
 †2550 Garcia Avenue, MTV18-212
Mountain View, CA 94043-1100
michael.deering@Eng.Sun.COM (415) 336-3017
stephen.schlapp@Eng.Sun.COM (415) 336-3818
mike.lavelle@Eng.Sun.COM (415) 336-3103

ABSTRACT

FBRAM, a new form of dynamic random access memory that
greatly accelerates the rendering of Z-buffered primitives, is pre-
sented. Two key concepts make this acceleration possible. The first
is to convert the read-modify-write Z-buffer compare and RGBα
blend into a single write only operation. The second is to support
two levels of rectangularly shaped pixel caches internal to the mem-
ory chip. The result is a 10 megabit part that, for 3D graphics, per-
forms read-modify-write cycles ten times faster than conventional
60 ns VRAMs. A four-way interleaved 100 MHz FBRAM frame
buffer can Z-buffer up to 400 million pixels per second. Working
FBRAM prototypes have been fabricated.

CR Categories and Subject Descriptors: I.3.1 [Computer Graph-
ics]: Hardware Architecture; I.3.3 [Computer Graphics]: Picture/
Image Generation Display algorithms; I.3.7 [Computer Graphics]:
Three Dimensional Graphics and Realism.

Additional Keywords and Phrases: 3D graphics hardware, ren-
dering, parallel graphics algorithms, dynamic memory, caching.

1 INTRODUCTION

One of the traditional bottlenecks of 3D graphics hardware has been
the rate at which pixels can be rendered into a frame buffer. Modern
interactive 3D graphics applications require rendering platforms
that can support 30 Hz animation of richly detailed 3D scenes. But
existing memory technologies cannot deliver the desired rendering
performance at desktop price points.

The performance of hidden surface elimination algorithms has been
limited by the pixel fill rate of 2D projections of 3D primitives.
While a number of exotic architectures have been proposed to im-
prove rendering speed beyond that achievable with conventional
DRAM or VRAM, to date all commercially available workstation
3D accelerators have been based on these types of memory chips.

This paper describes a new form of specialized memory, Frame
Buffer RAM (FBRAM). FBRAM increases the speed of Z-buffer
operations by an order of magnitude, and at a lower system cost
than conventional VRAM. This speedup is achieved through two
architectural changes: moving the Z compare and RGBα blend op-
erations inside the memory chip, and using two levels of appropri-
ately shaped and interleaved on-chip pixel caches.

2 PREVIOUS WORK

After the Z-buffer algorithm was invented [3], the first Z-buffered
hardware systems were built in the 1970’s from conventional
DRAM memory chips. Over time, the density of DRAMs increased
exponentially, but without corresponding increases in I/O band-
width. Eventually, video output bandwidth requirements alone ex-
ceeded the total DRAM I/O bandwidth.

Introduced in the early 1980’s, VRAM [18][20] solved the video
output bandwidth problem by adding a separate video port to a
DRAM. This allowed graphics frame buffers to continue to benefit
from improving bit densities, but did nothing directly to speed ren-
dering operations. More recently, rendering architectures have
bumped up against a new memory chip bandwidth limitation: faster
rendering engines have surpassed VRAM’s input bandwidth. As a
result, recent generations of VRAM have been forced to increase
the width of their I/O busses just to keep up. For the last five years,
the pixel fill (i.e. write) rates of minimum chip count VRAM frame
buffers have increased by less than 30%.

Performance gains have mainly been achieved in commercially
available systems by brute force. Contemporary mid-range systems
have employed 10-way and 20-way interleaved VRAM designs
[1][14]. Recent high-end architectures have abandoned VRAM al-
together in favor of massively interleaved DRAM: as much as 120-
way interleaved DRAM frame buffers [2]. But such approaches do
not scale to cost effective machines.

More radical approaches to the problem of pixel fill have been ex-
plored by a number of researchers. The most notable of these is the
pixel-planes architecture [9][16], others include [7][8][11][4]. [12]
and [10] contain a good summary of these architectures. What these
architectures have in common is the avoidance of making the ren-
dering of every pixel an explicit event on external pins. In the limit,
only the geometry to be rendered need enter the chip(s), and the fi-
nal pixels for video output exit.

These research architectures excel at extremely fast Z-buffered fill of
large areas. They achieve this at the expense of high cost, out-of-order
rendering semantics, and various overflow exception cases. Many of
these architectures ([16][11][4]) require screen space pre-sorting of
primitives before rendering commences. As a consequence, intermedi-
ate geometry must be sorted and stored in large batches.

FBRAM: A new Form of Memory

Optimized for 3D Graphics

Michael F Deering, Stephen A Schlapp, Michael G Lavelle
Sun Microsystems Computer Corporation†

Permission to make digital or hard copies of part or 
all of this work or personal or classroom use is 
granted without fee provided that copies are not made 
or distributed for profit or commercial advantage and 
that copies bear this notice and the full citation on the 
first page. To copy otherwise, to republish, to post on 
servers, or to redistribute to lists, requires prior 
specific permission and/or a fee. 
SIGGRAPH ’94, July 24-29, Orlando, Florida 
© ACM 1994 ISBN: 0-89791-667-0 ...$5.00 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F192161.192194&domain=pdf&date_stamp=1994-07-24


Unfortunately, the benefits from the fast filling of large polygons
are rapidly diminishing with today’s very finely tessellated objects.
That is, the triangles are getting smaller [6]. The number of pixels
filled per scene is not going up anywhere near as quickly as the total
number of polygons. As 3D hardware rendering systems are finally
approaching motion fusion rates (real time), additional improve-
ments in polygon rates are employed to add more fine detail, rather
than further increases in frame rates or depth complexity.

3 Z-BUFFERING AND OTHER PIXEL PROCESS-
ING OPERATIONS

Fundamental to the Z-buffer hidden surface removal algorithm are
the steps of reading the Z-buffer’s old Z value for the current pixel
being rendered, numerically comparing this value with the new one
just generated, and then, as an outcome of this compare operation,
either leaving the old Z (and RGB) frame buffer pixel values alone,
or replacing the old Z (and RGB) value with the new.

With conventional memory chips, the Z data must traverse the data
pins twice: once to read out the old Z value, and then a second time to
write the new Z value if it wins the comparison. Additional time must
be allowed for the data pins to electrically “turn around” between
reading and writing. Thus the read-modify-write Z-buffer transaction
implemented using a straightforward read-turn-write-turn operation
is four times longer than a pure write transaction. Batching of reads
and writes (n reads, turn, n writes, turn) would reduce the read-mod-
ify-write cost to twice that of a pure write transaction for very large n,
but finely tessellated objects have very small values of n, and still suf-
fer a 3-4× penalty.

This is the first problem solved by FBRAM. Starting with a data
width of 32 bits per memory chip, FBRAM now makes it possible
for the Z comparison to be performed entirely inside the memory
chip. Only if the internal 32 bit numeric comparison succeeds does
the new Z value actually replace the old value. Thus the fundamen-
tal read-modify-write operation is converted to a pure write opera-
tion at the data pins.

Because more than 32-bits are needed to represent a double buff-
ered RGBZ pixel, some way of transmitting the results of the Z
comparison across multiple chips is required. The Z comparison re-
sult is communicated on a single external output signal pin of the
FBRAM containing the Z planes, instructing FBRAM chips con-
taining other planes of the frame buffer whether or not to write a
new value.

The Z-buffer operation is the most important of the general class of
read-modify-write operations used in rendering. Other important
conditional writes which must be communicated between
FBRAMs include window ID compare [1] and stenciling.

Compositing functions, rendering of transparent objects, and anti-
aliased lines require a blending operation, which adds a specified
fraction of the pixel RGB value just generated to a fraction of the
pixel RGB value already in the frame buffer. FBRAM provides four
8-bit 100 MHz multiplier-adders to convert the read-modify-write
blending operation into a pure write at the pins. These internal
blend operations can proceed in parallel with the Z and window ID
compare operations, supported by two 32-bit comparators. One of
the comparators supports magnitude tests (>, ≥, <, ≤, =, ≠), the other
supports match tests (=, ≠). Also, traditional boolean bit-operations
(for RasterOp) are supported inside the FBRAM. This collection of
processing units is referred to as the pixel ALU.

Converting read-modify-write operations into pure write opera-
tions at the data pins permits FBRAM to accept data at a 100 MHz
rate. To match this rate, the pixel ALU design is heavily pipelined,
and can process pixels at the rate of 100 million pixels per second.
Thus in a typical four-way interleaved frame buffer design the max-

imum theoretical Z-buffered pixel fill rate of an FBRAM based sys-
tem is 400 mega pixels per second. By contrast, comparable frame
buffers constructed with VRAM achieve peak rates of 33-66 mega
pixels per second [5][14].

Now that pixels are arriving and being processed on-chip at
100 MHz, we next consider the details of storing data.

4 DRAM FUNDAMENTALS

Dynamic memory chips achieve their impressive densities (and
lower costs) by employing only a single transistor per bit of storage.
These storage cells are organized into pages; typically there are sev-
eral thousand cells per page. Typical DRAM arrays have hundreds
or thousands of pages. Per bit sense amplifiers are provided which
can access an entire page of the array within 120 ns. These sense
amplifiers retain the last data accessed; thus they function as a sev-
eral thousand bit page buffer. The limited number of external I/O
pins can perform either a read or a write on a small subset of the
page buffer at a higher rate, typically every 40 ns.

FBRAM starts with these standard DRAM components, and adds a
multiported high speed SRAM and pixel ALU. All of this is orga-
nized within a caching hierarchy, optimized for graphics access pat-
terns, to address the bandwidth mismatch between the high speed
pins and the slow DRAM cells.

5 PIXEL CACHING

The cache system design goal for FBRAM is to match the 100 MHz
read-modify-write rate of the pixel ALU with the 8 MHz rate of the
DRAM cells. Figure 1 illustrates this cache design challenge.

Caches have long been used with general purpose processors; even
a small cache can be very effective [17]. But caches have been
much less used with graphics rendering systems.

The data reference patterns of general purpose processors exhibit
both temporal and spatial locality of reference. Temporal locality is
exhibited when multiple references are made to the same data with-
in a short period of time. Spatial locality is exhibited when multiple
references within a small address range are made within a short pe-
riod of time. Caches also reduce the overall load on the memory bus
by grouping several memory accesses into a single, more efficient
block access.

Graphics hardware rendering does not exhibit much temporal local-
ity, but does exhibit spatial locality with a vengeance. Raster ren-
dering algorithms for polygons and vectors are a rich source of spa-
tial locality.

Although the bandwidth available inside a dynamic memory chip is
orders of magnitude greater than that available at the pins, this in-

Dynamic
Memory

ALU

?

32-bits @ 100MHz

2 × 32-bits @ 100MHz

10,240-bits @ 8MHz

Figure 1. Bandwidth mismatch between pixel ALU and DRAM.

FBRAM



ternal bandwidth is out of reach for architectures in which the pixel
cache is external to the memory chips. Others have recognized the
potential of applying caching to Z-buffered rendering [13], but they
were constrained to building their caches off chip. Such architec-
tures can at best approach the rendering rate constrained by the
memory pin bandwidth. As a result, these caching systems offer lit-
tle or no performance gain over SIMD or MIMD interleaved pixel
rendering.

With FBRAM, by contrast, the pixel caches are internal to the indi-
vidual memory chips. Indeed, as will be seen, two levels of internal
caches are employed to manage the data flow. The miss rates are
minimized by using rectangular shaped caches. The miss costs are
reduced by using wide and fast internal busses, augmented by an
aggressive predictive pre-fetch algorithm.

Each successive stage from the pins to the DRAM cells has slower
bus rates, but FBRAM compensates for this with wider busses. Be-
cause the bus width increases faster than the bus rate decreases,
their product (bus bandwidth) increases, making caching a practical
solution.

6 FBRAM INTERNAL ARCHITECTURE

Modern semiconductor production facilities are optimized for a
certain silicon die area and fabrication process for a given genera-
tion of technology. FBRAM consists of 10 megabits of DRAM, a
video buffer, a small cache, and a graphics processor, all imple-
mented in standard DRAM process technology. The result is a die
size similar to a 16 megabit DRAM. A 10 megabit FBRAM is
320×1024×32 in size; four FBRAMs exactly form a standard
1280×1024×32 frame buffer.

Figure 2 is an internal block diagram of a single FBRAM [15]. The
DRAM storage is broken up into four banks, referred to as banks
A,B,C, and D. Each bank contains 256 pages of 320 words (32 bits
per word). Each bank is accessed through a sense amplifier page
buffer capable of holding an entire 320 word page (10,240 bits).
Banks can be accessed at a read-modify-write cycle time of 120 ns.

Video output pixels can be copied from the page buffer to one of
two ping-pong video buffers, and shifted out to the display.

FBRAM has a fast triple-ported SRAM register file. This register
file is organized as eight blocks of eight 32-bit words. Capable of
cycling at 100 MHz, two of the ports (one read, one write) of the
register file allow 10 ns throughput for pipelined 32-bit read-modi-

DRAM Bank

B

Video Buffer
Video Buffer

DRAM Bank

A

DRAM Bank

C
DRAM Bank

D

SRAM
2Kb

ALU

256640

640 640

640

16

32

Video

Data

G
lo

ba
l B

us

32

32
Render

Data

Page Buffer Page Buffer

Page BufferPage Buffer

2.5Mb

10Kb

10Kb 10Kb

10Kb

2.5Mb

2.5Mb 2.5Mb

FBRAM

Figure 2. Internal block diagram of a single FBRAM.

fy-write ALU operations: Z-buffer compare, RGBα blend, or bool-
ean-operations. The third port allows parallel transfer of an entire
block (8 words) to or from a page buffer at a 20 ns cycle time via a
256-bit “Global Bus”.

FBRAM has two independent sets of control and address lines: one
for the two ALU ports of the SRAM register file; the other for op-
erations involving a DRAM bank. This allows DRAM operations
to proceed in parallel with SRAM operations. The cache control
logic was intentionally left off-chip, to permit maximum flexibility
and also to keep multiple chips in lock step.

7 FBRAM AS CACHE

Internally, the SRAM register file is a level one pixel cache (L1$),
containing eight blocks. Each block is a 2 wide by 4 high rectangle
of (32-bit) pixels. The cache set associativity is determined external
to the FBRAM, permitting fully associative mapping. The L1$ uses
a write back policy; multiple data writes to each L1$ block are ac-
cumulated for later transfer to the L2$.

Taken together, the four sense amplifier page buffers constitute a
level two pixel cache (L2$). The L2$ is direct mapped; each page
buffer is mapped to one of the pages of its corresponding DRAM
bank. Each L2$ entry contains one page of 320 32-bit words shaped
as a 20 wide by 16 high rectangle of pixels. The L2$ uses a write
through policy; data written into a L2$ entry goes immediately into
its DRAM bank as well.

The Global Bus connects the L1$ to the L2$. A 2×4 pixel block can
be transferred between the L1$ and L2$ in 20 ns.

Four parallel “sense amplifier buses” connect the four L2$ entries
to the four DRAM banks. A new 20×16 pixel DRAM page can be
read into a given L2$ entry from its DRAM bank as often as every
120 ns. Reads to different L2$ entries can be launched every 40 ns.

8 FOUR WAY INTERLEAVED FBRAM FRAME
BUFFER

The previous sections described a single FBRAM chip. But to fully
appreciate FBRAM’s organization, it is best viewed in one of its
natural environments: a four way horizontally interleaved three
chip deep 1280×1024×96-bit double buffered RGB Z frame buffer.
Figure 3 shows the chip organization of such a frame buffer, with
two support blocks (render controller and video output). Figure 4 is
a logical block diagram considering all 12 chips as one system. The

rgb
 A

rgb
 B

 Z

rgb
 A

rgb
 B

 Z

rgb
 A

rgb
 B

 Z

rgb
 A

rgb
 B

 Z

Rendering Controller

Video Output

Figure 3. A four-way interleaved frame buffer system composed
of 12 FBRAMs (1280×1024, double buffered 32-bit RGBα plus
32-bit Z).



discussions of the operations of FBRAM to follow are all based on
considering all 12 memory chips as one memory system.

Horizontally interleaving four FBRAMs quadruples the number of
data pins; now four RGBZ pixels can be Z-buffered, blended, and
written simultaneously. This interleaving also quadruples the size
of the caches and busses in the horizontal dimension. Thus the L1$
can now be thought of as eight cache blocks, each 8 pixels wide by
4 pixels high. Taken together, the individual Global Buses in the 12
chips can transfer an 8×4 pixel block between the L1$ and L2$. The
four L2$ entries are now 80 pixels wide by 16 pixels high (see Fig-
ure 4).

All three levels of this memory hierarchy operate concurrently.
When the addressed pixels are present in the L1$, the four way in-
terleaved FBRAMs can process 4 pixels every 10 ns. On occasion,
the L1$ will not contain the desired pixels (an “L1$ miss”), incur-
ring a 40 ns penalty (“L1$ miss cost”): 20 ns to fetch the missing
block from the L2$ for rendering, 20 ns to write the block back to
the L2$ upon completion. Even less often, the L2$ will not contain
the block of pixels needed by the L1$ (an “L2$ miss”), incurring a
40-120 ns penalty (“L2$ miss cost”) depending upon the schedul-
ing status of the DRAM bank.

This example four way interleaved frame buffer will be assumed
for the remainder of this paper.

9 RECTANGULAR CACHES REDUCE MISS RATE

The organization so far shows pixels moving between fast, narrow
data paths to slow, wide ones. As can be seen in Figure 4, there is
sufficient bandwidth between all stages to, in theory, keep up with
the incoming rendered pixels, so long as the right blocks and pages
are flowing. We endeavor to achieve this through aggressive pre-
fetching of rectangular pixel regions.

Level 2 Cache

DRAM
Bank

Level 1 Cache

ALU(4)

read-modify-write
4×1 pixels@10 ns =
800 Mpixels/second

read or write
8×4 pixels@20 ns =
1600 Mpixels/second

write-modify-read
80×16 pixels@120 ns =
10600 Mpixels/second
            per bank;
            Can overlap
            banks @40 ns =
            32 Gpixels/second

Global Bus

Figure 4. A logical representation of a four-way horizontally
interleaved frame buffer composed of 12 FBRAMs.

write (or read)
4×1 pixels@10 ns =
400 Mpixels/second

8 wide × 4 high

8 block

80 wide × 16 high

1 page per bank

Locality of reference in graphics rendering systems tends to be to
neighboring pixels in 2D. Because of this, graphics architects have
long desired fast access to square regions [19]. Unfortunately, the
standard VRAM page and video shift register dimensions result in
efficient access only to long narrow horizontal regions. FBRAM
solves this problem by making both caches as square as possible.

Because the L1$ blocks are 8×4 pixels, thin line rendering algo-
rithms tend to pass through four to eight pixels per L1$ block, re-
sulting in a L1$ miss every fourth to eighth pixel (a “miss rate” of
1/4 to 1/8). Parallel area rendering algorithms can aim to utilize all
32 pixels in a block, approaching a miss rate of 1/32.

Similarly, because the L2$ blocks are 80×16 pixels, L2$ miss rates
are on the order of 1/16 to 1/80 for thin lines, and asymptotically ap-
proach 1/1280 for large areas.

These simplistic miss rate approximations ignore fragmentation ef-
fects: lines may end part way through a block or page, polygon edg-
es usually cover only a fraction of a block or page. In addition, frag-
mentation reduces the effective pin bandwidth, as not all four hori-
zontally interleaved pixels (“quads”) can be used every cycle.

FBRAM’s block and page dimensions were selected to minimize
the effects of fragmentation. Table 1 displays the average number

of L1$ blocks (B), and L2$ pages (P) touched when rendering var-
ious sizes of thin lines and right isosceles triangles (averaged over
all orientations and positions), for a range of alternative cache as-
pect ratios. The white columns indicate FBRAM’s dimensions.
Note that smaller primitives consume more blocks and pages per
rendered pixel, due to fragmentation effects. Although the table im-
plies that a page size of 40×32 is better than 80×16, practical limi-
tations of video output overhead (ignored in this table, and to be dis-
cussed in section 13), dictated choosing 80×16.

10 OPERATING THE FRAME BUFFER

For non-cached rendering architectures, theoretical maximum per-
formance rates can be derived from statistics similar to Table 1.
This is pessimistic for cached architectures such as FBRAM. Be-
cause of spatial locality, later primitives (neighboring triangles of a
strip) will often “re-touch” a block or page before it is evicted from
the cache, requiring fewer block and page transfers. Additional
simulations were performed to obtain the quad, page, and block
transfer rates. The left half of Table 2 shows the results for
FBRAM’s chosen dimensions.

Equation 1 can be used to determine the upper bound on the number
of primitives rendered per second using FBRAM. The performance

Average Pages/Prim Average Blocks/Prim

320×4 160×8 80×16 40×32 32×1 16×2 8×4

10 Pix Vec 2.61 1.84 1.48 1.36 7.57 4.58 3.38

20 Pix Vec 4.21 2.68 1.97 1.71 14.1 8.15 5.76

50 Pix Vec 9.02 5.20 3.42 2.78 33.8 18.9 12.9

100 Pix Vec 17.1 9.42 5.85 4.57 66.6 36.8 24.9

25 Pix Tri 2.96 2.02 1.60 1.46 9.75 6.12 4.68

50 Pix Tri 3.80 2.45 1.89 1.67 13.8 8.72 6.67

100 Pix Tri 4.97 3.05 2.24 1.94 20.0 12.8 9.89

1000 Pix Tri 14.2 8.05 5.41 4.49 82.5 59.6 50.5

Table 1 Average number of Pages or Blocks touched
per primitive



is set by the slowest of the three data paths (quads at the pins and
ALU, blocks on the global bus, pages to DRAM):

(1)

where the denominators Q, B, and P are obtained from the left half
of Table 2, and the numerators RQ, RB, RP are the bus rates for
quads, blocks and pages. Referring again to Figure 4, RQ is 100 mil-
lion quads/sec through the ALU (4 pixels/quad), RB is 25 million
blocks/sec (40 ns per block, one 20 ns prefetch read plus one 20 ns
writeback) and RP is 8.3 million pages/sec (120 ns per page).

The right half of Table 2 gives the three terms of Equation 1. The
white columns indicate the performance limit (the minimum of the
three for each case).

Equation 1 assumes that whenever the L1$ is about to miss, the render-
ing controller has already brought the proper block in from the L2$ into
the L1$. Similarly, whenever the L2$ is about to miss, the rendering
controller has already brought the proper page in from the DRAM bank
into the L2$. To achieve such clairvoyance, the controller must know
which pages and blocks to prefetch or write back. The FBRAM philos-
ophy assumes that the rendering controller queues up the pixel opera-
tions external to the FBRAMs, and snoops this write queue to predict
which pages and blocks will be needed soon. These needed pages and
blocks are prefetched using the DRAM operation pins, while the
SRAM operation pins are used to render pixels into the L1$ at the same
time. Cycle accurate simulation of such architectures have shown this
technique to be quite effective.

Although pages can only be fetched to one L2$ entry every 120 ns,
it is possible to fetch pages to different L2$ entries every 40 ns. To
reduce the prefetching latency, banks A, B, C and D are interleaved
in display space horizontally and vertically, as shown in Figure 5,
ensuring that no two pages from the same bank are adjacent hori-
zontally, vertically, or diagonally. This enables pre-fetching any
neighboring page while rendering into the current page.

As an example, while pixels of vector b in Figure 5 are being ren-
dered into page 0 of bank A, the pre-fetch of page 0 of bank C can
be in progress. Usually the pre-fetch from C can be started early
enough to avoid idle cycles between the last pixel in page 0 of bank
A and the first pixel in page 0 of bank C.

The key idea is that even for vertical vectors, such as vector d, we
can pre-fetch pages of pixels ahead of the rendering as fast as the
rendering can cross a page. Even though vector c rapidly crosses
three pages, they can still be fetched at a 40ns rate because they are

Average
Misses/Prim

Million Prim/sec

Quad Block Page
Quad
Perf

Block
Perf

Page
Perf

10 Pix Vec 8.75 2.35 0.478 11.4 10.6 17.4

20 Pix Vec 16.4 4.71 0.955 6.10 5.31 8.72

50 Pix Vec 38.9 11.8 2.40 2.57 2.12 3.47

100 Pix Vec 76.7 23.4 4.83 1.30 1.07 1.72

25 Pix Tri 11.6 1.70 0.308 8.62 14.7 27.0

50 Pix Tri 20.2 3.04 0.422 4.95 8.22 19.7

100 Pix Tri 36.1 6.54 0.605 2.77 3.82 13.8

1000 Pix Tri 286. 46.7 4.37 0.350 0.535 1.91

Table 2 FBRAM Performance Limits

primitives/sec min
RQ

Q
-------

RB

B
-------

RP

P
------, ,( )=

from three different banks. Appendix A gives a detailed cycle by
cycle example of rendering a 10 pixel vector.

When vectors are chained (vector e), the last pixel of one segment
and the first pixel of the next segment will almost always be in the
same bank and page. Even when segments are isolated, the proba-
bility is 75% that the last pixel of one segment and first pixel of next
segment will be in different banks, thus enabling overlapping of
DRAM bank fetches to L2$.

11 PIXEL RECTANGLE FILL OPERATIONS

As fast as the FBRAM pixel write rate is, it is still valuable to pro-
vide optimizations for the special case of large rectangle fill. These
specifically include clearing to a constant value or to a repeating
pattern. Fast clearing of the RGBZ planes is required to achieve
high frame rates during double buffered animation.

FBRAM provides two levels of acceleration for rectangle filling of
constant data. Both are obtained by bypassing the bandwidth bottle-
necks shown in Figure 4.

In the first method, once an 8×4 L1$ block has been initialized to a
constant color or pattern, the entire block can be copied repeatedly
to different blocks within the L2$ at global bus transfer rates. This
feature taps the full bandwidth of the global bus, bypassing the pin/
ALU bandwidth bottleneck. Thus regions can be filled at a 4× high-
er rate (1.6 billion pixels per second, for a four-way interleaved
frame buffer).

The second method bypasses both the pin/ALU and the Global Bus
bottlenecks, effectively writing 1,280 pixels in one DRAM page cy-
cle. First, the method described in the previous paragraph is used to
initialize all four pages of the L2$, then these page buffers are rap-
idly copied to their DRAM banks at a rate of 40 ns per page. Thus
for large areas, clearing to a constant color or screen aligned pattern
can proceed at a peak rate of 32 billion pixels per second (0.25 ter-
abytes/sec), assuming a four-way interleaved design.

12 WINDOW SYSTEM SUPPORT

The most important feature of FBRAM for window system support
is simply its high bandwidth; however two window system specific
optimizations are also included.

Full read-modify-write cycles require two Global Bus transactions:
a prefetching read from the L2$, and copyback write to the L2$.
Most window system operations do not require read-modify-write
cycles when rendering text and simple 2D graphics. For such write-

0

16

32

48

64

0 80

A:0

x

y
160

80

96

C:0

A:8

C:8

B:0

D:0

B:8

D:8

a b c d

e

f g

A:16

C:16

A:24

C:24

B:16

D:16

B:24

D:24112

h

A:1

C:1

A:9

C:9

A:17

C:17

A:25

C:25

Figure 5. The upper left corner of the frame buffer, showing

pages 0-255, and example primitives a-h.
vertically and horizontally interleaved banks A-D,



only operations, the number of Global Bus transactions can be cut
in half, improving performance. This is accomplished by skipping
the pre-fetching read of a new block from the L2$ to L1$.

Vertical scrolling is another frequent window system operation ac-
celerated by FBRAM. This operation is accelerated by performing
the copy internal to the FBRAM. This results in a pixel scroll rate
of up to 400 million pixels per second.

13 VIDEO OUTPUT

VRAM solved the display refresh bandwidth problem by adding a
second port, but at significant cost in die area. FBRAM also provides
a second port for video (see Figure 2), but at a smaller area penalty.

Like VRAM, FBRAM has a pair of ping-pong video buffers, but
unlike VRAM, they are much smaller in size: 80 pixels each for a
four-way interleaved FBRAM frame buffer vs. 1,280 pixels each
for a five-way interleaved VRAM frame buffer. These smaller buff-
ers save silicon and enable a rectangular mapping of pages to the
display, but at the price of more frequent video buffer loads.

The FBRAM video buffers are loaded directly from the DRAM
bank page buffers (L2$, 80×16 pixels), selecting one of the 16 scan
lines in the page buffer. The cost of loading a video buffer in both
FBRAM and VRAM is typically 120-200 ns.

To estimate an upper bound for FBRAM video refresh overhead for
a 1280×1024 76Hz non-interlaced video display, assume that all
rendering operations cease during the 200 ns video buffer load in-
terval. During each frame, a grand total of 3.28 ms
(200 ns•1280•1024 pixels / 80 pixels) of video buffer loads are
needed for video refresh. Thus 76 Hz video refresh overhead could
theoretically take away as much as 25% of rendering performance.

The actual video overhead is only 5-10% for several reasons. First,
the pixel ALU can still access its side of the L1$ during video re-
fresh, because video transfers access the L2$. Second, although one
of the four banks is affected by video refresh, global bus transfers
to the other three banks can still take place. Finally, it is usually pos-
sible to schedule video transfers so that they do not conflict with
rendering, reducing the buffer load cost from 200 to 120 ns.

For high frame rate displays, the raster pattern of FBRAM video
output refresh automatically accomplishes DRAM cell refresh, im-
posing no additional DRAM refresh tax.

14 FBRAM PEFORMANCE

The model developed in section 10 gave theoretical upper bounds
on the performance of a four-way interleaved FBRAM system. But
to quantify the performance obtainable by any real system built
with FBRAM, a number of other factors must be considered.

First, a 10% derating of the section 10 model should be applied to
account for the additional overhead due to video and content refresh
described in section 13.

The sophistication of the cache prediction and scheduling algorithm
implemented will also affect performance. Equation 1 assumed that
the cache controller achieves complete overlap between the three
data paths; this is not always possible. More detailed simulations
show that aggressive controllers can achieve 75% (before video
tax) of the performance results in table 2.

Taking all of these effects into account, simulations of buildable
four-way interleaved FBRAM systems show sustained rates of 3.3
million 50 pixel Z-buffered triangles per second, and 7 million 10
pixel non-antialiased Z-buffered vectors per second. FBRAM sys-
tems with higher external interleave factor can sustain performanc-
es in the tens of millions of small triangles per second range.

All of our simulations assume that the rest of the graphics system
can keep up with the FBRAM, delivering four RGBαZ pixels every
10 ns. While this is a formidable challenge, pixel interpolation and
vertex floating point processing ASICs are on a rapidly improving
performance curve, and should be able to sustain the desired rates.

FBRAM performance can be appreciated by comparing it with the
pixel fill rate of the next generation Pixel Planes rasterizing chips
[16], although FBRAM does not directly perform the triangle ras-
terization function. The pixel fill rate for a single FBRAM chip is
only a factor of four less than the peak (256 pixel rectangle) fill rate
of a single Pixel Planes chip, but has 400 times more storage capac-
ity.

Next let us contrast the read-modify-write performance of FBRAM
to a 60 ns VRAM. Assuming no batching, VRAM page mode re-
quires in excess of 125 ns to do what FBRAM does in 10 ns; a
12.5× speed difference.

Batching VRAM reads and writes to minimize bus-turns, as de-
scribed in section 3, does not help as much as one might think. Typ-
ical VRAM configurations have very few scan lines per page,
which causes fragmentation of primitives, limiting batch sizes. Ta-
ble 1 shows that for a 320×4 page shape, a 50 pixel triangle touches
3.8 pages, averaging 13 pixels per page. For a five way interleaved
frame buffer, an average of only 2.6 pixels can be batched per chip.

15 OTHER DRAM OFFSHOOTS

A veritable alphabet soup of new forms of DRAM are at various stages
of development by several manufactures: CDRAM, DRAM, FBRAM,
RAMBUS, SDRAM, SGRAM, SVRAM, VRAM, and WRAM. For
3D graphics, FBRAM is distinguished as the only technology to direct-
ly support Z-buffering, alpha blending, and ROPs. Only FBRAM con-
verts read-modify-write operations into pure write operations; this
alone accounts for a 3-4× performance advantage at similar clock rates.
Other than CDRAM, only FBRAM has two levels of cache, and effi-
cient support of rectangular cache blocks. It is beyond the scope of this
paper to derive precise comparative 3D rendering performance for all
these RAMs, but FBRAM appears to be several times faster than any
of these alternatives.

16 FUTURES

The demand for faster polygon rendering rates shows no sign of
abating for some time to come. However, as was observed at the
end of section 2, the number of pixels filled per scene is not going
up anywhere near as rapidly. Future increases in pixel resolution,
frame rate, and/or depth complexity are likely to be modest.

Future predictions of where technology is going are at best approx-
imations, and their use should be limited to understanding trends.
With these caveats in mind, Figure 6 explores trends in polygon
rendering rate demand vs. memory technologies over the next sev-
eral years. The figure shows the projected pixel fill rate (including
fragmentation effects) demanded as the polygon rate increases over
time (from the data in [6]). It also displays the expected delivered
pixel fill rates of minimum chip count frame buffers implemented
using FBRAM and VRAM technologies (extrapolating from Equa-
tion 1 and from the systems described in [14][5]). The demand
curve is above that achievable inexpensively with conventional
VRAM or DRAM, but well within the range of a minimum chip
count FBRAM system.

The trend curve for FBRAM has a steeper slope because, unlike
VRAM, FBRAM effectively decouples pixel rendering rates from
the inherently slower DRAM single transistor access rates. This
will allow future versions of FBRAM to follow the more rapidly in-



creasing SRAM performance trends. FBRAM still benefits from
the inherently lower cost per bit of DRAM technology.

The “excess” pixel fill rate shown for FBRAM in Figure 6 com-
bined with FBRAM’s high bit density will permit cost-effective,
one pass, full scene antialiasing using super-sampled frame buffers.

17 CONCLUSIONS

In the past, the bandwidth demands of video output led to the cre-
ation of VRAM to overcome DRAM’s limitations. In recent years,
the demands of faster and faster rendering have exceeded VRAM’s
bandwidth. This led to the creation of FBRAM, a new form of ran-
dom access memory optimized for Z-buffer based 3D graphics ren-
dering and window system support. A ten fold increase in Z-buff-
ered rendering performance for minimum chip count systems is
achieved over conventional VRAM and DRAM. Given statistics on
the pixel fill requirements of the next two generations of 3D graph-
ics accelerators, FBRAM may remove the pixel fill bottleneck from
3D accelerator architectures for the rest of this century.

ACKNOWLEDGEMENTS

FBRAM is a joint development between SMCC and Mitsubishi
Electric Corporation. The authors would like to acknowledge the
efforts of the entire Mitsubishi team, and in particular K. Inoue, H.
Nakamura, K. Ishihara, Charles Hart, Julie Lin, and Mark Perry.

On the Sun side, the authors would like to thank Mary Whitton, Scott
Nelson, Dave Kehlet, and Ralph Nichols, as well as all the other en-
gineers who reviewed drafts of this paper.

REFERENCES

1. Akeley, Kurt and T. Jermoluk. High-Performance Polygon
Rendering, Proceedings of SIGGRAPH '88 (Atlanta, GA, Aug
1-5, 1988). In Computer Graphics 22, 4 (July 1988), 239-246.

2. Akeley, Kurt. Reality Engine Graphics. Proceedings of SIG-
GRAPH ‘93 (Anaheim, California, August 1-6, 1993). In
Computer Graphics, Annual Conference Series, 1993, 109-
116.

3. Catmull, E. A Subdivision Algorithm for Computer Display of
Curved Surfaces, Ph.D. Thesis, Report UTEC-CSc-74-133,
Computer Science Dept., University of Utah, Salt Lake City,
UT, Dec. 1974.

Figure 6. Pixel fill rate needed to match anticipated triangle fill
rate demand compared with anticipated delivered pixel fill rate
delivered by minimum chip count FBRAM and VRAM systems.

1993 2001
Year

10B

1B

100M

10M
10M 100M 1B1M

Triangles/sec

VRAM

Demand

FBRAM

Pixels/sec

4. Deering, Michael, S. Winner, B. Schediwy, C. Duffy and N.
Hunt. The Triangle Processor and Normal Vector Shader: A
VLSI system for High Performance Graphics. Proceedings of
SIGGRAPH '88 (Atlanta, GA, Aug 1-5, 1988). In Computer
Graphics 22, 4 (July 1988), 21-30.

5. Deering, Michael, and S. Nelson. Leo: A System for Cost Ef-
fective Shaded 3D Graphics. Proceedings of SIGGRAPH ‘93
(Anaheim, California, August 1-6, 1993). In Computer
Graphics, Annual Conference Series, 1993, 101-108.

6. Deering, Michael. Data Complexity for Virtual Reality:
Where do all the Triangles Go? Proceedings of IEEE VRAIS
‘93 (Seattle, WA, Sept. 18-22, 1993). 357-363.

7. Demetrescu, S. A VLSI-Based Real-Time Hidden-Surface
Elimination Display System, Master’s Thesis, Dept. of Com-
puter Science, California Institute of Technology, Pasadena
CA, May 1980.

8. Demetrescu, S. High Speed Image Rasterization Using Scan
Line Access Memories. Proceedings of 1985 Chapel Hill Con-
ference on VLSI, pages 221-243. Computer Science Press,
1985.

9. Fuchs, Henry, and J. Poulton. Pixel Planes: A VLSI-Orient-
ed Design for a Raster Graphics Engine. In VLSI Design, 2,3
(3rd quarter 1981), 20-28.

10. Foley, James, A. van Dam, S. Feiner and J Hughes. Com-
puter Graphics: Principles and Practice, 2nd ed., Addison-
Wesley, 1990.

11. Gharachorloo, Nader, S. Gupta, E. Hokenek, P. Bala-
subramanina, B. Bogholtz, C. Mathieu, and C. Zoulas.
Subnanosecond Rendering with Million Transistor Chips.
Proceedings of SIGGRAPH '88 (Boston, MA, July 31, Aug 4,
1989). In Computer Graphics 22, 4 (Aug. 1988), 41-49.

12. Gharachorloo, Nader, S. Gupta, R. Sproull, and I. Suther-
land. A Characterization of Ten Rasterization Techniques.
Proceedings of SIGGRAPH '89 (Boston, MA, July 31, Aug 4,
1989). In Computer Graphics 23, 3 (July 1989), 355-368.

13. Goris, A., B. Fredrickson, and H. Baeverstad. A Config-
urable Pixel Cache for Fast Image Generation. In IEEE CG&A
7,3 (March 1987), pages 24-32, 1987.

14. Harrell, Chandlee, and F. Fouladi. Graphics Rendering Ar-
chitecture for a High Performance Desktop Workstation. Pro-
ceedings of SIGGRAPH ‘93 (Anaheim, California, August 1-
6, 1993). In Computer Graphics, Annual Conference Series,
1993, 93-100.

15. M5M410092 FBRAM Specification. Mitsubishi Electric,
1994.

16. Molnar, Steven, J. Eyles, J. Poulton. PixelFlow: High-Speed
Rendering Using Image Composition. Proceedings of SIG-
GRAPH '92 (Chicago, IL, July 26-31, 1992). In Computer
Graphics 26, 2 (July 1992), 231-240.

17. Patterson, David, and J. Hennessy. Computer Architecture:
a Quantitative Approach, Morgan Kaufmann Publishers, Inc.,
1990.

18. Pinkham, R., M. Novak, and K. Guttag. Video RAM Excels
at Fast Graphics. In Electronic Design 31,17, Aug. 18, 1983,
161-182.

19. Sproull, Robert, I. Sutherland, and S. Gupta. The 8 by 8
Display. In ACM Transactions on Graphics 2, 1 (Jan 1983),
35-56.

20. Whitton, Mary. Memory Design for Raster Graphics Dis-
plays. In IEEE CG&A 4,3 (March 1984), 48-65, 1984.



APPENDIX A: Rendering a 10 pixel Vector

This appendix demonstrates the detailed steps involved in schedul-
ing FBRAM rendering, using the 10 pixel long, one pixel wide ver-
tical Z-buffered vector shown in Figure 7. This figure shows the

memory hierarchy elements touched by the vector at three levels of
detail: the coarsest (left most) shows banks (A..D) and pages
(0..255), the intermediate detail (middle) shows blocks in the L2$,
and the finest (right most) shows pixel quads.

The example vertical vector starts at x=1, y=10, and ends at y=19.
Table 3 gives the bank, page, L2$ block, and quad for each pixel in
the vector. Note the spatial locality of pixels.

Table 4 below shows the schedule of commands and data issued to
the FBRAM, and the resulting internal activities. Note that inde-
pendent controls are available, and permit parallel L1$ and L2$ ac-
tivities. The following abbreviations are used in Table 4:

L1$[n]: Block n of the L1$.

L2$[n]: Block n of the L2$.

ACP: Access page (DRAM to L2$ transfer).

A:17
C:17
A:25
C:25
A:33

0

4

8

12

16

20

24

0 4 8 12

0

1

2

3

4

5

6

7

0

1

4

5

A:0

Figure 7. A 10 pixel vector near the upper

0
2
4
6
0
2
4
6
0
2
4
6
0
2
4
6

1
3
5
7
1
3
5
7
1
3
5
7
1
3
5
7

C:0
B:0
D:0

A:8
C:8

B:8
D:8

A:16
C:16

B:16
D:16

A:24
C:24

B:24
D:24

A:32B:32

A:1
C:1
A:9
C:9

Bank:Page

Block

Quad

0 4

8

12

16

20

0 80 160
0

16
32
48
64
80
96

left corner of the screen, at 3 levels of detail.

RDB: Read block (L2$ → L1$ transfer).

MWB: Masked write block (L1$ → L2$ transfer).

PRE: Precharge bank (free L2$ entry).

read x: Read pixel x from L1$ to ALU.

write x: Write pixel x from ALU to L1$.

We follow the first pixel at (1, 10) through the cache hierarchy. The
pixel’s page (page 0 of bank A) is transferred to the L2$ entry A in
cycles 1 to 4 (notice that the next 5 pixels are transferred too). The
pixel’s block is then transferred from L2$ entry A to L1$[0] in cy-
cles 5 and 6 (the next pixel is transferred too). The pixel is read from
the L1$[0] to the pipelined ALU in cycle 7. The old and new pixels
are merged (Z-buffered, blended) during cycles 8 to 11. The result-
ing pixel is written back to the L1$[0] in cycle 12. The pixel’s block
is transferred from the L1$[0] back to the L2$ entry A (and DRAM
page 0 of bank A) in cycles 14 and 15.

The second pixel at (1,11) hits in both L1$ and L2$, and can follow
one cycle behind the first pixel, arriving back in the L1$ in cycle 13.
The pixel at (1,12) misses in the L1$, but hits in the L2$, requiring
an RDB from L2$ entry A to L1$[1]. The pixel at (1,16) misses in
both caches, requiring a L2$ access of bank C, and followed by a
transfer from L2$ entry C to L1$[2]. All the other pixels hit in both
caches, and are scheduled like the second pixel.

X Y Bank Page
L2$

Block
Quad L2$ L1$

1 10

A 0

2 4 miss miss
1 11 6 hit hit
1 12

3

0 hit miss
1 13 2 hit hit
1 14 4 hit hit
1 15 6 hit hit
1 16

C 0 0

0 miss miss
1 17 2 hit hit
1 18 4 hit hit
1 19 6 hit hit

Table 3 Bank, Page, L2$ Block, and Quad for each
pixel in the vector

Table 4. Schedule of operations for rendering a 10 pixel vector

Merge data with Quad 4 of L1$[0]
Merge data with Quad 6 of L1$[0]
Merge data with Quad 0 of L1$[1]
Merge data with Quad 2 of L1$[1]
Merge data with Quad 4 of L1$[1]
Merge data with Quad 6 of L1$[1]
Merge data with Quad 0 of L1$[2]
Merge data with Quad 2 of L1$[2]
Merge data with Quad 4 of L1$[2]
Merge data with Quad 6 of L1$[2]

Access Page 0 of Bank A

Access Page 0 of Bank C

L2$[2] of Bank A ← L1$[0]

L2$[0] of Bank C → L1$[2]

L2$[3] of Bank A → L1$[1]

L2$[2] of Bank A → L1$[0]

L2$[3] of Bank A ← L1$[1]

L2$[0] of Bank C ← L1$[2]

Precharge Bank A

23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

ACP

ACP

PRE

RDB

RDB

RDB

MWB

MWB

MWB

RDB

RDB

RDB

MWB

MWB

MWB

read 0
read 2
read 4
read 6

read 4
read 6

read 0
read 2
read 4
read 6

write 4
write 6

write 4
write 6

write 4
write 6

write 0
write 2

write 0
write 2

L1$ Command and Data L2$ Command
L2$ Activities L1$  Activities
A CB D 3 4 5 6 70 1 2

Internal ActivitiesCommands and Data to FBRAM


