 
There also should be multiple representations of the samples 
available. The integral images are suitable for Haar-like features, 
but other features need different representations for efficient 
evaluation. Basic gray-scale representation should be available to 
be used by algorithms like SVM and neural networks and features 
like Local Binary Patterns (LBP) [Ojala and Pietikäinen 1999] and 
PCA. Frequency representation is suitable for Gaabor wavelets 
and for other filters. Even color information can be needed in 
some cases. It is not desirable to keep all of the representations at 
all times, but rather to create them on demand of features and 
classifiers. In some cases, it may be even beneficial for the 
features or classifiers to have the possibility to attach some kind 
of “user” data to the samples. For example, in the case of the 
Local Rank Differences (LRD) [Zemčík et al. 2007], sums of 
rectangular areas of only few different sizes can be computed only 
once and stored to significantly speed-up the training process. 
 
The main testing procedure for detection classifiers consists of 
multi-scale scanning of images, non-maxima suppression and 
comparing the detections with a ground truth. This basic testing 
procedure is used for all kinds of detectors and also the reported 
measures are usually the same. That is the reason for which any 
framework for experimenting with detection classifiers should 
provide this method of testing for any classifier that can be 
created in it. To make it possible, the samples have to be loaded 
and represented during testing in the same way as during training 
(rescaled to single size, the same representations available). This 
may not be the most efficient way to scan images, especially when 
using Haar-like features, but it is the only way to keep the 
framework general. 
 
The general test provided by the framework should be ideally able 
to produce ROC, DET and precision-recall curve for multiple 
lengths of a classifier (if it has multiple stages). It should also 
provide average speed of a classifier and it should plot a curve 
describing the amount of samples which reach the individual 
stages of the classifier. 
 
It is desirable that the framework provides some support for 
logging information about the training process. This information 

may for example include the fraction of area under precision-
recall curve after each stage, amount of already classified positive 
and negative samples and speed and duration of training.  
 
In general, it is necessary that the framework is modular as much 
as possible. It must be possible to add new learning algorithms, 
features, test and sources of data individually without any need of 
understanding the rest of the framework. It must be also possible 
to combine different features and classification algorithms into 
single detector. Only when these conditions are met, it is possible 
to efficiently use such framework for research. 
 
4 Framework Description 
 
Based on the analysis which is discussed in the previous section, 
we have created a framework for research on detection classifiers 
of 2D patterns. The main design objective was to provide a 
flexible and general framework which can be used as a high-
performance basis for experiments in this field. Another objective 
was to allow good portability between hardware and software 
platforms. Finally any inherent dependencies on commercial 
libraries and tools were avoided to allow using of the framework 
for research and possibly educational purposes without any 
expenses.  The last requirement is valid especially in the case of 
developing countries. 
 
Considering all of the objectives (especially portability, high 
performance and modularity), C++ was chosen as the most 
appropriate development language. Significant advantage of using 
C++ is also the fact that many freeware or open source C/C++ 
libraries and tools exit. Currently library libxml2 is used in the 
framework to load configuration and store results, GNUPlot is 
used to visualize results and some optional parts of the framework 
use the OpenCV library. Additionally OpenMP application 
programming interface can be used to boost performance on 
shared-memory multiprocessor platforms.  
 
The structure of the framework 
 
The framework itself consists mostly of definitions of interfaces 
which allow adding of new parts almost in plug-and-play fashion. 
These interfaces are available for all parts of the framework which 
are expected to be experimented with. These parts include sources 
of samples, features, testing methods, bootstrapping and 
importance sampling, cascade-like algorithms, stage classifier 
algorithms, weak learning algorithms, trained classifiers and weak 
hypotheses.  
 
The part of the framework which provides loading of samples has 
three levels. The topmost level provides a uniform way to load 
samples from a dataset and is used by the training algorithms. The 
middle level corresponds to subsets of samples which are 
available in a dataset. The objects corresponding to the subsets 
distribute requests for samples between individual physical 
sources of samples which form the bottom level. The types of 
individual sources of samples are hidden behind a general 
interface and thus new types of sources of samples can be easily 
added. The structure of this part of the framework can be seen in 
Figure 3.  
 



 
Figure 3. The part of the framework which takes care of loading 

samples. 
 
Interfaces that form the part of the framework which is dedicated 
to training of the detection classifiers is shown in Figure 4. These 
interfaces provide abstraction for most of the independent parts of 
training algorithms which follow the idea of the face detector by 
Viola and Jones [2001]. These cascade-like algorithms use a 
bootstrapping mechanism for loading of samples. The samples 
can be subsequently passed to stage learning algorithms which 
create monolithic classifiers. These algorithms operate on fixed 
set of samples, but can use provided importance sampling to 
speed-up training.  
 
The weak learning algorithms, which are normally used by the 
stage learning algorithms, create individual weak hypotheses. 
Although only domain partitioning weak hypotheses [Schapire 
and Singer 1999] are supported, the generality of the framework is 
not reduced. The reason for this is that all the weak hypotheses 
can be very well approximated by the domain partitioning 
hypotheses. Not much difference exists between the stage 
classifiers and weak hypotheses – both can be created by the same 
algorithms. The reason for the existence of two separate interfaces 
is that the weak hypotheses contain equivalent of alpha values 
from the original discrete AdaBoost algorithm [Freund and 
Schapire 1997] which are set by the boosting algorithms. Finally, 
the weak learning algorithms use features to transform the image 
data.  
 
During training, objects which contain multiple features are used 
and the individual features are accessed by unique integer indices. 
This allows efficient evaluation of features like Gabor wavelets or 
LRD which can share certain computations between individual 
features. When the best feature is selected, an object containing 
only this single feature is created. Such object is further wrapped 
by a weak hypothesis and attached to the stage classifier. When 
the stage classifier is finished, it is attached to the cascade-like 
classifier. The interfaces of classes which can be combined into a 
classifier and their relations are shown on figure 5. 
 
The structure of the training part of the framework is specially 
designed to fit the algorithms similar to the cascade of boosted 
simple classifiers; however, this structure is also able to 
accommodate most other approaches by skipping some of its 
parts. For example, SVM or neural networks can be implemented 
as stage learning algorithms and they can use the data from 
samples directly. Another example is the WaldBoost algorithm 
which does not use stage learning algorithms, but uses directly 
weak learners.  
 

 
Figure 4. The interfaces which form the training part of the 

framework together with their dependencies. 
 

 
Figure 5. The interfaces which are defined in the framework to 

provide support for created classifiers. 
 
Samples 
 
All the samples in the framework are represented by individual 
objects which are chained into linked lists. This is much different 
to general classification environments, where datasets are usually 
represented by matrices of floating-point values.  
 
Representing of samples as individual objects provides possibility 
to structure the information and store multiple representations of 
the original data as well as any other additional information. 
Samples can be currently represented in the framework by gray-
scale images, integral images, and frequency images. Also, 
information, such as class of the sample, its weight (which is used 
by boosting algorithms), standard deviation of pixels, or 
identification of the exact origin of the sample (e.g. the name of 
the source image and position within it) can be stored into the 
sample object. Additionally, the samples provide general purpose 
storage which can be used to store temporal information or even 
additional non-visual information connected to the sample. 
 
Testing  
 
The framework provides an interface which allows users to create 
test of their own. Currently, the framework contains 
implementations of two tests. One of them is designed to test 
individual samples and the other is a scanning test. When testing, 
samples are loaded from a data source in the same way as during 
training. This implies that the test does not have direct control 
over which samples are loaded and does not necessarily know 

Cascade-like classifier 

Stage classifier 

Weak hypothesis 

Feature 

Data source 

Subset 1 Subset 2 

Image Annotated 
image 

Random 
generator 

Unified interface to different  
                sources of samples 

Distribution of 
request between 
sources of samples 

Cascade-like algorithms 

Stage learning algorithms 

Weak learning algorithms 

Features 

Bootstrapping 

Importance 
sampling 

Data source 

Unified interface for loading 
samples  



where the samples are from exactly. This is not a problem when 
testing on individual samples, since a single subset from the data 
source can in this case contain samples of only single class. But it 
must be dealt with in the case of scanning test, as the subset from 
which the samples are loaded has to contain all sub-windows from 
the scanned images. The sub-windows which are classified to 
contain the pattern of interest have to be further processed by 
some non-maxima suppression algorithm and finally the resulting 
detections have to be compared to a ground truth annotation.  
 
The implemented scanning test achieves this thanks to the fact 
that the framework provides the possibility to load samples in 
linear order and that the samples that are cut from images receive 
an identification string which contains the name of the source 
image file, position in the image and size of the original sub 
window. Based on the textual identification, an appropriate 
annotation file is found and loaded. Also, the position and size of 
the sample is extracted from the identification string. 
 
Configuration  
 
The framework, as it has been described up to this point, lacks one 
crucial feature to become really useful research tool. The missing 
feature is the possibility to define experiments in some external 
configuration file. Such task would be very simple if it was not 
necessary to maintain the independency between the individual 
parts of the framework. However, the framework provides quite 
an elegant support for configuration.  
 
To store the configuration information, the framework uses XML 
files in which each XML node corresponds to a single object. 
During initialization, the XML file is parsed by libxml2 library 
which produces a tree structure representing the content of the 
XML file. This tree structure is consequently processed by 
constructors of objects in the framework. When a constructor 
processes an xml node, it offers the child nodes to other 
constructors. An object of specific class is created only when the 
constructor receives xml node of appropriate name. Each interface 
which is defined in the framework has a function assigned to it 
which, when given an XML node, tries to create objects of classes 
which implement that interface. This way, it is sufficient to 
register new classes in appropriate loading functions and then all 
configuration information can be processed in their constructor. 
 
Parallelization  
 
When analyzing algorithms which are similar to the original Viola 
and Jones algorithm, it can be identified that selection of weak 
classifiers consumes the most significant part of the training time. 
The framework offers a way to reduce this time by parallel 
execution of this part. When multiple weak learners are defined, 
the framework is able to assign each of them to separate thread 
and execute them in parallel while achieving almost linear speed-
up.  
 
Another part of the training algorithms which consumes 
significant amount of time is bootstrapping. This part is also 
parallelized in the framework. During bootstrapping, each thread 
is loading samples from separate physical sources of samples and 
classifies the samples by the provided classifier.  
 
5 Results 
 
Currently, the whole basic infrastructure of the framework is 
implemented as well as many of the variable parts. The available 
boosting algorithms are AdaBoost and GentleBoost. From the 

detection classifiers, the framework contains classifier cascade 
and the WaldBoost algorithm [Šochman and Matas 2005]. Also 
some weak learners were implemented – e.g. decision trees and 
histogram weak learners. Haar-like features, LRD and LBP are 
also available. The framework further provides support for 
loading of samples from multiple sources and support for testing 
by scanning images.  
 
The testing procedure which is currently implemented in the 
framework is able to scan images and use non-maxima 
suppression which was suggested by Šochman and Matas [2007]. 
The testing procedure creates receiver operating characteristic 
(ROC), detection error trade-off curve (DET) and precision-recall 
curve for multiple stages of the tested classifier. It is also able to 
plot the dependency of average speed of the classifier on the 
length of the classifier.  
 
To demonstrate the capabilities of the framework, we have trained 
a WaldBoost classifier for frontal face detection task. The 
classifier was trained on 5000 hand-annotated faces which were 
divided into training and validation sets. Additionally, random 
affine transformations were applied to the original samples until 
the sizes of both sets reached 20000 samples. In each iteration of 
the training algorithm, non-face samples were bootstrapped from 
a large pool of images without any faces to keep the number of 
non-face samples in training and validation set at 20000. The final 
size of the classifier was set to be 1000 and the alpha value which 
defines the False Negative Rate of the resulting classifier was set 
to 0.1.  
 
The progress of fraction of area under precision-recall curve on 
the training and validation set can be seen in Figure 6. Figure 7 
shows the amount of negative samples which reach the individual 
stages of the classifier.  
 
The classifier was tested on MIT+CMU frontal face dataset. The 
classifier needed to evaluate on average 5.4 weak hypotheses per 
window to make a decision. The graph describing speed of the 
classifier can be seen in Figure 8. The ROC and the precision-
recall curve which describe the performance of the classifier on 
the test dataset can be seen in Figure 9 and in Figure 10. Finally, 
graphical representation of the detections can be seen in Figure 
11.  
 

Figure 6. The area under precision-recall curve on the training and 
validation sets for the in individual stages of the classifier. 

 
 

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800  900  1000

ar
ea

 u
nd

er
 p

re
ci

si
on

-r
ec

al
l c

ur
ve

number of weak classifiers

Training set
Validation set



 
 

 0.0001

 0.001

 0.01

 0.1

 1

 0  100  200  300  400  500  600  700  800  900  1000

1 
- 

re
je

ct
io

n 
ra

te

number of weak classifiers

Training set
Validation set

 Figure 7. The fraction of negative samples of the training and 
validation which reach individual stages of the classifier. 

 

 1

 2

 3

 4

 5

 6

 0  100  200  300  400  500  600  700  800  900  1000

av
er

ag
e 

nu
m

be
r 

of
 e

va
lu

at
ed

 w
ea

k 
cl

as
si

fie
rs

number of weak classifiers  
Figure 8. Speed of the classifier. 

 

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  
Figure 9. The ROC curve on the MIT+CMU frontal face dataset. 

 0.8

 0.85

 0.9

 0.95

 1

 0.8  0.85  0.9  0.95  1  
Figure 10. The precision-recall curve on the MIT+CMU frontal 

face dataset. 
 
 

One of the objectives of the framework was to reach high 
performance for training of detection classifiers. This objective 
was reached by optimal use of cache memory during training of 
weak classifiers, by optimized evaluation of features and by 
parallelization. We measure the speed of training of weak 
classifiers as number of features which are evaluated per second 
during the training (features per second). All the measurements 
were performed on a blade server with two Intel Xeon E5245 
quad core processors running at 2.33GHz. 
 

 
Figure 11. Visual output of the implemented testing procedure 

 
When using Haar-like features with simple weak learners, the 
framework was able to reach speed 60M features per second while 
running in a single thread. With LRD, the framework reached 
speed of 45M features per second. Speeds when running in 
multiple threads were also measured. For this test, Haar-like 
features were used with more complex weak classifiers. The 
results can be found in Figure 11. It can be seen that the speedup 
is almost linear and reaches 640 % of the speed of single thread 
when all 8 threads are used. The speed of bootstrapping was 
measured to be 3,5M samples per minute for the trained classifier 
when using single thread. 
  
 
 
 
 
 



Number 
of threads 

1 2 3 4 5 6 7 8 

Speed 42 80 116 148 160 198 236 270 
Figure 11. Speed during training of weak classifiers for different 

numbers of threads. The results are in millions of evaluated 
features per second. 

 
6 Conclusion and Future Work 
 
This paper presents a framework which was designed to be used 
as a base for research on detection classifiers of 2D patterns. This 
framework offers high-performance in training, high variability, 
good configurability and it is able to meet all the requirements 
which arise when experimenting with almost all possible kinds of 
detection classifiers. At this point, the framework offers good 
testing support, full supporting infrastructure and some useful 
training algorithms and features which allow training of classifiers 
with high precision of detection and low computational cost.  
 
Anyone who plans to participate in research of detection 
classifiers can find in this paper a basic analysis of the 
requirements for tools that are needed for conducting experiments 
in this field. This information should be useful to decide if it is 
effective to create new tools or it is more effective to search for 
tools which have been already created. If the later is found to be 
true, we encourage you to contact us, as the framework which we 
described in this paper is freely available for research and 
educational purposes. 
 
At this point, the framework itself is finished and further work 
will be mostly focused on increasing precision of the trained 
classifiers. This may be achieved by implementing new 
algorithms and new features or by integrating libraries like libsmv 
into the framework.  
 
Currently, data which is suitable for frontal face detection is 
prepared and ready to use. In the future, we want to extend the 
experiments to other detection problems such as detection of out-
of-plane rotated faces or emulation of existing corner point 
detectors. 
 
Acknowledgements 
 
This work has been supported by the “Centre of Computer 
Graphics” (CPG-LC06008), Czech Ministry of Education, Youth, 
and Sports, CareTaker, IST EU project number 027231, and 
Czech Grant Agency, project GA201/06/1821 “Image 
Recognition Algorithms”. 
 
References 
 
BAE, H., KIM , S. 2005. Real-time face detection and recognition using 

hybrid-information extracted from face space and facial features, 
IVC(23), No. 13, 29 November 2005, pp. 1181-1191. 

 
ESCALERA, A., MORENO, L. E., SALICHS, M. A., ARMINGOL, J. M. 1997. 

Road traffic sign detection and classification. Industrial Electronics, 
IEEE Transactions on, Vol. 44, No. 6. (1997), pp. 848-859. 

 
FREUND, Y., SCHAPIRE, R. 1997. A decision-theoretic generalization of on-

line learning and an application to boosting. Journal of Computer and 
System Sciences, 55(1):119--139. 

 

KADIR, T., BRADY, M. 2001. Saliency, Scale and Image Description. 
International Journal of Computer Vision, Volume 45, Number 2 / 
November 

 
LI, S., ZHANG,  Z., SHUM, H., ZHANG. H. 2002. FloatBoost learning for 

classification. In S. Thrun S. Becker and K. Obermayer, editors, NIPS 
15. MIT Press. 

 
LIENHART, R., MAYDT , J. 2002. An extended set of Haar-like features for 

rapid object detection. Image Processing. 2002. Proceedings. 2002 
International Conference on, Volume 1, Issue , 2002 Page(s): I-900 - I-
903 vol.1 

 
MATAS, J, ŠOCHMAN, J. 2007. Wald's Sequential Analysis for Time-

constrained Vision Problems. In ICRA. 
 
M IKOLAJCZYK , K., SCHMID, C. 2004. An affine invariant interest point 

detector. International Journal of Computer Vision, Volume 60. 
 
M ITA, T., KANEKO, T., HORI, O. 2005. Joint Haar-like features for face 

detection. Computer Vision, 2005. ICCV 2005. Tenth IEEE 
International Conference on, Volume 2, Issue , 17-21 Oct. 2005 Page(s): 
1619 - 1626 Vol. 2 

 
OJALA, T., PIETIKÄINEN , M. 1999. Unsupervised texture segmentation 

using feature distributions. Pattern Recognition, 32(3), 1999, s. 477-486. 
 
ROWLEY, H., BALUJA, S., KANADE, T. 1998. Neural Network-Based Face 

Detection. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol. 20, No. 1, January, 1998, pp. 23-38. 

 
RÄTSCH, M., ROMDHANI, S., VETTER, T. 2004. Efficient Face Detection 

by a Cascaded Support Vector Machine Using Haar-Like Features. In 
proceeding of DAGM-Symposium, Lecture Notes in Computer Science. 

 
SCHAPIRE, R., SINGER, Y. 1999. Improved boosting algorithms using 

confidence-rated predictions. In: Machine Learning, (1999) 37(3):297-
336.  

 
ŠOCHMAN, J., MATAS, J, 2004a. Inter-stage Feature Propagation in 

Cascade Building with AdaBoost. In ICPR 2004. 
 
ŠOCHMAN, J., MATAS, J, 2004b. AdaBoost with Totally Corrective 

Updates for Fast Face Detection. Sixth IEEE International Conference 
on Automatic Face and Gesture Recognition, p. 445. 

 
ŠOCHMAN, J., MATAS, J. 2005. WALDBOOST — Learning for Time 

Constrained Sequential Detection. In 2005 IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition (CVPR'05) - 
Volume 2, s. 150. 

 
ŠOCHMAN, J., MATAS, J. 2007. Learning A Fast Emulator of a Binary 

Decision Process. In ACCV. 
 
VIOLA , P., JONES, M. 2001 Rapid object detection using a boosted cascade 

of simple features. In CVPR. 
 
XIAO, R., ZHU, L. AND ZHANG, H.J. 2003. Boosting Chain Learning for 

Object Detection, ICCV03, Nice, France. 
 
ZEMČÍK , P., HRADIŠ, M., HEROUT, A. 2007. Local Rank Differences - 

Novel Features for Image Processing. Poster MLMI. 
 
ZHANG, D., LI, S. Z., GATICA-PEREZ, D. 2004. Real-Time Face Detection 

Using Boosting in Hierarchical Feature Spaces. Proceedings of the 
Pattern Recognition, 17th International Conference on (ICPR'04) 
Volume 2 - Volume 02.   

 
 

 


