
Figure 2: View seen in HMD, virtual axes on real frame

Figure 1: Wooden frame for calibration and registration

Improving Static and Dynamic Registration in an Optical
See-through HMD

Ronald Azuma§ Gary Bishop†

Department of Computer Science
University of North Carolina at Chapel Hill

Abstract
 In Augmented Reality, see-through HMDs superimpose virtual
3D objects on the real world. This technology has the potential to
enhance a user’s perception and interaction with the real world.
However, many Augmented Reality applications will not be accepted
until we can accurately register virtual objects with their real coun-
terparts. In previous systems, such registration was achieved only
from a limited range of viewpoints, when the user kept his head
still. This paper offers improved registration in two areas. First,
our system demonstrates accurate static registration across a wide
variety of viewing angles and positions. An optoelectronic tracker
provides the required range and accuracy. Three calibration steps
determine the viewing parameters. Second, dynamic errors that occur
when the user moves his head are reduced by predicting future head
locations. Inertial sensors mounted on the HMD aid head-motion
prediction. Accurate determination of prediction distances requires
low-overhead operating systems and eliminating unpredictable
sources of latency. On average, prediction with inertial sensors pro-
duces errors 2-3 times lower than prediction without inertial sen-
sors and 5-10 times lower than using no prediction at all. Future
steps that may further improve registration are outlined.

CR Categories and Subject Descriptors: I.3.1 [Computer
Graphics]: Hardware Architecture — three-dimensional displays;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism — virtual reality
Additional Key Words and Phrases: Augmented Reality, reg-
istration, calibration

§† CB 3175 Sitterson Hall; UNC; Chapel Hill, NC 27599
§ (919) 962-1848 azuma@cs.unc.edu
† (919) 962-1886 gb@cs.unc.edu

1 Motivation
 Head-Mounted Displays (HMDs) and Virtual Environments have
been a subject of great interest in the past few years. Less attention
has been paid to the related field of Augmented Reality, despite its
similar potential. The difference between Virtual Environments and
Augmented Reality is in their treatment of the real world. Virtual
Environments immerse a user inside a virtual world that completely
replaces the real world outside. In contrast, Augmented Reality uses
see-through HMDs that let the user see the real world around him.
See-through HMDs augment the user’s view of the real world by
overlaying or compositing three-dimensional virtual objects with
their real world counterparts. Ideally, it would seem to the user that
the virtual and real objects coexisted. Since Augmented Reality
supplements, rather than supplants, the real world, it opens up a
different class of applications from those explored in Virtual Envi-
ronments.
 Augmented Reality applications attempt to enhance the user’s
perception and interaction with the real world. Several researchers
have begun building prototype applications to explore this poten-
tial. A group at Boeing uses a see-through HMD to guide a techni-
cian in building a wiring harness that forms part of an airplane’s

electrical system [6][33]. Currently, technicians use large physical
guide boards to construct such harnesses, and Boeing needs several
warehouses to store all of these boards. Such space might be emp-
tied for better use if this application proves successful. Other con-
struction and repair jobs might be made easier if instructions were
available, not in the form of manuals with text and 2D pictures, but
as 3D drawings superimposed upon real objects, showing step-by-
step the tasks to be performed. Feiner and his group demonstrated
this in a laser printer maintenance application [11]. Feiner’s group
is also exploring displaying virtual documents in a sphere around
the user, providing a much larger workspace than an ordinary work-
station monitor. Medical applications might also benefit from Aug-
mented Reality. A group at UNC scanned a fetus inside a womb
with an ultrasonic sensor, then displayed a three-dimensional repre-
sentation of that data in the same physical location as the fetus [4].
The goal is to provide a doctor with “X-ray vision,” enabling him to
gaze directly into the body. Conceptually, anything not detectable
by human senses but detectable by machines might be transducted
into something that we can sense and displayed inside a see-through
HMD. Robinett speculates that ultimately Augmented Reality is
about augmentation of human perception, about making the invis-
ible visible (or hearable, feelable, etc.) [29].
 While promising, Augmented Reality is barely at the demonstra-
tion phase today, and its full potential will not be realized until sev-
eral technical challenges are overcome. One of the most basic is the
registration problem. The real and virtual objects must be properly

Permission to make digital or hard copies of part or
all of this work or personal or classroom use is
granted without fee provided that copies are not made
or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGGRAPH ’94, July 24-29, Orlando, Florida
© ACM 1994 ISBN: 0-89791-667-0 ...$5.00

http://crossmark.crossref.org/dialog/?doi=10.1145%2F192161.192199&domain=pdf&date_stamp=1994-07-24

Pixel-Planes 5

Prediction GP

Sun4
Tracker boards

Ceiling panels

Inertial 486 PC
12-bit A/D

4x optical
sensors

Images

LCDs

Figure 3: System diagram

points and view directions. We use a custom optoelectronic head
tracker that provides sufficient range and accuracy. We also devel-
oped calibration techniques for determining the viewing parameters.
The robust static registration is demonstrated by several still photo-
graphs taken from a single video sequence where the user walked
270 degrees around the registration object.
 Improved dynamic registration: To reduce dynamic errors caused
by the end-to-end latency in the system, we use predictive tracking
techniques that guess where the user’s head will be in the future.
We equipped the see-through HMD with inertial sensors to aid head-
motion prediction. A method for autocalibrating the orientation of
the sensors on the user’s head, along with other parameters, was
developed. The reduction in dynamic error for three different mo-
tion runs is listed in a table.
 The rest of the paper is organized as follows: first we give a brief
overview of our system. Next, we describe and evaluate the static
registration procedure. Then we do the same for dynamic registra-
tion. Each section describes problems encountered and points out
limitations. The interested reader will find supplementary materials
available in the CD-ROM version of this paper and many more de-
tails about our work in a technical report (the first author's disserta-
tion) to be released later in 1994 by UNC Chapel Hill.
 The main implications of our work are:

• Robust static registration within a few mm is possible, but it
requires trackers with higher accuracy than Virtual Environ-
ment applications demand.

• Inertial-aided predictors can greatly reduce dynamic registra-
tion errors. On average, inertial-based prediction is 5-10
times more accurate than doing no prediction and 2-3 times
more accurate than a representative non-inertial predictor.

• Augmented Reality systems that use predictive tracking re-
quire low-overhead operating systems and the elimination
of unpredictable sources of latency.

3 System
 Our system uses an optical see-through HMD. Its position and
orientation are measured by an optoelectronic tracking system, and
the images are generated by the Pixel-Planes 5 graphics engine.
Readings taken from inertial sensors mounted on the HMD are digi-
tized by an A/D board in a 486 PC. Figure 10 shows the overall
setup, and Figure 3 provides a system diagram.
 The optical see-through HMD [16] is shown in Figure 8. Optical
combiners placed in front of both eyes overlay images on top of the
user’s view of the real world. The displays are color LCD monitors
containing 340x240 pixels each. The field-of-view in each eye is
approximately 30 degrees. We chose an optical see-through ap-
proach because it does not delay the user’s view of the real world
(see Section 7).
 Tracking is provided by four optical sensors mounted on the back
of the HMD, as seen in Figure 8. These are aimed upwards at an
array of infrared LEDs mounted in ceiling panels above the user’s
head. By sighting several LEDs, and given the known geometry of
the sensors on the head and the known locations of the beacons in
the ceiling, the system is able to compute the position and orienta-
tion of the user’s head. The data collection and processing are per-
formed by three single-board 68030 and i860-based computers in-
stalled in the VME chassis of a Sun4 host [36].
 The inertial sensors consist of three Systron Donner QRS-11 an-
gular rate gyroscopes and three Lucas NovaSensor NAS-CO26 lin-
ear accelerometers. The gyros measure angular rates within the range
of ±300 degrees/second, and the accelerometers detect acceleration
within ±2 g. A 12-bit A/D board (National Instruments AT-MIO-
16D) in a 486 PC digitizes the signals. To minimize noise, we built
special power regulation circuits, used shielded twisted-pair wire,
differential-mode A/Ds, and analog prefilters. A Bit3 bus extender
sends the digitized readings to the optoelectronic tracker boards in
the Sun4.
 The virtual images are generated by Pixel-Planes 5 (Pxpl5), a
highly parallel graphics engine consisting of i860-based Graphics
Processors (GPs) to do geometry transformations and Renderer
boards that rasterize primitives [14]. One of the GPs is used to run
our prediction routine. The computed head positions and orienta-
tions from the optoelectronic tracker and the measured inertial sig-
nals are fed to this GP, which uses them to estimate future head

aligned with respect to each other, or the illusion that the two coex-
ist will be compromised. This is difficult to do because of the preci-
sion required. The human visual system is very good at detecting
even small misregistrations, due to the resolution of the fovea and
the sensitivity of the visual system to differences. A more tractable
bound is provided by the relatively low resolution of the displays in
modern HMDs. Errors of just a few pixels are noticeable.
 Some applications have strict requirements for accurate registra-
tion. For example, imagine a surgeon wearing a see-through HMD
displaying virtual objects that identify where and where not to make
incisions. Unless the registration errors are kept below a few milli-
meters, the surgeon is not likely to trust the equipment. Without
good registration, Augmented Reality may never be accepted in se-
rious applications.
 What causes registration errors? The main sources are:

• Distortion in the HMD optics
• Mechanical misalignments in the HMD
• Errors in the head-tracking system
• Incorrect viewing parameters (field of view, tracker-to-eye

position and orientation, interpupillary distance)
• End-to-end system latency

 The first four categories may be classified as static errors, be-
cause they cause registration errors even when the user keeps his
head completely still. The 5th category, end-to-end latency, we call
a dynamic error, because it has no effect until the user moves his
head.
 No one has achieved perfect registration with a see-through HMD.
The current demonstrated state-of-the-art, as reported in the text and
pictures of [4][11][18] achieves static errors on the order of 0.5 inches
for an object at arm’s length away from the HMD, from a small
number of viewpoints. Dynamic errors can be much larger. With
an end-to-end system latency of 100 ms, and a moderate head rota-
tion rate of 100 degrees/sec, the angular dynamic error will be 10
degrees. At arm’s length, this results in registration errors of 5 inches.

2 Contribution
 This paper describes a system we built that tackles three of the
main sources of registration errors: the head tracker, the determina-
tion of viewing parameters, and dynamic errors caused by system
latency. We demonstrate improved static and dynamic registration
as follows:
 Improved static registration: Pictures and videos of existing Aug-
mented Reality systems show registration from only a small num-
ber of viewpoints. The user is not allowed to translate or rotate the
HMD very far from the initial viewpoint. There are two reasons for
this limitation. First, most commercially available head-tracking
systems do not provide sufficient accuracy and range to permit such
movement without greatly increasing the static registration errors.
Second, determining viewing parameters that work from just one
viewpoint is much easier than determining parameters that work
from many different viewpoints. We show that parameters yielding
good registration from one viewpoint may result in static errors of a
few inches at another viewpoint.
 Our system is capable of robust static registration: keeping a vir-
tual and real object closely aligned across many widely spaced view-

Frame coor
system

Eye coor system

X

-Y

Z

Tracker
coor system

Virtual 2D
crosshair

Y radiusX radius

Z

X

X

Z
-Y

-Y

World spaceX

Z

Y

Nail

Figure 4: Virtual crosshair and coordinate systems

4 Static registration
4.1 Previous work
 Registration of real and virtual objects is not limited to see-through
HMDs. Special effects artists seamlessly blend computer-gener-
ated images with live footage for films and advertisements. The
difference is in time and control. With film, one can spend hours on
each frame, adjusting by hand if necessary, and each shot is care-
fully preplanned. In Augmented Reality we have no such control:
the user looks where he wants to look, and the computer must re-
spond within tens of milliseconds (ms).
 Deering [10] demonstrated an impressive registration of a real
and virtual ruler in a head-tracked stereo system. Registration is a
somewhat easier task in head-tracked stereo vs. an HMD-based sys-
tem because the images do not change nearly as much for the same
amount of head translation or rotation [9].
 An extensive literature of camera calibration techniques exists in
the robotics and photogrammetry communities (see the references
in [21] as a start). These techniques digitize one or more pictures of
an object of fixed and sometimes unknown geometry, locate fea-
tures on the object, then use mathematical optimizers to solve for
the viewing parameters. However, it is not clear how to directly
apply these techniques to an optical see-through HMD, where no
camera exists. Asking a user to identify the locations of many dif-
ferent points simultaneously while keeping his head still was judged
too difficult to be reliable.
 We have already mentioned several papers on Augmented Real-
ity, but most focus on applications rather than on the details of cali-
bration and registration. The sole exceptions are [6][18]. We com-
pare our results with theirs in Section 4.4. Methods used to cali-
brate helmet-mounted sights on helicopter gunships provided the
initial inspiration for our approach.
4.2 Problem statement
 We reduce the problem to one real object, one set of virtual ob-
jects, and a desired registration linking the two. The real object is a
wooden frame (Figure 1). The virtual objects are three mutually
orthogonal extruded squares that form a coordinate system. The
goal is to register the intersection of the three virtual bars with the
front left corner of the frame, where the three bars run along the
edges that touch the corner (Figures 2 & 14). This task is a good
registration test because it’s easy to detect small position and orien-
tation errors along the edges of the frame.
 Determining parameters that accomplish this task robustly is
harder than one might first think. The naive approach, tried by sev-
eral people in our laboratory, is the following: put a real object at a
known or unknown position, wear the see-through HMD, then manu-
ally adjust the viewing parameters and the location of the virtual
object until the registration “looks right.” This rarely yields robust
registration, because parameters and locations that work at one view-
point may generate large registration errors at another. Figure 9
illustrates this. The picture on the left shows good registration at
the initial viewpoint. But the same parameters yield a few inches of
registration error when used at a different viewpoint, as seen in the
picture on the right.

locations. The prediction GP also converts the predicted head loca-
tions into view matrices that the rest of Pxpl5 uses to generate the
graphic images the HMD-wearer sees. Since the normal Pxpl5 soft-
ware is optimized for maximum throughput and not minimal la-
tency, we use different rendering software written by Mark Olano
and Jon Cohen that minimizes Pxpl5 latency [8].
 Special care was taken to use fast communication paths and low-
overhead operating systems. Interprocessor communication is
through shared memory, across Bit3 bus extenders, or through the
640 MByte/sec ring network within Pixel-Planes 5. UNIX is avoided
except for initial setup and non-time-critical tasks, like reading but-
tons. This is discussed more in Section 5.3.
 The end-to-end system latency varies from 50-70 ms, with 15-30
ms coming from the tracker, ~12 ms from the predictor, and 16.67
ms from Pxpl5. The rest comes from communication paths and
delays caused by the asynchronous nature of our system.
 Recording the images that the user sees inside the HMD to create
the pictures in this paper was done by mounting a video camera in
the right eye of a bust. The HMD was tied to this bust, then carried
around.

4.3 Procedure
 Since camera calibration techniques seemed too difficult to apply
in this domain, we thought of ways to directly measure the viewing
parameters, using simple tasks that rely on geometric constraints. If
the tasks are sensitive enough and our tracker is accurate enough,
then this simple approach might work. We now describe these pro-
cedures that systematically determine the viewing parameters. The
steps in order are:

• Measure the frame’s location
• Determine the apparent center of the virtual image
• Measure the transformation between tracker space and eye

space
• Measure the field-of-view (FOV)

 We use only the right eye of our HMD, due to mechanical
misalignments, color mismatches between the two display systems,
and because a monocular display is sufficient to demonstrate regis-
tration.
 1) Frame measurement: A digitization probe attached to a “hat”
with four optical sensors returns the 3D position of the probe tip
(Figure 13). We measure eight points on the frame edges where the
red and green bars will lie, fit a pair of orthogonal lines through
those points, and those determine the axis going down the third edge.
 2) Apparent center of virtual image: The center of our 640x512
NTSC frame buffer need not be the center of the virtual image seen
by the right eye, requiring off-center projections to properly render
the images [12]. Assuming that the frame buffer covers the entire
area visible through the optics, we can measure this center by draw-
ing a 2D, non-head-tracked crosshair in the frame buffer (Figure 4).
Four numbers specify this crosshair: the (X,Y) center coordinate,
and the X and Y radii. The user determines the center by adjusting
the X center and radius until the left and rightmost lines are equally
spaced from the extreme visible edges of the display. This is tested
by increasing the radius; both lines should disappear simultaneously
or the center is incorrect. A similar procedure determines the Y
center. Our measured center is (330, 255), which differs from the
frame buffer center by about 10 pixels.
 3) Eye->Tracker transformation: This is measured by the boresight
operation, where a user wearing the HMD looks straight down the
left top edge of the frame with his right eye (Figure 4). A 0.25"
diameter pipe sticking out along the edge (Figure 1) helps the user
line up accurately. Simultaneously, he centers the virtual crosshair
with the corner of the frame and aligns the horizontal and vertical
crosshair lines with the edges of the frame (Figure 11). Then the
Eye coordinate system has the same orientation as the Frame coor-
dinate system, and the Z axes coincide.
 The boresight establishes the following relationship:

Qwf = Qwe
where we define Qwf to be the quaternion that rotates points and
vectors from Frame space to World space, and Qwe rotates from
Eye space to World space [30]. Then the desired Eye->Tracker ori-
entation Qte is computed by:

Qte = Qtw * Qwe
Qte = (Qwt)-1 * Qwf

where Qwt is what the head tracker returns, and Qwf is known from
step 1.
 The Eye->Tracker position offsets are measured by the boresight
and one additional task. The position of the corner of the frame in
World space is known, due to step 1. The position of the tracker
origin in World space is returned by the head tracker. Therefore, we
can draw a vector in World space from the corner of the frame to the

Figure 5: Side view of FOV calibration
results. To measure the remaining variation, we had three users
repeat the boresight and FOV steps five times, moving their heads
away in between each measurement. The average standard devia-
tions in computed orientation, position, and FOV were 0.32 degrees,
4.8 mm (mostly along the Z offset), and 0.1 degrees respectively.
While not fatal, this variation does mean users may have to try the
procedures more than once to achieve desired results.

5 Dynamic registration
 The static registration demonstrated in Figures 15-22 holds only
when the user stands still. When the user moves and rotates his
head, the virtual objects appear to “swim around” the real objects,
because of the system latency. The system requires time to measure
the head’s location, compute the corresponding images for that lo-
cation, and display those in the HMD. This delay between measur-
ing the head location and displaying the corresponding images means
the images will be incorrect if the user moves his head during this
delay. The virtual objects appear to lag behind their real counter-
parts, causing large dynamic registration errors.
 To reduce these dynamic errors, we predict head motion. Instead
of using the reported head location to generate the graphic images,
we predict where the head will be when the displays get updated. If
the prediction is correct, the computed virtual images will match
reality at the time they are viewed.

5.1 Previous work
 This paper is not the first to do head motion prediction. Two
predict head position with head-tracked stereo displays [10][26].
Several HMD systems predict position and/or orientation by extrapo-
lating readings from the head tracker [1][13][23][25][28][34][35].
Two papers [24][37] add angular accelerometers to a head tracker
to aid orientation prediction.
 How does our system differ from previous work? One difference
is the application. We use prediction to aid registration of real and
virtual objects in a see-through HMD and evaluate it in that context,
something the other systems did not attempt. We also use gyros and
accelerometers to aid both orientation and position prediction, which
no previous system does. Our work also contributes the following:

• Evaluation of how much inertial sensors help
• Measurement and control of prediction distance
• Autocalibration of inertial sensor parameters

5.2 Procedure
 We run separate predictors for orientation and position. Each
consists of two parts: 1) an estimator that computes our best guess
of the current position, velocity, and acceleration, and 2) a predic-
tor that takes those guesses and extrapolates the desired distance
into the future. Every time a tracker position and orientation mea-
surement arrives, along with the corresponding inertial measure-
ments, the estimator updates its guesses. Whenever Pxpl5 is ready
to compute a new scene, the predictor sends it an output correspond-
ing to the time when that scene will appear.
 The estimator used is the Kalman filter [19], which many previ-
ous works also use. Space does not permit a detailed description of
the filter; please read [22] for that. The Kalman filter is a linear
estimator that minimizes the expected mean-square error. For ori-
entation, we use a nonlinear variant called the Extended Kalman
Filter (EKF). The filter requires some variables to be estimated,
occasional noisy measurements of those variables, and a model of
how those variables change with time in the absence of new mea-
surements. It is optimal only if the model is an accurate reflection
of reality and if the uncertainty in both the model and the measure-
ments is accurately represented by additive white noise. Even though

tracker origin. Rotating this vector by (Qte)-1*Qtw transforms it to
Eye space. Since Eye space and Frame space share the same orien-
tation and their Z axes coincide, the X and Y values of the vector in
Eye space are the X and Y Eye->Tracker offsets, in Eye space. To
determine the Z offset, we need one more operation. Two nails are
on top of the frame, one in front and one in the rear (Figures 1, 4, &
14). While performing the boresight, the user must also position
himself so the front nail covers the rear nail. A red LED mounted
on the rear nail helps the user detect when this occurs. The known
locations of these two nails identify a specific distance along the
frame’s Z axis where the user’s eye must be. Subtracting that from
the corner->tracker vector in Eye space yields the Z component of
the Eye->Tracker offset.
 The user performs two boresights: one from a few feet away for
greater orientation sensitivity, and one less than a foot away (match-
ing the two nails) for greater position sensitivity.
 4) FOV measurement: It suffices to measure FOV along the ver-
tical Y direction in screen space, since scaling that by the frame
buffer’s aspect ratio yields the horizontal FOV. The crosshair’s Y
radius is set to 125 pixels so the top and bottom lines are easily
visible. The user stands in front of the frame and lines up the top
and bottom virtual crosshair lines with corresponding real lines drawn
on the frame’s front surface (Figures 12, 14). This forces the Eye
space X axis to be parallel to the Frame’s X axis. From the informa-
tion in steps 1, 2 and 3, we can compute the locations of the real
lines in Eye space. By intersecting the lines with the X=0 plane in
Eye space, we reduce the geometry to 2D, as shown in Figure 5. We
can always get right angles for y1 and y2 by using the line Y=0 as
the basis. Then:

ß1 = (-1.0) tan -1(y1/z1)
ß2 = tan -1(y2/z2)

z1 and z2 are positive, y2 is positive and y1 is negative as drawn.
This still works if the user’s eye is above or below both of the real
lines: the signs of y1, y2, ß1 and ß2 change appropriately. Since the
crosshair does not cover the entire frame buffer height (512 pixels),
we must scale the result to compute the total FOV ß:

ß = (ß1+ß2)(512/(2*125))
 The parameters measured in steps 1-4 are sufficient to implement
registration of the virtual axes. Step 1 tells us where to put the vir-
tual axes. The other parameters tell us how to generate view matri-
ces for the right eye, given reports from the head tracker. The only
unusual aspect is the need for an off-center projection.

4.4 Evaluation
 These procedures, used with our optoelectronic tracker, generate
parameters that work well from many different viewing angles and
positions. To demonstrate this, we recorded a video sequence, us-
ing only one set of parameters, of a user walking around and look-
ing at the corner of the frame from many different places. If space
allows, excerpts from this will be on the CD-ROM. At several places
during the run, the HMD was kept still. These viewpoints are iden-
tified by the numbered circles in Figure 14, which correspond with
the still images in Figures 2 and 15-22. The red and green bars have
a 5x5 mm2 cross-section, while the blue bar is 7x7 mm2 since it’s
harder to see at long distances. Note that the corner and edges usu-
ally stay within the width of the extruded rectangles at the static
viewpoints, which puts the registration within ±4 mm for the red
and green bars and ±5 mm for the blue bar.
 How do these results compare to the two previous works? Janin
[18] takes a very different approach. He directly measures param-
eters with instruments and runs a camera calibration optimizer that
requires the user to identify the location of ~20 object points from
several different viewpoints. The best accuracy he achieves is
±12mm. In contrast, step 3 of our procedure is similar to Caudell’s
[6] registration platform, which computes the Eye->Tracker posi-
tion and orientation offset by having the user line up two circles and
two lines. He does not provide any information on how accurate his
static registration is, and his registration procedure lacks equiva-
lents to our steps 2 and 4.
 Registration accuracy depends on how successfully the user can
complete the registration procedures. Users reported difficulty in
keeping their heads still during the boresight and FOV operations,
because of the weight of the HMD. To compensate, we use the most
recent 60 tracker reports to compute each operation, averaging the

y1

y2

z1

2*125 pixels

ß1

ß2

Real linesVirtual
linesX

Y
Z

z2
(Eye space
 origin
 at eyeball)

Eye space orientation

these assumptions are usually not met, the Kalman filter is still popu-
lar because it tends to perform well even with violated assumptions
and its recursive formulation makes it efficient to compute.
 Building a Kalman filter is easy. The difficult parts are determin-
ing an appropriate model and finding good noise parameters. For
the latter task, we collected several runs of tracker and inertial data
while the HMD-wearer performed “typical” head motions. Then
we ran Powell’s method [27] to search for parameters that mini-
mized prediction error at a fixed prediction distance. In practice,
this heuristic is able to find a fairly wide range of parameters that
meet this goal.
 We now outline the orientation estimator and predictor, later de-
scribing the translation case by how it differs from orientation.

5.2.1 Orientation
 Q = [qw qx qy qz]T, W=[w0 w1 w2]T

 X = qw qx qy qz w0 w1 w2 w0 w1 w2
T

where Q is a quaternion rotating points and vectors from Tracker
space to World space, W is omega, the angular rate of rotation in
head space, and X is the Nx1 state vector, where N=10. P is an
NxN covariance matrix representing the uncertainty in X. The ini-
tial value of X holds the starting quaternion and has zeroes for omega
and its derivative. P is initially a diagonal matrix with zeroes in all
off-diagonal positions, 1 for the first four diagonal terms (quater-
nion), and 50 for the remaining six diagonal terms (omega and its
derivative). The initial covariances are large so the filter will re-
place the initial X with new measurements as they arrive.
 X and P are maintained at the current time t. When each new
measurement arrives, say at time t1, the filter performs two opera-
tions: 1) a time update that advances the state variables to time t1
based on the model, and 2) a measurement update that blends in the
values measured at time t1.
 1) Time update: A 4th-order Runge-Kutta ODE solver [27] inte-
grates the derivatives of X and P from time t to t1. The derivatives
are:
 P =AP + PAT + E

 X = a(X, t) (1)
where E is an NxN matrix representing the noise in the model, and
A is the NxN Jacobian matrix of the nonlinear function a() that re-
turns the derivatives of X by computing:

 Q = (0.5)(Q)(W), W = w0 w1 w2
T

, W = 0
where for the derivative of Q, the multiplications are quaternion
multiplications and W is written as a quaternion with zero w term
[7].
 2) Measurement update: Measurement Z is an Fx1 matrix, where
F=7, that holds the measured quaternion Qm and omega Wm re-
ported by our sensors:
 Qm = [qwm qxm qym qzm]T, Wm = [w0m w1m w2m]T

 Z = [qwm qxm qym qzm w0m w1m w2m]T

The nonlinear function h() generates Z = h(X(t)) as follows:

 Qm = Normalize(Q), Wm = W
and the measurement update itself generates a new X and P given
Z as follows:
 K = PHT[HPHT + R]-1

 P = [I - KH]P

 X = X + K[Z - h(X)] (2)
where K is an NxF matrix called the Kalman gain, H is the FxN
Jacobian matrix of the nonlinear function h(), and R is the FxF co-
variance matrix representing the noise in the measurements. At the
end of the measurement update, we explicitly renormalize the quater-
nion part of X. This isn’t standard, but without it the quaternion
terms quickly become unnormalized.
 Noise matrices E and R are determined during the offline optimi-
zation. Both are diagonal matrices with zeroes in all off-diagonal
terms. The first six diagonal terms of E are set to 0.004452: a tiny
amount of noise added to the measured quaternion and omega to
help the stability of the EKF. The remaining three diagonal terms

are set to 351.0. For R, the first four diagonal terms are 0.0001,
representing Qm noise, and the remaining three diagonal terms are
0.005921, representing Wm noise.
 Predictor: When the scene generator is ready to draw a new im-
age, the predictor bases its extrapolation on the estimated values in
X. The predictor is the closed-form solution of integrating the quater-
nion and omega under the assumption that the derivative of omega
is constant over the integration interval t0 to t. We define a 4x4
matrix M(t) as satisfying:

 Q = (0.5)(Q)(W) = (M(t))(Q)

where M(t) essentially rewrites the quaternion multiplication as a
matrix multiplication. The solution of this is:
 Q = (I)cos(d) + (M)(sin(d) / d) (Qt0)
where Qt0 is the original quaternion at time t0 and:
 d = a2 + b2 + c2

 a = (0.5) (t-t0)w0 + (0.5)(t - t0)2(w0)

 b = (0.5) (t-t0)w1 + (0.5)(t - t0)2(w1)

 c = (0.5) (t-t0)w2 + (0.5)(t - t0)2(w2)

5.2.2 Position
 The position estimation uses three separate linear Kalman filters,
one each for X, Y and Z. Since they are identical in form, we look at
the Y case only. This section lists the differences from the orienta-
tion case:

 X = y y y T, where N = 3

 Initial X = y(0) 0 0 T, P =
2 0 0
0 500 0
0 0 5 0 0

Time update: Replace (1) with:

 X = AX, where A =
0 1 0
0 0 1
0 0 0

Measurement update: Replace (2) with:

 X = X + K Z - HX where H = 1 0 0
0 0 1

and Z is a 2x1 matrix (F=2) containing the reported Y position and
the linear Y acceleration, in World space. Recovering linear accel-
eration from the accelerometers is complicated because they detect
both linear and angular accelerations, plus gravity. Space does not
permit an explanation here; please see Appendix A in the CD-ROM
version of this paper for details.

 R = .01 0
0 . 05 , E =

.007 0 0
0 .007 0
0 0 2000000

Predictor:

 y(t) = 0.5 * y(t0) * t - t0 2 + y(t0) * t - t0 + y(t0)

5.2.3 Autocalibration
 The inertial outputs must be rotated into the Tracker coordinate
system, because the inertial sensor packs are tilted with respect to
Tracker space. To perform these rotations, we must know the orien-
tation of each pack on the HMD. While it is possible to mechani-
cally build a mount that holds each pack at a specified orientation,
it’s easier to mount the packs at some rigid, but unknown, orienta-
tions, then measure them. Also, we would like to measure other
sensor parameters, like the biases and scales. Autocalibration refers
to mathematical methods that determine such constant parameters
by applying geometrical constraints to collected data. One demon-
stration of this measured the locations of the beacons in the panels
of our optoelectronic tracker [15]. Two such methods that we use
with our inertial sensors are described in Appendix C on the CD-
ROM. They are good at determining the orientation and biases, but
not the scales.

5.3 Evaluation
 From the user’s perspective, prediction changes dynamic regis-
tration from “swimming around the real object” to “staying close.”

25 50 75 10
0

12
5

15
0

17
5

20
0

0
20
40
60
80

100
120
140
160

Prediction distance in ms

A
ve

ra
ge

 s
cr

ee
n

er
ro

r
in

 p
ix

el
s

No pred Pred w/out inertial
Pred with inertial

Figure 6: Performance table of predictors on three motion datasets Figure 7: Average error vs. prediction distance

Walkaround
Ang Pos Screen

SwingRotation
Ang Pos Screen Ang Pos Screen

Prediction
without
Inertial

No
prediction

Prediction
with

Inertial
Average error Peak error

Angular error in degrees, Position error in mm, Screen error in pixels
Prediction distance set at 60 ms for all runs

1.3

4.3

14.3

38.0

9.3

62.0

0.2

0.8

2.5

9.0

4.5

26.7

0.1

0.4
1.1
6.1

2.7

15.1

2.2

5.3

6.6

17.6

33.6

92.1

0.6

1.6

3.3

11.7

13.6

51.0

0.18

0.57

1.6

9.8

5.2

36.1

2.5

6.5

17.8

46.0

37.1

118.6

0.6

1.8

5.2

17.1

16.2

62.8

0.2
0.7

2.7

17.8

7.2

30.1

Without prediction, registration errors are large enough to strain the
illusion that the real and virtual coexist. With prediction, the real
and virtual objects stay close enough that the user perceives them to
be together. Although the prediction is not perfect, it demonstrably
improves the dynamic registration.
 The predictor was run on three recorded motion datasets that are
considered representative of this registration task. During each
motion sequence, the user keeps the corner of the frame visible in
his field-of-view. In the Walkaround dataset, the user walks slowly
around the corner of the frame. The Rotation dataset has the user
yawing, pitching, and circling his head while standing in place. The
Swing dataset combines fast translation and rotation motion.
 We compared our inertial-based predictor on these three datasets
against doing no prediction and against a predictor that does not use
inertial sensors. Directly comparing our predictor against previous
work is difficult because our system is unique. Instead, we wrote a
Kalman-filter-based predictor that is representative of many previ-
ous works that do not use inertial sensors. We ran that on the datasets,
keeping all other variables constant. Three error metrics evaluate
the accuracy of the predicted outputs vs. the actual tracker measure-
ments. Angular error is computed in degrees as follows:

Qdiff = (Qactual)(Qpredicted)-1

angle_err = (2) acos(Qdiff[qw])
Position error is the distance between the predicted and actual trans-
lations. Screen error combines orientation and translation errors by
measuring the difference, in pixels, between the 2D projection of
the real frame and the 2D point where the three virtual axes inter-
sect on a hypothetical 512x512 screen. That is, it measures error in
terms of what the user sees inside an HMD. The peak and average
errors are summarized in Figure 6. On average, our inertial-based
predictor is 5-10 times more accurate than doing no prediction and
2-3 times more accurate than prediction without inertial sensors.
 Appendix B on the CD-ROM provides additional materials that
demonstrate the results of prediction. Depending upon the space
allocation on the CD-ROM, these may include error graphs, the mo-
tion datasets, and a short QuickTime video.
 Figure 7 shows how the average screen-based errors for the Rota-
tion run change as the prediction distance is varied from 25-200 ms.
Again, inertial sensors clearly help. But what this graph does not
show is that at prediction distances of ~100 ms or more, the jitter in
the predicted outputs often reaches objectionable levels. In prac-
tice, the only solution is to keep system latency at tolerable levels,
below ~80 ms. Thus, prediction cannot compensate for arbitrary
amounts of latency; to be effective, it must be combined with efforts
that minimize system lag. See Appendix D on the CD-ROM.
 Because one cannot accurately predict without knowing how far
to predict, our system requires accurate clocks and control over la-
tency. Our tracker and graphics engine run asynchronously, requir-
ing an estimation of the prediction distance at each iteration. Mis-
calculating the prediction distance by as little as 10 ms leads to vis-
ible registration errors. The clocks in the tracker boards and Pxpl5
are good to under a millisecond. Synchronization occurs through a
message that takes less than 1 ms to make a round trip of all the
processors. Since clocks that differ by one second every six hours

change by 8.3 ms every three minutes, skew rate compensation and
occasional resynchronizations are performed. Controlling latency
means removing all unpredictable delays, so we have direct com-
munication paths not shared with other users, and we run a low-
overhead operating system called VxWorks. Processes running on
UNIX can suffer unbounded amounts of delay. Pauses of 60-200
ms are common occurrences on our Sun4 host. Therefore, we avoid
UNIX for all time-critical tasks, directly injecting data from the
tracker into Pxpl5 without going through the Sun4 host. While these
steps reduce flexibility and make it harder to debug the system, they
are needed to insure accurate prediction. Appendix E on the CD-
ROM demonstrates the accuracy of our prediction distance estima-
tion.

6 Additional lessons
 Augmented Reality demands higher accuracy from head trackers
than Virtual Environment applications do [3]. The main difficulty
in duplicating our demonstration of static registration is in acquir-
ing a head tracker that one can trust at long ranges. Wooden crates
are easy to build, and the calibration techniques are straightforward
and applicable to any tracking system or see-through HMD. But
many commercially available trackers commonly used for Virtual
Environments do not provide sufficient performance. For example,
in our laboratory the widely used Polhemus magnetic trackers give
distorted outputs at long distances because of the metal in the envi-
ronment. A coworker experimenting with our optoelectronic tracker
discovered a distortion that, when the tracker “hat” yaws 360 de-
grees about its origin, causes the reported positions to trace an el-
lipse about an inch wide. Since this distortion seems to be system-
atic, we were able to compensate for it. The fact that this distortion
was undetectable in the Virtual Environment applications we run
but was quite noticeable in Augmented Reality only serves to un-
derscore the latter’s need for accurate, long-range trackers.
 The need to accurately measure time and avoid unpredictable
sources of latency has serious ramifications on the design of effec-
tive Augmented Reality systems. Tracker measurements must be
timestamped, a feature not provided by most commercial trackers.
Almost all interactive graphics applications in our laboratory use
UNIX because of its convenient programming environment. We
build applications to the desired complexity, then we extract as much
speed as possible. Flight simulators and some other researchers [20]
take the opposite approach: set a minimal standard for performance,
then see how much complexity can be supported. Since accurate
prediction requires guaranteed performance, future Augmented Re-
ality applications may need to take this latter approach.

7 Future work
 Much work remains to further improve static registration. We
only match one virtual object with one real object, where the real
object is the calibration rig itself. Because our optoelectronic tracker
loses accuracy when the sensors are not aimed at the ceiling bea-
cons, we cannot move the HMD far away from the wooden frame,
nor can we tilt the HMD far from horizontal. Our system is mo-
nocular; while our static registration procedure could be applied to

both eyes, stereo displays involve additional issues like convergence
that we have not addressed. We have not compensated for the opti-
cal distortion in the see-through HMD. Because our HMD has nar-
row field-of-view displays, this distortion is small and detectable
only near the edges of the displays. We can eliminate this error by
mapping the distortion, then predistorting the graphic images be-
fore displaying them [31].
 More sophisticated prediction methods might further reduce dy-
namic registration errors. Adaptive methods that adjust to varying
head motion deserve more exploration. Using a nonadaptive pre-
dictor is like trying to race a car at constant speed; slowing down on
the curves and speeding up on the straight-aways will improve your
time. Analyzing head motion for recognizable patterns or high-level
characteristics may aid prediction. Other researchers have begun
doing this [32], and Fitts’ Law has been shown to apply to head
motion [2][17].
 Our work has not dealt with video see-through HMDs, where a
video camera provides a view of the real world and the graphics are
composited with the digitized images of the real world. With this
class of see-through HMD, standard camera calibration techniques
could determine the viewing parameters. And since the computer
has digitized images of what the user sees, it may be possible to use
image processing or computer vision techniques to detect features
in these images and use them to aid registration. The disadvantage
of this technology is that the video camera and digitization hard-
ware impose inherent delays on the user’s view of the real world.
Therefore, even if the graphics are perfectly registered with the digi-
tized images, a problem remains: the latency in the video stream
will cause the user to perceive both the real and virtual objects to be
delayed in time. While this may not be bothersome for small de-
lays, it is a major problem in the related area of telepresence sys-
tems and may not be easy to overcome.

Aug. 1-6, 1993), 135-142.
[10] Deering, Michael. High Resolution Virtual Reality. Proceedings of

SIGGRAPH ‘92 (Chicago, IL, July 26-31, 1992), 195-202.
[11] Feiner, Steven, Blair MacIntyre, and Dorée Seligmann. Knowledge-

Based Augmented Reality. CACM 36, 7 (July 1993), 53-62.
[12] Foley, James D., Andries van Dam, Steven K. Feiner, and John F.

Hughes. Computer Graphics: Principles and Practice, 2nd edition.
Addison-Wesley (1990), 238-239.

[13] Friedmann, Martin, Thad Starner, and Alex Pentland. Device Syn-
chronization Using an Optimal Filter. Proceedings of 1992 Sympo-
sium on Interactive 3D Graphics (Cambridge, MA, 29 March - 1 April
1992), 57-62.

[14] Fuchs, Henry, John Poulton, John Eyles, et al. Pixel-Planes 5: A Het-
erogeneous Multiprocessor Graphics System Using Processor-En-
hanced Memories. Proceedings of SIGGRAPH ‘89 (Boston, MA,
July 31-Aug 4, 1989), 79-88.

[15] Gottschalk, Stefan and John F. Hughes. Autocalibration for Virtual
Environments Tracking Hardware. Proceedings of SIGGRAPH ‘93
(Anaheim, CA, Aug 1-6, 1993), 65-72.

[16] Holmgren, Douglas E. Design and Construction of a 30-Degree See-
Through Head-Mounted Display. UNC Chapel Hill Dept. of Com-
puter Science technical report TR92-030 (July 1992).

[17] Jagacinski, Richard J., and Donald L. Monk. Fitts’ Law in Two Di-
mensions with Hand and Head Movements. Journal of Motor Be-
havior 17, 1 (1985), 77-95.

[18] Janin, Adam L., David W. Mizell, and Thomas P. Caudell. Calibra-
tion of Head-Mounted Displays for Augmented Reality Applications.
Proceedings of IEEE VRAIS ‘93 (Seattle, WA, Sept. 18-22, 1993),
246-255.

[19] Kalman, R. E., and R. S. Bucy. New Results in Linear Filtering and
Prediction Theory. Trans ASME, J. Basic Eng., Series 83D (Mar.
1961), 95-108.

[20] Krueger, Myron W. Simulation versus artificial reality. Proceedings
of IMAGE VI Conference (Scottsdale, AZ, 14-17 July 1992), 147-
155.

[21] Lenz, Reimar K. and Roger Y. Tsai. Techniques for Calibration of the
Scale Factor and Image Center for High Accuracy 3-D Machine Vi-
sion Metrology. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 10, 5 (Sept. 1988), 713-720.

[22] Lewis, Frank L. Optimal Estimation. John Wiley & Sons, 1986.
[23] Liang, Jiandong, Chris Shaw, and Mark Green. On Temporal-Spatial

Realism in the Virtual Reality Environment. Proceedings of the 4th
annual ACM Symposium on User Interface Software & Technology
(Hilton Head, SC, Nov 11-13, 1991), 19-25.

[24] List, Uwe H. Nonlinear Prediction of Head Movements for Helmet-
Mounted Displays. Technical report AFHRL-TP-83-45 [AD-
A136590], Williams AFB, AZ: Operations Training Division (1984).

[25] Murray, P.M. and B. Barber. Visual Display Research Tool. AGARD
Conference Proceedings No. 408 Flight Simulation (Cambridge, UK,
30 Sept. - 3 Oct. 1985).

[26] Paley, W. Bradford. Head-Tracking Stereo Display: Experiments and
Applications. SPIE Vol. 1669 Stereoscopic Displays and Applica-
tions III (San Jose, CA, Feb. 12-13, 1992), 84-89.

[27] Press, William H., et al. Numerical Recipes in C. Cambridge Uni-
versity Press, 1988.

[28] Rebo, Robert. A Helmet-Mounted Virtual Environment Display Sys-
tem. MS Thesis, Air Force Institute of Technology (Dec 1988).

[29] Robinett, Warren. Synthetic Experience: A Proposed Taxonomy.
Presence 1, 2 (Spring 1992), 229-247.

[30] Robinett, Warren, and Richard Holloway. Implementation of Flying,
Scaling and Grabbing in Virtual Worlds. Proceedings of 1992 Sym-
posium on Interactive 3D Graphics (Cambridge, MA, 29 March - 1
April 1992), 189-192.

[31] Robinett, Warren, and Jannick P. Rolland. A Computational Model
for the Stereoscopic Optics of a Head-Mounted Display. Presence 1,
1 (Winter 1992), 45-62.

[32] Shaw, Chris and Jiandong Liang. An Experiment to Characterize Head
Motion in VR and RR Using MR. Proceedings of 1992 Western Com-
puter Graphics Symposium (Banff, Alberta, Canada, April 6-8, 1992),
99-101.

[33] Sims, Dave. New Realities in Aircraft Design and Manufacture. IEEE
CG&A 14, 2 (March 1994), 91.

[34] Smith Jr., B. R. Digital head tracking and position prediction for hel-
met mounted visual display systems. Proceedings of AIAA 22nd
Aerospace Sciences Meeting (Reno, NV, Jan. 9-12, 1984).

[35] So, Richard H. Y. and Michael J. Griffin. Compensating Lags in Head-
Coupled Displays Using Head Position Prediction and Image Deflec-
tion. Journal of Aircraft 29, 6 (Nov-Dec 1992), 1064-1068.

[36] Ward, Mark, Ronald Azuma, Robert Bennett, Stefan Gottschalk, and
Henry Fuchs. A Demonstrated Optical Tracker With Scalable Work
Area for Head-Mounted Display Systems. Proceedings of 1992 Sym-
posium on Interactive 3D Graphics (Cambridge, MA, 29 March - 1
April 1992), 43-52.

Acknowledgements
 This system would not exist without the contributions of many
people. We thank Mike Bajura, Suresh Balu, Brad Bennett, Devesh
Bhatnagar, Frank Biocca, Fred Brooks, Steve Brumback, Vern Chi,
David Ellsworth, Mark Finch, Henry Fuchs, Jack Goldfeather, Stefan
Gottschalk, David Harrison, Rich Holloway, John Hughes, Kurtis
Keller, Jack Kite, Jonathan Marshall, Carl Mueller, Ulrich Neumann,
Mark Olano, Jannick Rolland, Andrei State, Brennan Stephens,
Russell Taylor, John Thomas, and Mark Ward for their advice and/
or help with this project.
 We thank the anonymous reviewers for their helpful comments
and constructive criticisms.
 Funding was provided by ONR contract N00014-86-K-0680,
ARPA contract DABT63-93-C-C048, the NSF/ARPA Science and
Technology Center for Computer Graphics and Visualization (NSF
prime contract 8920219), and a Pogue Fellowship.

References
[1] Albrecht, R. E. An adaptive digital filter to predict pilot head look

direction for helmet-mounted displays. MS Thesis, University of
Dayton, Ohio (July 1989).

[2] Andres, Robert O., and Kenny J. Hartung. Prediction of Head Move-
ment Time Using Fitts’ Law. Human Factors 31, 6 (1989), 703-713.

[3] Azuma, Ronald. Tracking Requirements for Augmented Reality.
CACM 36, 7 (July 1993), 50-51.

[4] Bajura, Michael, Henry Fuchs, and Ryutarou Ohbuchi. Merging Vir-
tual Objects with the Real World: Seeing Ultrasound Imagery within
the Patient. Proceedings of SIGGRAPH ‘92 (Chicago, IL, July 26-
31, 1992), 203-210.

[5] Beer, Ferdinand P. and E. Russell Johnston, Jr. Vector Mechanics for
Engineers: Statics and Dynamics (5th ed). McGraw-Hill, 1988.

[6] Caudell, Thomas P. and David W. Mizell. Augmented Reality: An
Application of Heads-Up Display Technology to Manual Manufac-
turing Processes. Proceedings of Hawaii International Conference on
System Sciences (Jan. 1992), 659-669.

[7] Chou, Jack C.K. Quaternion Kinematic and Dynamic Differential
Equations. IEEE Trans Robotics and Automation 8, 1 (Feb. 1992),
53-64.

[8] Cohen, Jonathan, and Mark Olano. Low Latency Rendering on Pixel-
Planes 5. UNC Chapel Hill Dept. of Computer Science technical
report TR94-028 (1994).

[9] Cruz-Neira, Carolina, Daniel Sandin, and Thomas DeFanti. Surround-
Screen Projection-Based Virtual Reality: The Design and Implemen-
tation of the CAVE. Proceedings of SIGGRAPH ‘93 (Anaheim, CA,

Figures 15-22: Static registration of virtual axes with real frame as seen inside the HMD from viewpoints specified in Figure 14
Figure 19 Figure 20 Figure 21 Figure 22

Figure 15 Figure 16 Figure 17 Figure 18

Figure 10: Picture of overall system

Figure 8: Front and back views of optical see-through HMD

Figure 14: Wooden frame and static registration viewpointsFigure 12: FOV calib Figure 13: Measuring frame

Figure 11: Boresight view

Figure 9: Naive approach yields non-robust registration

[37] Welch, Brian L., Ron Kruk, et al. Flight Simulator Wide Field-of-
View Helmet-Mounted Infinity Display System. Technical report
AFHRL-TR-85-59, Williams AFB, AZ, Operations Training Division
(May 1986).

Lines
for
FOV
calib

15
Virtual
blue bar

Virtual magenta bar

Virtual
green bar

2

16
17

19

20 21

22

Wooden crate (hollow on inside)

18

Nails for Z measurement

Introduction to Appendices
 These appendices, which are included only in the CD-ROM ver-
sion of the paper, contain supplementary materials that could not be
included with the proceedings version, due to the eight page limit.
These appendices are:
 • Appendix A: Extracting World space acceleration
 • Appendix B: Evaluating dynamic errors
 • Appendix C: Autocalibration
 • Appendix D: Limits of prediction
 • Appendix E: Estimating total prediction distance
 • Appendix F: Miscellaneous comments
 Please also see the README files on the CD-ROM for a guide
to the other available supplementary materials.

A Extracting World space acceleration
 Section 5.2.2 describes a filter and estimator that performs posi-
tion prediction. It requires measurements of the linear acceleration
of the tracker, in World space. This information comes from the
accelerometers, but calculating it is not as trivial as recovering an-
gular velocity from the rate gyroscopes. Why? The rate gyroscopes
only detect angular velocity and are basically unaffected by other
types of motion. Therefore, recovering the angular velocity from
the gyroscopes is simply a matter of biasing, scaling, and rotating
the gyro outputs into Tracker space. In contrast, our linear acceler-
ometers respond to linear acceleration, angular acceleration, and
gravity. Their output is a combination of all these inputs. To extract
only the linear acceleration from the accelerometers, we must cal-
culate and remove the other two components.
 It may help to first describe how the accelerometers work. One
can think of an accelerometer as a cantilever beam that extends out
over empty space, much like a tiny diving board. Without gravity,
this beam extends out straight horizontally. But with gravity, the
beam sags down (Figure 23). As the user moves the accelerometer
up and down, the beam moves up and down with respect to the rest
of the device, due to inertia. The accelerometer electrically mea-
sures the height of the beam with respect to the rest of the device,
and that voltage is the what the sensor outputs.
 We note two important properties from this explanation. First,
each accelerometer detects acceleration only along one direction in
space. To a first approximation, each accelerometer does not detect
any acceleration perpendicular to its sensitive axis. That is why we
have three accelerometers, mounted in a mutually orthogonal con-
figuration. The fact that we have three, physically separated, 1-D
sensors instead of a single 3-D sensor makes the math slightly more
complicated. Second, gravity sets the “bias point” of each acceler-
ometer. That is, the value that the accelerometer reports when it is
standing still depends upon its orientation with respect to the grav-
ity vector.
 With this background, we now describe how to recover linear
acceleration from the three accelerometers. Since this recovery de-
pends on knowledge of angular motion, we must first run all the
steps in Section 5.2.1, which provides estimates of angular orienta-
tion, velocity, and acceleration. We also need the orientation of the
tracker, provided by the head tracker. Figure 24 shows the configu-
ration of the accelerometers in Tracker space.
 Step 1 is to compensate for gravity by determining the bias points.
The orientation of the accelerometers with respect to Tracker space
is known. We can rotate that into World space by using the orienta-
tion reported by the head tracker. The gravity vector is assumed to
point straight down in World space. Since we know the orientation
of the accelerometers in World space, we can calculate what they

+

-

Sensitive
axis +

-
No Gravity Gravity

Figure 23: Accelerometers are tiny cantilever beams

F0

F1
F2Tracker

space

Accel0

Accel1

Accel2

-Y
X

Z

Vectors
F0, F1, F2
are defined
in Tracker
space

Figure 24: Locations of accelerometers in Tracker space

X

Y

Z X

Y

Z

World space

Tracker space

A

B
r

Figure 25: Definitions for rigid body kinematics formula

would output if the accelerometers were kept still at that orienta-
tion. These bias values are subtracted from the actual accelerom-
eter outputs, removing the contribution due to gravity. This leaves
us with linear and angular acceleration, reported in Accelerometer
space.
 In Step 2, we change this acceleration into World space. The
three accelerometers are mutually orthogonal, so combining their
outputs forms a 3-vector in Accelerometer space. We scale the val-
ues so they report acceleration as m/s2, rather than A/D counts. Then
we rotate that into World space.
 All that’s left for Step 3 is to remove the angular acceleration
component, leaving the desired linear acceleration. To do that, we
use the following formula from the kinematics of rigid bodies [5]
(Figure 25):

AA = A B - W x r - W x W x r
where AA is the total acceleration at point A, the origin of Tracker
space, AB is the total acceleration at point B, the location of one of
the accelerometers, W is the angular velocity of the tracker, the de-
rivative of W is the angular acceleration, and r is a vector from
point A to point B. Note, however, that this formula assumes that
Tracker space shares the same orientation as World space, which is
usually not the case. Thus, to use this formula we must have every-
thing in World space. A second problem comes from using three
separate 1-D accelerometers. We need three different r vectors, one
for each accelerometer. Each vector results in a different angular
acceleration, and each accelerometer detects only the component of
angular acceleration that lies along its sensitive axis.
 Therefore, we must modify the formula somewhat to deal with
these problems. The final procedure that Step 3 uses to remove the
angular acceleration component is:

1) Set AB to the linear and angular acceleration 3-vector reported
by the accelerometers, in World space, which was computed
in Step 2.

2) Take W and its derivative from the results in Section 5.2.1
and rotate them into World space.

3) For each accelerometer, compute the following: Take vector
F0, F1, or F2 and rotate it into World space. Call this vector
r. Compute

V = W x r + W x W x r
Then take a unit vector along the sensitive axis of the accel-
erometer, in Accelerometer space, and rotate that into World
space. Call this vector S. The angular acceleration detected
by this accelerometer is the dot product of V and S. Call
vectors V0 and S0, V1 and S1, and V2 and S2 as those from
accelerometers 0, 1, and 2, respectively.

4) The desired World space linear acceleration at the origin of
Tracker space, AA, is then computed by:

AA = A B - V0 ⋅S0 - V1 ⋅S1 - V2 ⋅S 2
We can do this because the three accelerometers are mutu-
ally orthogonal.

 We tested this math on simulated motion datasets before trying it
on real data. The simulated datasets were generated by writing ex-
plicit equations for the position and orientation of the tracker and its
three accelerometers. Differentiating those equations yielded the
velocity and acceleration values. By not using the equations of
motion in Step 3 to generate the simulated data, we avoid incestual
problems that might result in invalid test data.

 The need for the derivative of W is a potential weakness of our
procedure. We do not have a sensor that directly detects angular
acceleration, so we must estimate that from the gyro data. Simula-
tion runs indicate that the estimated derivative of W lags behind the
true derivative by about 20 ms. The errors resulting from this are
small, except when the user rotates his head very quickly. One could
avoid this problem by adding angular accelerometers.

Figure 26: Angular errors generated by no prediction, prediction without inertial, and prediction with inertial

B Evaluating dynamic errors
 This appendix provides a more detailed look at the data summa-
rized in Section 5.3. Nine graphs compare using no prediction, pre-
diction without inertial sensors, and prediction with inertial sensors
on the Swing motion dataset.
 We should point out that the original positions and quaternions in
all three motion datasets were filtered with a noncausal 10 Hz lowpass
filter. This lowpass filter does not introduce any phase delay. The
filtering is intended to reduce noise in the original positions and
quaternions, since we use those as the true values in the angle, posi-
tion, and screen-based error metrics. Without this filtering, noise in
the original signals would show up as additional error. Note that we
do not lowpass filter the inertial measurements.
 The first set of three graphs (Figures 26-28) compares the angle,
position, and screen-based errors produced by running no predic-
tion, prediction without inertial sensors, and prediction with inertial
sensors on the Swing motion dataset. One-third of the numbers
from Figure 6 came from these graphs; they provide some sense of
how the numbers in Figure 6 correspond to the actual error graphs.

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14

A
ng

ul
ar

 e
rr

or
 in

 d
eg

re
es

Time in seconds

No prediction Prediction without inertial Prediction with inertial
Swing motion dataset, 60 ms prediction distance

Figure 28: Screen-based errors generated by no prediction, prediction without inertial, and prediction with inertial

Figure 27: Position errors generated by no prediction, prediction without inertial, and prediction with inertial

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 2 4 6 8 10 12 14

P
os

iti
on

 e
rr

or
 in

 m
et

er
s

Time in seconds
No prediction Prediction without inertial Prediction with inertial

Swing motion dataset, 60 ms prediction distance

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14

S
cr

ee
n-

ba
se

d
er

ro
r

in
 p

ix
el

s

Time in seconds
No prediction Prediction without inertial Prediction with inertial

Swing motion dataset, 60 ms prediction distance

 The second set of three graphs (Figures 29-31) gives a detailed
view of orientation errors. We select a small section of the qw ori-
entation curve from the Swing dataset and overlay the predicted qw
curves that result from no prediction, prediction without inertial sen-
sors, and prediction with inertial.
 The third set of three graphs (Figures 32-34) does the same for
one of the translation curves: the Z position. We select a small sec-
tion and overlay three predicted curves on that interval.
 It is difficult to graph the actual and predicted motion curves be-
cause of the difference in scale between the errors and the original
motions. Overall views cannot show the errors, while detailed views
fail to give a sense of the overall motion. Therefore, we are making
the datasets themselves available on the CD-ROM (assuming space
is available), so that readers may use their favorite graphing pro-
grams to examine any part of the curves they wish. Please see the
README files on the CD-ROM for instructions.

Figure 29: Qw curve with no prediction

Figure 30: Qw curve with non-inertial-based predictor Figure 31: Qw curve with inertial-based predictor

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5
Q

w
 q

ua
te

rn
io

n
va

lu
e

Time in seconds
Predicted qw (No prediction, 60 ms distance)
Actual qw

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

Q
w

 q
ua

te
rn

io
n

va
lu

e

Time in seconds
Predicted qw (No inertial, 60 ms distance)
Actual qw

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

Q
w

 q
ua

te
rn

io
n

va
lu

e

Time in seconds
Predicted qw (inertial, 60 ms distance)
Actual qw

Figure 33: Z curve with non-inertial-based predictor Figure 34: Z curve with inertial-based predictor

C Autocalibration
 Section 5.2.3 introduced the concept of autocalibration, where
optimization routines applied to collected data measure system pa-
rameters. In this appendix, we describe and evaluate two approaches
for measuring the orientation, biases and scales of our inertial sen-
sors. In both methods, a user wears the HMD and moves around
naturally while the inertial and tracker readings are recorded. This
dataset is then processed offline to determine the parameters.
 Autocalibration requires finding effective bases of comparison.
If we can compute the same value in more than one way, by using
geometrical relationships or other manipulations, we have a basis
for comparing two or more estimates. Since ideally these estimates
should be equal, an optimizer varies the system parameters until the
best match is achieved between the multiple estimates.
 In our case, we must compare the position and orientation read-
ings provided by the head tracker against the velocities and accel-
erations returned by the gyros and accelerometers. Clearly, we have
two basic approaches available. We can either differentiate the
tracker positions and orientations and compare those against the
velocities and accelerations, or we can integrate the velocities and
accelerations and compare those against the tracker positions and
orientations.
 The first method uses the differentiation approach. It turns out
that this approach does not work with the accelerometers. Numeri-
cal differentiation is an operation that inherently magnifies noise.
Differentiating position twice to get acceleration generates outputs
that are too noisy to be useful. However, we have been able to use
Kalman filters to differentiate once without adding too much noise,
so this approach does work for the gyros. An EKF estimates omega

1.5

1.55

1.6

1.65

1.7

1.75

1.8

4 4.5 5 5.5 6 6.5 7 7.5 8

Z
 p

os
iti

on
 in

 m
et

er
s

Time in seconds
Predicted Z (No prediction, 60 ms distance)
Actual Z

Figure 32: Z curve with no prediction

1.5

1.55

1.6

1.65

1.7

1.75

1.8

4 4.5 5 5.5 6 6.5 7 7.5 8

Z
 p

os
iti

on
 in

 m
et

er
s

Time in seconds
Predicted Z (No inertial, 60 ms distance)
Actual Z

1.5

1.55

1.6

1.65

1.7

1.75

1.8

4 4.5 5 5.5 6 6.5 7 7.5 8

Z
 p

os
iti

on
 in

 m
et

er
s

Time in seconds
Predicted Z (inertial, 60 ms distance)
Actual Z

from the quaternions reported by the head tracker. It turns out that
the estimated omegas are shifted backwards in time, because they
are delayed versions of the true values. This timeshift, which is
about 60 ms, is one measure of how much inertial sensors help the
prediction task. It means that the gyros provide information that
would cost 60 ms of lag to generate without gyros. We include a
timeshift along with the orientation, biases, and scales as system
parameters to be searched for. Powell’s method [27] adjusts these
parameters until it finds the set that minimizes the mean-square dif-
ference between the two estimates of angular velocity.
 The second method uses the integration approach. This works
for both the gyros and accelerometers. While integration tends to
reduce noise, it has a different problem: drift. We cannot integrate
the velocities or accelerations for long periods of time without ac-
cumulating too much error. This is the same problem that prevents
anybody from using a purely inertial tracking system. In practice,
we can integrate angular velocities for a few seconds and linear ac-
celerations for a small fraction of a second. The viable time interval
for acceleration is small because the double integration needed to
recover position generates drift errors that grow quadratically with
time. Integration also requires initial estimates for position and ve-
locity. Therefore, we implement the autocalibration routine as an
“ideal noncausal predictor.” The idea is simple: if one could some-
how know the exact future velocities and accelerations of the user’s
head, integrating these future values should result in nearly perfect
prediction. Of course, this is impossible in realtime, but it is pos-
sible in simulation on a recorded dataset by using a noncausal ap-
proach. Our “predictor” integrates the “future” angular velocities
and linear accelerations for 100 ms. This 100 ms “prediction” is
repeated at many different starting times along the entire motion
dataset. Powell’s method searches for the system parameters that
result in the best match between the “predicted” positions and ori-
entations and the positions and orientations reported by the tracker.
 How well do these autocalibration procedures work? In practice,
they provide reasonably consistent outputs for timeshifts, orienta-
tion and biases, but they are not robust at measuring scales. For
example, on one motion dataset the gyro pack orientations deter-
mined by both methods are within 0.5 degrees of each other, and
orientations computed from two different collected datasets gener-
ated results that differ by 0.6 degrees. Unfortunately, the scales
determined by autocalibration are not nearly as consistent. Also, it
has proven impossible to use autocalibration to measure the posi-
tions of the accelerometers (the F0, F1, and F2 vectors in Appendix
A), so we simply use a ruler to measure those. We usually get a
closer fit with the gyros than with the accelerometers, a result that
merits further investigation. The parameters that are most reliably
determined appear to be the ones we are most sensitive to, which
presumably are also the ones that affect the prediction task the most.

D Limits of prediction
 In Section 5.3, we mention that prediction is not effective to arbi-
trary distances. Part of the reason is shown in Figure 7, which dem-
onstrates how errors in the predicted outputs grow with increasing
prediction distances. This should be intuitive; asking a predictor to
extrapolate farther into the future makes the task harder and increases
the expected error. For long distances, the task is essentially intrac-
table. We cannot predict head motion ten seconds into the future
with any real accuracy; in ten seconds the user can be anywhere.
 However, accuracy is only half the story. Jitter in the predicted
outputs is the other factor. Almost all head-motion energy stays
below 2 Hz when looked at in Fourier space, but predicted outputs
have additional energy in the 3-12 Hz range. These relatively high
frequency energies appear to the user as objectionable oscillations
that do not correspond with the user’s actual motion; we call this
jitter. Jitter is especially noticeable on motion sequences where the
user walks around, because the act of walking adds high-frequency
wobbles to the pitch and roll rotations and introduces spikes in the
accelerometers. Many previous works, including the two that used
inertial sensors, focused on sitting users in flight simulators
[1][24][25][35][37], so they did not encounter this problem. Smooth-
ing the predicted signals proved ineffective because lowpass filter-
ing adds latency, the very thing we want to remove. The only way
we have been able to keep jitter at tolerable levels is by restricting
prediction distances to short intervals of around 80 ms or less. Fig-
ure 35 shows a small segment of a quaternion curve with an overlayed
predicted curve. The predicted curve was computed at 60 ms dis-
tance. In comparison, Figure 36 shows the same curve with predic-
tion done at 130 ms distance. Note that not only is the prediction
less accurate, but the oscillations are much larger. The same prob-
lem occurs with or without the use of inertial sensors. The pre-
dicted curve overlayed in Figure 37 was computed at 130 ms dis-
tance without inertial sensors.
 Prediction is most useful at relatively low prediction distances.
Prediction is not a substitute for reducing overall system latency; it
must be combined with efforts to reduce system lag. Those who
have systems with 200 ms of lag and wish to use head-motion pre-
diction to extrapolate across that distance are likely to be disap-
pointed by the results.

Figure 37: Jitter on qx cuve with non-inertial-based prediction and a 130 ms prediction distance

Figure 36: Jitter on qx cuve with inertial-based prediction and a 130 ms prediction distance

Figure 35: Jitter on qx cuve with inertial-based prediction and a 60 ms prediction distance

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Q
x

qu
at

er
ni

on
 v

al
ue

Time in seconds
Actual qxPredicted qx (inertial, 130 ms distance)

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Q
x

qu
at

er
ni

on
 v

al
ue

Time in seconds
Actual qxPredicted qx (non-inertial, 130 ms distance)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Q
x

qu
at

er
ni

on
 v

al
ue

Time in seconds
Actual qxPredicted qx (inertial, 60 ms distance)

E Estimating total prediction distance
 Accurate prediction requires accurate estimation of how far to
predict into the future. When we run predictors in simulation, we
use a constant prediction distance. Many previous works do the
same, even in runtime. However, using a constant prediction dis-
tance is not appropriate in our real system, because our tracker and
graphics engine run asynchronously. Unless a system is set up so
all components run synchronously, with guaranteed limits on how
long each step takes, the prediction distance will vary with time.
Therefore, the problem of estimating total prediction distance is likely
to occur in most Augmented Reality systems. In Section 5.3 we
discussed steps taken to insure accurate timestamps and minimal
latency. In this appendix, we describe how we estimate the total
prediction distance and evaluate the accuracy of this estimation.
 We define the total prediction distance to be the interval from the
time when the tracker and inertial measurements are taken to the
time when the frame buffer begins scanning out the images corre-
sponding to those measurements (Figure 38). Part of this distance
is directly measurable. Our tracker provides timestamps for its
measurements, and we can read the clock at the point labeled “Pre-
diction distance must be set here” in Figure 38. However, the rest of
the distance must be estimated. Why? The predictor requires a
distance to predict into the future. The predictor must be run before
viewpoint computation and rendering. Therefore, the prediction
distance must be set right before we run the predictor, requiring us
to estimate the length of the light-shaded interval in Figure 38.
 Figure 39 shows how we generate this estimate. The key obser-
vation is that our renderer is synchronized to the vertical retrace
signal, which occurs every 16.67 ms. Thus, the renderer is guaran-
teed to render frames at 60 Hz, whether the tracker can keep up with
that or not. The estimated distance is made of three components.
Component A, the time needed to run the predictor and compute the
view matrices, is basically constant and can be measured during
trial runs. We compute component B, the delay until the renderer
accepts our new matrices, by finding the next rendering starting point
that is greater than Measured + A. The predictor knows where these
starting points are because it receives a constant stream of past start-
ing points from the renderer. Since the starting points are separated
by a strict 16.67 ms, it’s easy to determine all future starting points,
given one point in the past. Finally, component C is 16.67 ms: the
time it takes the renderer to rasterize its images and copy them to
the frame buffer.

 Figure 40 demonstrates the effectiveness of the estimation. It
plots the estimated total prediction distance vs. the actual total pre-
diction distance for a sequence of frames, from a real motion dataset
recorded in realtime. We determined the actual distances by record-
ing the beginning and ending times for all the frames, computing
the differences after completing the data collection. Note that the
estimation is accurate, so the two curves overlap, except for one
frame around #225. When the estimation is wrong, it’s wrong by
16.67 ms. Figure 40 also demonstrates how the total prediction
distance varies from iteration to iteration.

Total prediction distance

Measured Estimated

Tracker &
inertial

measurements
taken

Prediction
distance
must be
set here

Start of
frame
buffer

scanout

Tracker,
communication,
estimator lag

Predictor, viewpoint
computation,
rendering lag

Time

16.67ms

Measured

Estimated

A B
C

Times when renderer
accepts new view matrices

A = Time to run predictor and view matrix computation
B = Delay until renderer accepts new matrices
C = Time for renderer to compute new images

Time

Figure 39: Components of estimated distance

Figure 38: Total prediction distance

Figure 40: Estimated vs. actual total prediction distances

oo

o

o

ooo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
oo

oo

o

ooo

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

oo

o

oo
o

o

o

o

oo

oo

oo

o

o

o

o
o

o

o

o

o

o
o
oo

o

oo

o

oo

o

o

o

ooo

o

o

o

o

o

oo

o
o

o
o

o

o

o

o

o

o

o

o

o

o
o

oo

o

o

o

oo
o

o

o

o

o

o

o

o
oo

o

o

o
o

o

o

ooo
oo

o
o

o

o
o

o

ooo

o

o

o

o

oo

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

ooo

o
o

o

oo

o

o

o

o

o

o
oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
¤¤

¤

¤

¤¤¤

¤

¤
¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤¤

¤
¤¤

¤¤

¤

¤¤¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤
¤

¤

¤

¤

¤

¤¤

¤

¤¤
¤

¤

¤

¤

¤¤

¤¤

¤¤

¤

¤

¤

¤
¤

¤

¤

¤

¤

¤
¤
¤¤

¤

¤¤

¤

¤¤

¤

¤

¤

¤¤¤

¤

¤

¤

¤

¤

¤¤

¤
¤

¤
¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤
¤

¤¤

¤

¤

¤

¤¤¤

¤

¤

¤

¤

¤

¤

¤
¤¤

¤

¤

¤
¤

¤

¤

¤¤¤
¤¤

¤
¤

¤

¤
¤

¤

¤¤¤

¤

¤

¤

¤

¤¤

¤

¤

¤

¤

¤

¤

¤

¤

¤¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤
¤

¤
¤

¤

¤

¤

¤

¤

¤

¤

¤¤¤

¤
¤

¤

¤¤

¤

¤

¤

¤

¤

¤
¤¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

0.05

0.055

0.06

0.065

0.07

0.075

0 50 100 150 200 250

P
re

di
ct

io
n

di
st

an
ce

 in
 s

ec
on

ds

Time in seconds
Actual prediction distance Estimated prediction distance

Frame number (each frame is 16.67 ms long)

F Miscellaneous comments
 The HMD is not as firmly attached to the user’s head as we would
like, but that has not turned out to be a major problem. Initially we
feared that moving the HMD on the user’s head after calibration
would ruin the registration, but in practice it seems to have little
effect. Even if the HMD slides on the user’s head, the HMD itself
stays rigid, so the relationship between the right eye display and the
head tracker remains constant. The user compensates for the HMD
sliding by rotating his eyeball. The net change in the Eye->Tracker
transformation is small, causing little difference in apparent regis-
tration.

