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Abstract

Motivated by an application in computational topology, we consider a novel variant
of the problem of efficiently maintaining dynamic rooted trees. This variant requires
merging two paths in a single operation. In contrast to the standard problem, in which
only one tree arc changes at a time, a single merge operation can change many arcs.
In spite of this, we develop a data structure that supports merges on an n-node forest
in O(log2 n) amortized time and all other standard tree operations in O(log n) time
(amortized, worst-case, or randomized depending on the underlying data structure).
For the special case that occurs in the motivating application, in which arbitrary arc
deletions (cuts) are not allowed, we give a data structure with an O(log n) time bound
per operation. This is asymptotically optimal under certain assumptions. For the even-
more special case in which both cuts and parent queries are disallowed, we give an
alternative O(log n)-time solution that uses standard dynamic trees as a black box. This
solution also applies to the motivating application. Our methods use previous work on
dynamic trees in various ways, but the analysis of each algorithm requires novel ideas.
We also investigate lower bounds for the problem under various assumptions.

1 Introduction

A heap-ordered forest is a set of node-disjoint rooted trees, in which each node v has a real-
valued label ℓ(v), and the labels are in heap order: if p(v) is the parent of v, ℓ(v) ≥ ℓ(p(v)).
We consider the problem of maintaining a heap-ordered forest, initially empty, subject to an
arbitrary intermixed sequence of the following kinds of operations:
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• parent(v): Return the parent p(v) of v, or null if v is a tree root.

• root(v): Return the root of the tree containing v.

• nca(v, w): Return the nearest common ancestor of v and w, or null if v and w are in
different trees.

• insert(v, x): Create a new, one-node tree consisting of node v with label x; v must be
in no other tree.

• link(v, w): Make w the parent of v by adding the arc (v, w); v must be a root, w must
be in another tree, and ℓ(v) ≥ ℓ(w).

• cut(v): Delete the arc from v to its parent, making v a root; do nothing if v is already
a root.

• delete(v): Delete v from the forest; v must be a leaf (a node with no children).

• merge(v, w): Let P and Q, respectively, be the paths from v and w to the roots of their
respective trees. Restructure the tree or trees containing v and w by merging the paths
P and Q while preserving heap order. See Figure 1.
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Figure 1: Two successive merges. The nodes are identified by label.

This is the mergeable trees problem. This problem arises in an algorithm of Agarwal et
al. [2, 3] that computes the structure of 2-manifolds embedded in R3. In this application, the
tree nodes are the critical points of the manifold (local minima, local maxima, and saddle
points), with labels equal to their heights. The algorithm computes the critical points and
their heights during a sweep of the manifold, and pairs up the critical points into so-called
critical pairs using mergeable tree operations. This use of mergeable trees is actually a
special case: there are no cuts. As we shall see, one can also avoid parent operations, by
changing the pairing process to do two sweeps, one upward and one downward, instead of a
single sweep.

The mergeable trees problem is a new variant of the well-studied dynamic trees problem,
which calls for the maintenance of a forest of trees subject to all the mergeable tree operations
except merge. Nodes are not heap-ordered by label; instead, each node or arc has an arbitrary
associated value, and values can be accessed or changed one node or arc at a time, an entire
path at a time, or even an entire tree at a time. The original use of dynamic trees was in a
network flow algorithm [14]. In that application, each arc has an associated real value, its
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residual capacity. The maximum value on a path can be computed in a single operation,
and a given value can be subtracted from all arcs on a path in a single operation.

There are several versions of the dynamic trees problem that differ in what kinds of values
are allowed, whether values can be combined over paths or over entire trees (or both) at a
time, whether the trees are unrooted, rooted, or ordered (each set of siblings is ordered),
and exactly what operations are allowed. For all these versions of the problem, there are
algorithms that perform a sequence of tree operations in logarithmic time per operation,
either amortized [15, 19], worst-case [4, 7, 14], or randomized [1]. The nca operation is not
completely standard for dynamic trees; it accesses two paths rather than one. But it is easy
to extend any of the efficient implementations of dynamic trees to support nca in O(logn)
time. Indeed, Sleator and Tarjan [14] and Alstrup et al. [4] explicitly describe how to do
this.

The main novelty, and the main difficulty, in the mergeable trees problem is the merge
operation. Although dynamic trees support global operations on node and arc values, the
underlying trees change only one arc at a time, by links and cuts (and deletions, which are
in effect cuts). In contrast, a merge operation can delete and add many arcs, even a linear
number, simultaneously. Nevertheless, there are efficient implementations of mergeable trees.
We give three. In Section 2 we show that the amortized number of arcs changed by a merge is
logarithmic. This allows us to implement mergeable trees using dynamic trees directly, with
a logarithmic (or better) time bound for every operation except merge, and a log-squared
amortized bound for merge. In Section 3 we consider the special case in which there are
no cuts. For this case we combine ideas in a previous implementation of dynamic trees
with a novel analysis, to obtain an algorithm with a logarithmic or better time bound for
every operation. In Section 4 we consider the special case in which there are neither cuts
nor parent operations. For this case we give an alternative logarithmic-time solution that
represents mergeable trees implicitly as dynamic trees: a merge becomes either a link, or a
cut followed by a link. Either of the methods of Sections 3 and 4 can be used to efficiently
pair critical points. We discuss this application in Section 5, including filling in a gap in the
pairing algorithm of Agarwal et al. [2, 3]. In Section 6 we discuss lower bounds and related
issues for various forms of the mergeable trees problem.

In discussing the mergeable trees problem we shall use the following terminology. Each
tree arc is directed from child to parent, so that a path leads from a node toward the root
of its tree, a direction we call upward. Node v is a descendant of w, and w is an ancestor of
v, if the path from v to root(v) contains w. (This includes the case v = w.) We also say v is
below w, and w is above v. If v is neither an ancestor nor a descendant of w, then v and w
are unrelated. We denote by size(v) the number of descendants of v, including v. We denote
by P [v, w] the path from node v to node w, and by P [v, w) and P (v, w], respectively, the
subpath of P [v, w] obtained by deleting w or deleting v; if v = w, P [v, w) and P (v, w] are
empty. By extension, P [v, null) = P [v, root(v)]. We denote by bottom(P ) and top(P ) the
first (bottommost) and last (topmost) nodes on a path P , and by |P | the number of nodes
on P .

We replace each operation link(v, w) by merge(v, w), since they have the same effect.
This avoids the need to consider link explicitly as a mergeable tree operation. We denote
by m the number of merges, including those replacing links. We denote by n the number of
inserts of nodes that are eventually in trees that participate in merges; any node that does
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not participate remains in a single-node tree, on which all operations take constant time.
The definition of n implies that n ≤ 2m. All our data structures take space linear in the
number of insertions.

In a merge, the merge order is unique if all nodes have distinct labels. If not, we can
break ties using node identifiers. To simplify things, and without loss of generality, we shall
assume that the node labels are the nodes themselves, and that the nodes that are in trees
that eventually participate in merges are the integers 1 through n, numbered in label order.
We treat a node that is deleted and reinserted as an entirely new node when it is reinserted,
with a new number. We also treat null as being less than any node.

This paper is a major reworking of a conference paper [9]. We have simplified the analysis
of the algorithms in Sections 2 and 3, added a detailed description of the critical point pairing
application (Section 5), and added the algorithm in Section 4, which is the contribution of
the two new authors (Kaplan and Shafrir).

2 Mergeable Trees as Dynamic Trees

In this section we explore the obvious way to implement mergeable trees, which is to represent
them by dynamic trees of exactly the same structure. Then the mergeable tree operations
parent, root, nca, insert, cut, and delete become exactly the same operations on dynamic
trees. In order to do merges, we need one additional operation on heap-ordered dynamic
trees:

• topmost(v, w): Return the smallest (topmost) ancestor of v that is strictly greater than
w, assuming v > w.

This operation accesses the path P [v, null). It is easy to extend any of the efficient
implementations of dynamic trees to support topmost in O(logn) time.

To perform merge(v, w), begin by computing u = nca(v, w). Stop if u = v or u = w.
Otherwise, walk down the paths P [v, u) and P [w, u) toward v and w, merging them step-
by-step. Maintain two current nodes x and y, initially topmost(v, u) and topmost(w, u),
respectively. If x < y, swap x and y and v and w, respectively. If u 6= null , do cut(x). While
x < w, repeat the following step:

Merge Step: Let t = topmost(w, x). Do link(x, parent(t)) and cut(t). Set y equal to x, set
x equal to t, and swap v and w. (See Figure 2.)

To finish the merge, do link(x, w).
After the merge initialization, x and y are the children of u that are ancestors of v and

w, respectively, or root(v) and root(w) if u is null. At the beginning of a merge step, x and
y are the tops of the paths remaining to be merged, x is a root, and y < x < w. The merge
step finds the node t whose parent is the parent of x after the merge and updates values
appropriately. The correctness of the merging algorithm follows.

Each merge step takes a constant number of dynamic tree operations, as do the initial-
ization and finalization. There is one parent change per merge step plus one per merge.
We shall obtain an O(logn) bound on the amortized number of parent changes per merge,
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cut(t)

link(x,z)

w = v′

t = x′

v = w′

x = y′
z

y

w

t = topmost(w,x)

z = p(t)

y

v

x

Figure 2: A merge step. Straight lines are arcs, wavy lines are tree paths. Primed variables
are values after the step.

which implies an O(log2 n) amortized time bound for merging, assuming that the underlying
dynamic tree data structure has an O(logn) time bound per operation.

Lemma 1 The total number of parent changes over all merges is O(m logn).

Proof. We use an amortized analysis [18]. Each state of the data structure has a non-
negative potential; the initial, empty structure has a potential of zero. We define the cost
of an operation to be the number of parent changes it causes; we define the amortized cost
of an operation to be its cost plus the net decrease in potential it causes. Then the sum of
the amortized costs of all the operations is an upper bound on the total number of parent
changes caused by all the operations.

With each arc (v, w) we associate 2 lg(v−w) + 1 units of potential, where lg is the base-
two logarithm. Of this amount, we assign 1 to (v, w), lg(v − w) to v, and lg(v − w) to w.
Thus each node has potential associated with its parent (if it has a parent) and with each
of its children. We call the former its parent potential and the sum of the latter its child
potential. The total potential is the sum of the potentials.

The only operations that affect the structure of the forest are merges, cuts, and node
deletions. A cut or node deletion creates at most one new (null) parent and decreases the
potential by at least one, so its amortized cost is non-positive. Consider a merge. If u = null ,
the initial link of x increases the potential by at most 2 lgn + 1. Every other change in a
node potential is non-positive. Consider a merge step. Let p(t) be the parent of t before
the cut of t occurs, and let p′(t) be the new parent of t, which it acquires either in the next
merge step, or at the end of the merge if this is the last step. Then t > p′(t) ≥ x > p(t). If
t− p′(t) ≤ (t− p(t))/2, then the parent potential of t decreases by at least one as a result of
its parent changing. If x − p(t) ≤ (t− p(t))/2, then the child potential of p(t) decreases by
at least one as a result of p(t) losing t as a child but gaining x. One of these two cases must
occur. The amortized cost of a merge is thus O(logn) (for the initial link of x if u = null)
plus a net of at most zero per merge step (one parent creation minus at least one unit of
potential) plus one (for one extra parent creation per merge). ✷

If we use any of the several implementations of dynamic trees that support all operations
in O(logn) time, Lemma 1 gives an O(log2 n) amortized time bound for merge; all the other
operations have the same time bound as in the underlying dynamic tree structure. With
this method one can maintain parent pointers explicitly, which makes the worst-case time
for the parent operation O(1).
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The proof of Lemma 1 gives something a little stronger: the amortized cost of a merge is
O(1) unless the merge combines two trees. If there are no cuts, then the number of merges
that can combine two trees is at most n − 1, which means that the total number of parent
changes is O(m + n logn). This bound is tight, as we show in Section 6. The total time
for merges becomes O(m logn+ n log2 n). In the absence of cuts, we can get an even better
bound on the merge time by changing the algorithm, as we shall see in the next two sections.

In a preliminary version of their paper [2], Agarwal et al. proposed representing mergeable
trees by dynamic trees as we do here, but they suggested a different merging algorithm, in
which the nodes of the shorter merge path are inserted one-by-one into the longer merge
path. Although they claimed an O(n logn) bound on the total number of node insertions
(assuming no cuts), this bound is incorrect: the worst-case number of node insertions in the
absence of cuts is Ω(n3/2), as we show in Section 6. Thus this method of merging does not
give even a polylogarithmic amortized bound for merge.

3 Mergeable Trees via Partition by Rank

In this and the next section we develop two different methods to achieve an O(logn) bound
per merge, if there are no cuts. For the moment we also ignore leaf deletions; we discuss
how to handle them at the end of the section. Our first method uses an idea from Sleator
and Tarjan’s [14, 15] implementation of dynamic trees: we partition each tree into node-
disjoint paths, and implement the various tree operations as appropriate sequences of path
operations. The updates we need on paths are deletions of top nodes and arbitrary insertions
of single nodes. We also need a variant of the topmost query defined in Section 2.

We define the rank of a node v to be ⌊lg size(v)⌋. Ranks are integers in the range from
zero to lg n. We decompose the forest into solid paths by defining an arc (v, w) to be solid if
rank(v) = rank(w) and dashed otherwise. Since a node can have at most one solid arc from
a child, the solid arcs partition the forest into node-disjoint solid paths. See Figure 3. Our
path partition is a variant of one used by Sleator and Tarjan [14]: theirs makes an arc (v, w)
solid if size(v) > size(w)/2; our solid arcs are a subset of theirs. We call a node a top node
if it is the top of its solid path. We call a non-root node a solid child if its arc to its parent
is solid and a dashed child otherwise.

The merging algorithm uses the same approach as in Section 2: to merge v and w, first
ascend the paths from v and w to find their nearest common ancestor u, then merge the
traversed paths top-down. Each of the merge paths is a sequence of parts of solid paths. An
added complication in merging is that we must update the path partition, which requires
keeping track of ranks. In the absence of cuts, no node can ever decrease in rank, and we can
charge the work of merging against rank changes. By using an appropriate form of binary
search tree to represent solid paths, we can obtain a logarithmic amortized time bound for
merging.

The remainder of this section develops and analyzes this method. Section 3.1 discusses
the access operations, parent, root, and nca. Section 3.2 describes the merging algorithm.
Section 3.3 analyzes the running time of merging. Section 3.4 discusses the use of search
trees to represent solid paths and completes the analysis of merging. Section 3.5 describes
how to extend the method to support leaf deletions.
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Figure 3: A tree partitioned by rank into solid paths, with the corresponding sizes and, in
parentheses, ranks.

3.1 Access Operations

We represent the path partition using three sets of pointers and a set of headers, one for
each path. Each node has pointers to its parent (null if it is a root) and to its solid child
(null if it has none). This makes each solid path a doubly-linked list, and allows accessing
the parent or solid child of a node in constant time. Efficient computation of roots and of
nearest common ancestors requires fast access from any node v to top(v), the top of the solid
path containing v. To allow such access while also allowing fast updating, we use one level
of indirection, which is the purpose of the path headers: each node points to the header of
its path; the header points to the top of the path.

Both root(v) and nca(v, w) take O(logn) worst-case time. To do root(v), traverse the
path from v to the root, step-by-step. A step is from a node to its parent if it is a top node or
to the top of its solid path if it is not. Each such step takes constant time via either a parent
pointer or a path header. The traversal reaches a new solid path, of higher-rank nodes, in
at most two steps, and thus reaches the root in at most 2 lgn steps. The nca operation is
similar but requires traversing two paths concurrently. To do nca(v, w), traverse the paths
from v and w bottom-up, taking the next step from the larger of the two current nodes, and
stop when reaching a common solid path or reaching two roots. If x and y are the last nodes
reached by the concurrent traversals, the nearest common ancestor of v and w is min{x, y}
if x and y are on a common solid path, null otherwise. The concurrent traversal reaches a
common solid path or a pair of roots in at most 4 lgn steps.

3.2 Merging

Merging requires the ability to keep track of ranks, which we do by keeping track of sizes.
To make this efficient, we store explicitly only the sizes of top nodes. Since we can access
a top node from any node on its solid path in constant time, and since all nodes on a solid
path have the same rank, we can compute the rank of any node in constant time. To help
maintain the sizes of top nodes, we also store with every node x its dashed size d(x), defined
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to be one (to count x itself) plus the sum of the sizes of the dashed children of x. We can
compute the size of any solid child x from that of its parent in constant time using the
following equation:

size(x) = size(p(x))− d(p(x)). (1)

Merging uses the following variant of the topmost query:

• topmost(v, w): Return the topmost node on the solid path containing v that is strictly
greater than w, or null if there is no such node.

To perform merge(v, w), begin by computing the nearest common ancestor u of v and
w by the method of Section 3.1, keeping track of the two sequences of nodes visited by the
traversals from v and w. Stop if u = v or u = w. Otherwise, traverse the paths to u from v
and w top-down, merging them step-by-step, updating solid paths as necessary. To do this,
maintain two current nodes x and y, initially the children of u that are ancestors of v and
w, respectively, or root(v) and root(w) if u = null . If x < y, swap x and y and v and w,
respectively. While x < w, repeat the following step:

Merge Step: Let s be the first (bottommost) node on the solid path containing y that was
reached during the traversal from w. If x < s, let t = topmost(y, x); otherwise, let t
be the node below s that was reached during the traversal from w. (If x > s, such a
t exists because x < w.) Make p(t) the parent of x. (Node p(t) is a descendant of y.)
Update the solid paths that change as a result of this parent change. Set y equal to t.
If x < y, swap x and y and v and w, respectively.

To finish the merge, make w the parent of x and update the solid paths accordingly.

This algorithm is like the merging algorithm in Section 2, but it can make more parent
changes, because it proceeds one solid path at a time. Such extra changes occur only in
merge steps for which x > s, which proceed from one solid path to another without doing
a topmost query. If x < s, t = topmost(y, x) is on the solid path containing s and y, since
x > y.

Some details of the algorithm remain to be filled in. To compute the initial values of x
and y if u 6= null , let s and t, respectively, be the last nodes on the paths traversed from v
and w, respectively, other than u. If rank(s) < rank(u), then x = top(s); otherwise, x is the
solid child of u. Similarly, if rank(t) < rank(u), then y = top(t); otherwise, y is the solid
child of u.

We also need to update solid paths. In our description of how to do this, primes denote
updated values. Let z = p′(x): in a merge step, z = p(t); in the finalization of a merge,
z = w. The only nodes whose rank can change are ancestors of z on the same solid path as
z. Apply the appropriate one of the following two cases:

Case 1: Node x is a solid child. Then y is a dashed child, and all nodes on P [z, y] change
rank to rank(x) = rank(p(x)). Make z the parent of x, make y the solid child of p(y),
and set d′(p(y)) = d(p(y))− size(y). If z has a solid child c, compute its size by walking
down along the path P [c, y] applying equation (1), and then set d′(y) = d(y) + size(c).
This makes c a dashed child. Make x the new solid child of z. Change the header of
every node on P [z, y] to that of x, and make the header of c (if c exists) point to c.
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Case 2: Node x is not a solid child. Compute the old rank of z. Make x a dashed child of z
by setting d′(z) = d(z)+size(x) and either setting size′(top(z)) = size(top(z))+size(x)
if x is a root (this only occurs at the beginning of a merge of two nodes in different
trees) or setting d′(p(y)) = d(p(y)) − size(x) if x is not a root. Make z the parent of
x. Now all values are correct for the current path partition, but the partition is not by
rank. To correct this, find the nodes that change rank by starting at top(z) and walking
down the solid path computing the new size (using equation (1)) and rank of each node
reached, until reaching a node whose rank does not change or walking off the bottom
of the path.

This identifies the nodes whose rank changes and the arcs that change type. There are
at most three such arcs: (y, p(y)) can become solid; (x, z) can become solid; and either
the arc to z from its old solid child if it has one or an arc on the path P [z, top(z)] can
become dashed. This follows from an examination of three cases. If rank(x) < rank(z),
then zero or more nodes on P [z, top(z)] increase in rank by one. If rank(x) = rank(z),
then all nodes on P [z, top(z)] increase in rank to rank(x) + 1. If rank(x) > rank(z),
then all nodes on P [z, top(z)] increase in rank to rank(x) or rank(x) + 1. In each case
at most one arc becomes dashed.

In addition to updating solid child pointers, change a dashed arc (a, b) to solid or vice-
versa by subtracting or adding the new size of a to the dashed size of b, respectively: if
(a, b) becomes dashed, b increases in rank, and size ′(a), which is needed both to update
the dashed size of b and since a becomes a top node, is computed during the walk down
the solid path. Update the headers as follows. If top(z) is not a root, make the header
of p(top(z)) also the header of each node whose rank increases to rank(p(top(z)). (In
this case rank(top(p(z)) > rank(z).) For each node whose rank increases to rank(x),
change its header to that of x. If (a, b) becomes dashed, make the header of a point to
a. If one or more nodes have their headers change to that of x, make the header of x
point to the topmost such node.

This completes the description of merging and of the data structure, except for the
implementation of topmost queries. To make these queries efficient, we represent each solid
path by a suitable kind of search tree (in addition to parent and solid child pointers and
headers). In addition to topmost queries, this structure supports insertion of a node into a
solid path above or below a given node, and deletion of the top of a solid path. We do such
insertions and deletions during Cases 1 and 2, as follows. Walk down along the solid path
from top(z). Delete from this solid path each node whose rank changes, and insert the node
either above x (if its new rank is that of x) or below its parent (in Case 2 if top(z) is not a
root and the new rank of the node is the rank of its parent).

3.3 Analysis of Merging

In this section we analyze the running time of merging, independent of the type of search
tree used to represent solid paths. We use this analysis in the next section to choose search
trees that give an O(logn) amortized time for merging.
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Lemma 2 The total number of solid path insertions and deletions is O(n logn). The total
number of merge steps is O(m logn).

Proof. Since there are no cuts, no node can decrease in rank, and the total number of in-
creases in rank is at most n lgn. Each solid path deletion or insertion is of a node whose
rank increases, so there are at most n lg n of each. There are O(n logn) merge steps that
cause a rank increase. A merge step that does not cause a rank increase must result in Case
2 with rank(x) < rank(p(t)) = rank(y). Consider how r = max{rank(x), rank(y)} changes
as the result of a merge step. The value of r is between 0 and lg n and cannot increase.
A merge step that does not cause a rank increase is either the last step of the merge, or
decreases r by at least one (if x > s), or is followed by a merge step resulting in Case 1 and
hence causing a rank increase (if x < s). It follows that the number of merge steps that do
not cause a rank increase, and hence the total number of merge steps, is O(m logn). ✷

Corollary 1 The total time for all merges is O(m logn) plus the time for O(m logn) topmost
queries and O(n logn) solid path insertions and deletions.

Proof. There is at most one topmost query per merge step. Not counting the time for top-
most queries and solid path insertions and deletions, the time for a merge step is O(1) plus
O(1) per solid path deletion. The bound follows from Lemma 2. ✷

By Corollary 1, the amortized time for a merge is O(logn), not counting the time for
topmost queries and solid path insertions and deletions. If we represent each solid path by
a binary search tree such as a red-black tree [11] or a splay tree [15], then the time for an
insertion, deletion, or topmost query is O(logn), giving the same O(log2 n) amortized bound
for merging as in Section 2. To obtain a better bound, we need a more-refined analysis of
the topmost queries and we use a more-sophisticated kind of search tree to represent solid
paths.

We define the cost of a topmost query t = topmost(y, x) to be lg |P [p(t), y]|.

Lemma 3 The total cost of all the topmost queries over all merges is O(n logn).

Proof. We estimate the cost of two types of topmost queries separately. We call a query
type-1 if it occurs in a merge step such that rank(x) ≥ rank(y) and type-2 otherwise. The
total cost of the type-1 queries is easy to bound. The parent change after a type-1 query
causes every node on P [p(t), y] to increase in rank. It follows that the total cost of type-1
queries is at most n lgn.

The parent change after a type-2 query does not necessarily cause the nodes on P [p(t), y]
to increase in rank, but it does cause their sizes to increase, and by analyzing these size
increases we can get a bound on the total cost of type-2 queries. Consider a type-2 query.
Let d = |P [p(t), y]| and k = rank(y) − rank(x). The cost of the query is lg d, of which we
charge 1/2k to each node on P [p(t), y] and the residue to x. The residual charge to x is

lg d− d/2k ≤ lg d− 2(lg d−k) < lg d− lg d+ k = k.
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We complete the proof by showing that the total charge over all type-2 queries is O(n logn).
When 1/2k is charged to a node b on P [p(t), y], the size of b increases by at least 2(rank(y)−k) =
2(rank(b)−k). While at a given rank, such a node b accumulates less than one unit of total
charge, because if it accumulates one or more units of charge, its size grows by at least
2rank (b), causing its rank to change. It follows that the total of all such charges to all nodes
at all ranks is at most 2n lgn, n lgn for charges that do not cause rank increases and n lg n
for those that do. Suppose a node x receives a residual charge, of k or less. The next merge
step increases the rank of x to at least rank(t) = rank(y) (by at least k) because t becomes
a descendant of x. Thus the residual charge to x is at most its rank increase, and the total
of all such charges is at most n lgn. ✷

3.4 Solid Paths as Search Trees

If we represent solid paths by certain kinds binary search trees, we are able to obtain a
logarithmic time bound for merging. We present three different solutions. The first two
use different kinds of finger search trees. A finger search tree is a form of search tree that
supports an insertion or deletion at a given position in constant amortized time and a search
from a given position to a position d away in O(log(d+ 2)) time. The type of finger search
tree that applies most directly to our problem is a homogeneous finger search tree, such as
a homogeneous red-black finger search tree [20]. This is a red-black tree whose leaves in
left-to-right order store the items of a list, in our case the nodes of a solid path in top-
to-bottom order. Every tree node contains pointers to its left and right children and to
its parent. In addition, every black node has level links connecting it to its left and right
neighbors at the same black height. The internal nodes contain values, derived from the
items, that make searching efficient. This data structure supports insertion or deletion in
constant amortized time, given a pointer to the position of the insertion or deletion. It also
supports t = topmost(y, x) in O(log |P [p(t), y]|+1) worst-case time. For details see [20]. (But
be aware that the captions are reversed on Figures 22 and 23 of that paper.) If we represent
each solid path by a homogeneous red-black finger search tree, an O(logn) amortized time
for merging follows immediately from Corollary 1 and Lemma 3.

Homogeneous finger search trees are actually a heavyweight data structure to use in
our situation. A simpler data structure that works, although not quite as directly, is a
heterogeneous finger search tree, such as a heterogeneous red-black finger search tree [20].
This is a red-black tree with the items of a list stored in its nodes in symmetric order. (In
[20] the items are stored in the leaves, but it is simpler to store the items in the internal
nodes, and the same time bounds hold.) Each node contains pointers to its left and right
children, except that the pointers along the left and right spines (the paths from the root
to the first and last node, respectively) are reversed: every node on the left (right) spine
points to its right (left) child and to its parent. Access to the tree is by pointers to the first
and last nodes. This data structure supports an insertion or deletion at a position d away
from either end in O(log(d + 2)) time. It also supports a search, such as a topmost query,
to a position d away from either end in O(log(d + 2)) worst-case time. Finally, it supports
catenation of two trees (if the order of their items is compatible) in O(1) amortized time,
and splitting a tree in two at a position d away from either end in O(log(d+ 2)) time.

11



To obtain an O(logn) amortized time for merging using heterogenous red-black finger
search trees, we represent each solid path by a search tree, except that we split the paths
containing x and y in two, just above x and y, respectively. Then all insertions and deletions
are at the ends of paths, so each one takes O(1) amortized time. This includes the insertions
and deletions at the end of the merge, when w becomes the parent of x. After each topmost
query, we split the path containing the returned node just above that node. When updating x
and y, we do a catenation if necessary to reflect the new state. Each query t = topmost(y, x)
in a merge step takes O(log |P [p(t), y]|+1) time, as does the split just above t, because when
this query is done y is at one end of the path containing t. Thus the time for the query and
the split is at most O(1) plus a constant times the cost of the query. An O(logn) amortized
time for merging follows from Corollary 1 and Lemma 3.

We note that adding parent pointers for all nodes in each red-black tree, as well as doubly
linking the nodes in symmetric order, allows an insertion or deletion at an arbitrary position
to be done in O(1) time. In our application the solid paths are already doubly linked, but
the ability to do arbitrary constant-time insertions and deletions does not help us, because
this representation does not support fast searching from an arbitrary position, and splitting
the paths to speed up the topmost queries results in all the insertions and deletions being
at the ends of paths. Thus this representation does not help us here.

An even simpler data structure that (almost) works is the splay tree [15], a form of self-
adjusting search tree. This is thanks to the amazing proof by Richard Cole et al. [5, 6] that
splay trees are as efficient as finger search trees in the amortized sense. Specifically, Cole’s [5]
proof of the dynamic finger conjecture for splay trees gives the following bound. Consider a
splay tree representing a solid path, initially a single node, on which a sequence of insertions,
deletions, and topmost queries is done. Let fi be the finger of the ith operation, defined to
be the node inserted in the case of an insertion, the new top node in the case of a deletion,
or the node returned in the case of a topmost query. Let f0 be the single node on the initial
path. Then the amortized time of the ith operation is O(log(d+ 1)), where d is the number
of nodes between fi−1 and fi, inclusive, in the tree just after the operation.

To get a logarithmic bound for merging, we combine this bound with an additional
amortization. We also need to delay certain problematic insertions of nodes into the bottom
of solid paths. To do this we represent each solid path by two parts: the top part, represented
by a splay tree, and the bottom part, which is a doubly-linked list of its nodes, top-to-bottom.
The parent and solid child pointers provide the necessary links. We insert a node into the
bottom part merely by inserting it into the doubly-linked list. We move nodes from the
bottom part into the top part only when they are involved in a topmost query. Specifically,
to do a query t = topmost(y, x), if the bottom node of the top part is less than x, delete
nodes one-by-one from the bottom part and insert them into the top part (the splay tree)
until reaching a node greater than x; return this node as t (leave it in the bottom part).
Otherwise, do the query on the top part, as a splay tree operation. We call this the hybrid
representation of solid paths.

Theorem 1 With the hybrid representation of solid paths, the amortized time per merge is
O(logn).

Proof. Assume that the running times are scaled so that the time bound per splay tree
operation is lg(d+1). We shall show that the total time for all the insertions, deletions, and
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topmost queries is O(1) per operation plus a constant times the total cost of the topmost
queries. The theorem then follows from Corollary 1 and Lemma 3.

As merges proceed, we keep track of the locations where previous splay tree operations
occurred and where future operations can occur. We will define a potential function based
on these locations, from which we derive the bound. We define the finger of a splay tree to
be the finger of the most recent operation on it. A merge has one or two current nodes, x
and possibly y. Node y is initially current. It becomes non-current each time it is popped
from its solid path and current each time it is updated (replaced by t). Given a solid path,
let de be the number of nodes less than or equal to its current node if it has one, zero if not,
and let df be the number of nodes less than or equal to its finger if it has one, zero if not (the
top part is empty). We define the potential of the path to be lg(de + 1) + lg(|de − df | + 1).
The total potential is the sum of the potentials of all the solid paths.

This potential has several important properties. It is initially zero and is always non-
negative, so the sum of the amortized times of a sequence of operations is an upper bound on
the sum of their actual times. The following operations take O(1) amortized time: creating
a one-node solid path; removing the current node of a solid path (de becomes zero, which
does not increase the potential); making the top node of a solid path current (de changes
from zero to one, increasing the potential by O(1)); and moving the current node to the
finger (the potential does not increase). Moving the finger to the current node decreases the
potential by lg(|de − df | + 1), which makes the amortized time for an insertion or deletion
at the current node, or just above or below it, O(1).

Merge initialization takes O(1) time and increases the potential by O(logn), for a total
of O(logn) amortized time. Consider a merge step. Each insertion of a node into a bottom
part takes O(1) time. If x is in the top part of its path, each insertion above x takes O(1)
amortized time since x is a current node. On the solid path containing y, a topmost query
and one or more deletions at the top may be done. Each deletion from the top takes O(1)
time if the top part is empty, O(1) amortized time if it is non-empty, because the first such
deletion is of the current node y and each subsequent deletion is at the finger. Consider a
query t = topmost(y, x). The cost of the query is lg |P [p(t), y]|. If t is in the top part, the
query is done as a splay tree operation and the finger moves to f ′ = t. The time for the
query by Cole’s bound is lg(|df ′ − df |+ 1). The amortized time for the query is

lg(|df ′ − df |+ 1) + lg(|df ′ − de|+ 1)− lg(|df − de|) + 1) ≤
2 lg(|df ′ − de|+ 1) +O(1) = 2 lg |P [p(t), y]|+O(1).

That is, the amortized time for the query is O(1) plus at most twice the cost of the query.
If t is the top node of the bottom part, the query takes O(1) time and there are no splay
tree operations. If t is in the bottom part but not the top node, each node on the bottom
part above t is inserted into the splay tree, and the finger moves to f ′ = p(t), now in the top
part. If there are k insertions into the top part, the time of the query by Cole’s bound is at
most lg(df ′ − df + 1) for the first insertion plus O(k) for the rest. The amortized time for
the query is at most

lg(df ′ − df + 1) + lg(df ′ − de + 1)− lg(|df − de|+ 1) +O(k)

which is O(k) plus at most twice the cost of the query.
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Finally, consider the effect of updating x and y at the end of the merge step. This makes
y = t a new current node. If t is the result of a topmost query, t or its parent is the finger of
its path; otherwise, t is the top of its path. In either case, making t a current node increases
the potential of its path by only O(1). ✷

We conjecture that Theorem 1 is true if solid paths are represented entirely by splay
trees. We claimed such a result in the conference version of our paper [9], but our proof is
incorrect. With such a representation, the proof of Theorem 1 fails for certain insertions of
nodes into the bottoms of solid paths. We want such an insertion to take O(1) amortized
time, but this is not true for an insertion into a path not having a current node and whose
finger is far from the bottom of the path. Such an insertion can occur in a merge step after a
step in which x > s, so that a topmost query does not occur. One way to get a correct proof
would be to extend Cole’s proof of the dynamic finger conjecture to show that the extra time
needed for k arbitrary interspersed insertions at one end is O(k). We conjecture that this is
true, but proving it may require delving into the details of Cole’s very-complicated proof.

3.5 Leaf Deletions

The easiest way to handle leaf deletions is just to ignore them, since deleted nodes play no
role in future operations. To reinsert a deleted node, we create a new version of it and treat
it as a new node. If there are enough deletions that the number of nodes decreases by a
constant factor, we may wish to entirely rebuild the data structure each time this happens.
This takes linear time, which is O(1) per deletion. With such rebuilding, the space used is
always linear in the number of undeleted nodes, and the amortized merge time is logarithmic
in the number of undeleted nodes.

4 Implicit Mergeable Trees

We now consider the special case of mergeable trees in which there are neither cuts nor
parent queries. In this case we need not store parent pointers, and indeed we do not need to
explicitly maintain the trees at all. Instead, we represent each mergeable tree by a dynamic
tree of possibly different structure but equivalent in that an nca query or a merge operation
can be simulated by O(1) dynamic tree operations. This gives us an O(logn) time bound
for each mergeable tree operation, worst-case, amortized, or randomized, depending on the
bound of the underlying dynamic tree structure. Since the mergeable trees are implicitly
represented, we call the resulting solution implicit mergeable trees.

In order to develop this approach, we need to introduce a little terminology. Let T a
rooted tree whose nodes are selected from a totally ordered set; T need not be heap-ordered.
Let v and w be any nodes in T . We denote by T [v, w] the (unique) path connecting v
and w in T , ignoring arc directions. In general this path consists of two parts, connecting
v and w, respectively, with nca(v, w). When used in an argument of min, T and T [v, w]
denote the node sets of T and T [v, w], respectively. If T is heap-ordered, root(v) = min(T )
and nca(v, w) = min(T [v, w]). Thus we can find roots and nearest common ancestors by
computing minima over appropriate sets. Furthermore, we need not do this the original tree;
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we can use any tree T ′ that is equivalent to T in the following sense: T and T ′ have the same
node sets and min(T [v, w]) = min(T ′[v, w]) for all pairs of nodes v, w in T .

Thus we shall represent a forest of mergeable trees by a forest of equivalent dynamic
trees in which we simulate each merge by a link, or by a cut followed by a link. We need the
following additional operations on rooted but not necessarily heap-ordered dynamic trees:

• treemin(v): Return the minimum node in the tree containing v.

• pathmin(v): Return the minimum node on the path from v to root(v).

• evert(v): Make v the root of the tree containing it, by reversing the direction of each
arc on the path P [v, null ].

These dynamic tree operations are standard: see [4, 10, 14, 15, 19]. We implement the
mergeable tree operations, excluding parent and cut, by simulating them on the equivalent
dynamic trees as follows:

• root(v): Return treemin(v).

• nca(v, w): If root(v) 6= root(w), return null. Otherwise, do evert(v) and return pathmin(w).

• insert(v): Create a new dynamic tree having the single node v.

• delete(v): Use the method in Section 3.5. Specifically, ignore leaf deletions; optionally,
rebuild the entire forest each time the number of nodes decreases by a constant factor.

• merge(v, w): If root(v) 6= root(w), do evert(v) and then link(v, w). Otherwise, do
evert(v) and let u = pathmin(w); if u 6∈ {v, w}, do cut(u) and then link(v, w).

We shall show that the dynamic trees maintained by the implementation of the merge op-
erations are equivalent to the corresponding mergeable trees. Assuming that this is true,
the root and nca functions return the correct values: if v and w are in the same merge-
able tree T , then they will be in the same dynamic tree T ′; the value returned by root(v)
is min(T ′) = min(T ) = rootT (v), and the value returned by nca(v, w) is min(T ′[v, w]) =
min(T [v, w]) = ncaT (v, w), where the subscript “T” indicates the tree in which the value
(root or nca) is defined.

In an operation merge(v, w), if v and w are in the same mergeable tree T and the same
dynamic tree T ′, u = ncaT (v, w). If v and w are unrelated in T , the merge cuts the first arc
on the path in T ′ connecting u and v, and then links v and w.

It remains to show that the implementation of merging maintains equivalence. We do
this by a sequence of lemmas. We start with the simpler case, that of a merge that combines
two different mergeable trees. Suppose v and w are in different mergeable trees T1 and T2,
respectively, and let T be the mergeable tree produced by the operation merge(v, w). Let x
and y be nodes in T . Assume without loss of generality (which we can do by the symmetry
of v and w and x and y, respectively) that x is in T1.

Lemma 4 If y is in T1, then ncaT (x, y) = min(T1[x, y]). If y is in T2, then ncaT (x, y) =
min(T1[x, v] ∪ T2[y, w]).
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Figure 4: Proof of Lemma 4. Nodes in the tree containing v are black and nodes in the
tree containing w are white. Grey nodes can be either black or white depending on the
node labels. Solid lines are single arcs; wavy lines are tree paths. (a) Node y is in T1.
Here we assume t < z < t′ < s. After the merge, min{v, w} is on T [t′,max{v, w}] and
max{root(T1), root(T2)} is on T [min{root(T1), root(T2)}, z]. (b) Node y is in T2. Here we
assume s < t. After the merge, min{v, w} is on T [s,max{v, w}] and max{root(T1), root(T2)}
is on T [min{root(T1), root(T2)}, t].

Proof. Suppose y is in T1. (See Figure 4(a).) Let z = ncaT1
(x, y) = min(T1[x, y]). The effect

of the merge on the path between x and y is to insert zero or more nodes of T2 into either
the part of the path from x to z or into the part of the path from z to y. Any such inserted
node must be larger than z. Thus ncaT (x, y) = min(T [x, y]) = z, giving the first part of the
lemma. Suppose that y is in T2. (See Figure 4(b).) Let s = ncaT1

(x, v) and t = ncaT2
(y, w).

In T , s and t are related. The path T [x, y] is a catenation of T1[x, s], a path of descendants
of min{s, t}, and T2[t, y]. Thus ncaT (x, y) = min{s, t} = min(T1[x, v] ∪ T2[w, y]), giving the
second part of the lemma. ✷

Now suppose that T ′
1 and T ′

2 are trees equivalent to T1 and T2, respectively, and that T ′

is formed from T ′
1 and T ′

2 by rerooting T ′
1 at v and adding the arc (v, w).

Lemma 5 Tree T ′ is equivalent to T .

Proof. Clearly T and T ′ contain the same nodes. We need to show that ncaT (x, y) =
min(T ′[x, y]) for every pair of nodes x, y, in T . Assume without loss of generality that x
is in T1. If y is in T1, then T ′[x, y] = T ′

1[x, y], and ncaT (x, y) = min(T ′[x, y]) follows from
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the first part of Lemma 4 and the equivalence of T1 and T ′
1. If y is in T2, then T ′[x, y] is a

catenation of T ′
1[x, v] and T ′

2[w, y], and ncaT (x, y) = min(T ′[x, y]) follows from the second
part of Lemma 4 and the equivalence of T1 and T ′

1 and of T2 and T ′
2. ✷

The case of a merge that restructures a single tree is similar but more complicated.
Consider an operation merge(v, w) of two nodes that are in the same tree T1. Let u =
ncaT1

(v, w). Assume that u is neither v nor w; otherwise the merge does nothing. Let q be
the child of u that is an ancestor of v, let T2 be the subtree of T1 with root q, and let T be
the tree produced by the merge. Finally, let x and y be any nodes of T1. The next lemma
is the analogue of Lemma 4 for this case.

Lemma 6 If both x and y are in T2, or neither x nor y is in T2, then ncaT (x, y) =
min(T1[x, y]). If exactly one of x and y, say x, is in T2, then ncaT (x, y) = min(T2[x, v] ∪
T1[w, y]).

Proof. If both x and y are in T2, then T1[x, y] is entirely in T2 (see Figure 5(a)); if neither
is in T2, then T1[x, y] is entirely outside of T2 (see Figure 5(b)). Suppose one of these cases
is true. Let z = ncaT1

(x, y) = min(T1[x, y]). The effect of the merge on the path between x
and y is to insert into the path zero or more nodes, all of which must be larger than z. Thus
ncaT (x, y) = min(T [x, y]) = z, giving the first part of the lemma. Suppose that exactly one
of x and y, say x, is in T2. Let s = ncaT1

(x, v) and t = ncaT1
(w, y). In T , s and t are related.

(See Figure 5(c)). Path T [x, y] is a catenation of T2[x, s], a path of descendants of min{s, t}
and T1[t, y]. Thus ncaT (x, y) = min(T [x, y]) = min{s, t} = min(T2[x, v] ∪ T1[w, y]).✷

Now suppose that T ′
1 is a tree equivalent to T1. Reroot T ′

1 at v, which does not affect
the equivalence, and let r be the parent of u in T ′

1. Deleting the arc from u to r breaks T ′
1

into two trees; let T ′
2 be the one that contains v (and r). Finally, let T ′ be the tree formed

from T ′
1 by deleting the arc from u to r and then adding an arc from v to w. We shall show

that Lemma 5 holds in this case; that is, T ′ is equivalent to T . This would be easy (and
analogous to the proof of Lemma 5, but using Lemma 6 in place of Lemma 4) if T2 and T ′

2

were equivalent. This is not necessarily true, however. Fortunately, what is true suffices for
our purpose.

Lemma 7 T ′
2 contains all the nodes in T2. Any node in T ′

2 but not in T2 is not a descendant
of u in T1.

Proof. Let x be a node in T2. Then ncaT1
(x, v) = min(T1[x, v]) ≥ q > u. Since T1 and T ′

1 are
equivalent, min(T ′

1[x, v]) > u. But then x must be in T ′
2, because if it were not, u would be

on T ′
1[v, x], which would imply min(T ′

1[x, v]) ≤ u, a contradiction. (See Figure 6(a).) This
gives the first part of the lemma. Suppose x is in T ′

2 but not in T2. Since x is not in T2, x is
not a descendant of q in T1, which implies ncaT1

(x, v) = min(T1[x, v]) ≤ u. But since T1 and
T ′
1 are equivalent, and x but not u is in T ′

2, min(T1[x, v]) = min(T ′
1[x, v]) = min(T ′

2[x, v]) 6= u.
(See Figure 6(b).) Thus ncaT1

(x, v) < u, which implies the second part of the lemma. ✷

Lemma 8 Tree T ′ is equivalent to T .
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Figure 5: Proof of Lemma 6. Node q is the child of u in T1 that is an ancestor of v. Nodes
in the subtree of q are black and the rest are white. Grey nodes can be either black or white
depending on the node labels. (a) Both x and y are in T2. After the merge, min{v, w} is on
T [u,max{v, w}]. (b) Neither is in T2. Here we assume t < q. After the merge, min{v, w} is
on T [t,max{v, w}]. (c) Only x is in T2; the situation is similar if only y is in T2. Here we
assume t < q. After the merge, min{v, w} is on T [t,max{v, w}].
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Proof. Trees T and T ′ contain the same nodes. We need to show that ncaT (x, y) =
min(T ′[x, y]) for every pair of nodes x and y in T . The first part of Lemma 7 gives six
cases to consider, depending upon which of the trees T2 and T ′

2 contain x and y. If x
and y are both in T2, or both in T ′

2 but not in T2, or both not in T ′
2, then ncaT (x, y) =

min(T1[x, y]) = min(T ′
1[x, y]) = min(T ′[x, y]) by the first part of Lemma 6, the equivalence

of T1 and T ′
1, and the construction of T ′. If one of x and y, say x, is in T2, and the other, y, is

not in T ′
2, then ncaT (x, y) = min(T2[x, v]∪T1[w, y]) = min(T ′

2[x, v]∪T ′
1[w, y]) = min(T ′[x, y])

by the second part of Lemma 6, the equivalence of T1 and T ′
1, and the construction of T ′.

These cases are analogous to the two cases in the proof of Lemma 5.
The remaining two cases are new. Suppose one of x and y, say x, is in T2, and the other, y,

is in T ′
2 but not in T2. (See Figure 7(a).) By the second part of Lemma 7, y is not a descendant

of u in T1. Then ncaT1
(x, y) = ncaT1

(w, y) = min(T1[w, y]) < u. Also min(T2[x, v]) > u, since
x is in T2. Thus ncaT (x, y) = min(T1[w, y]) = ncaT1

(x, y) = min(T1[x, y]) = min(T ′
1[x, y]) =

min(T ′
2[x, y]) = min(T ′[x, y]) by the second part of Lemma 6, the equivalence of T1 and T ′

1,
and the construction of T ′. Last, suppose one of x and y, say x, is in T ′

2 but not in T2,
and the other, y, is not in T ′

2. (See Figure 7(b).) Then u is on T ′
1[x, y]. It follows that

ncaT (x, y) = min(T1[x, y]) = min(T ′
1[x, y]) ≤ u by the first part of Lemma 6 and the equiva-

lence of T1 and T ′
1. But min(T ′

1[x, y]) = ncaT1
(x, y) 6= u since x is not a descendant of u by

Lemma 7. Thus ncaT (x, y) = min(T ′
1[x, y]) < u. Paths T ′

1[x, y] and T ′[x, y] contain the same
nodes except possibly for nodes of the path T ′

1[v, w], all of which must must be at least u,
since min(T ′

1[v, w]) = min(T1[v, w]) = u. Thus ncaT (x, y) = min(T ′
1[x, y]) = min(T ′[x, y]). ✷

Lemmas 4 and 7 give us the following theorem:

Theorem 2 The implementation of implicit mergeable trees using dynamic trees is correct.

Thus if there are no cuts and no parent queries, we can simulate each mergeable tree operation
by O(1) dynamic tree operations, giving an O(logn) time bound per operation, worst-case,
amortized, or randomized depending upon the efficiency of the underlying dynamic trees.
Since the roots of the dynamic trees are irrelevant to the representation, we can use unrooted
dynamic trees, such as top trees [4] or topology trees [8] instead. We can avoid the need for
the treemin operation on dynamic trees by using a separate disjoint set data structure [17, 16]
to handle root queries. The disjoint sets are the node sets of the trees; each root query is
a find query in the disjoint set structure, and each merge of two different trees requires a
union of their node sets. The extra time per merge is O(1) worst-case and the time bound
per root query is logarithmic worst-case and inverse-Ackermann amortized.

It seems hard if not impossible to extend the method presented here to handle parent
queries or cuts, because the connection between mergeable trees and the equivalent dynamic
trees can be quite loose. In particular, a mergeable tree that is a single path can be repre-
sented by a dynamic tree consisting of one node that is adjacent to all the other nodes in
the tree: consider the sequence merge(1, n), merge(2, n), merge(3, n), . . ., merge(n − 1, n)
applied to an initial set of singleton trees. For such an example, performing a parent query
or a cut on the mergeable tree will take at least Ω(n) time on the equivalent dynamic tree.
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Figure 7: Proof of Lemma 8. Node u = ncaT1
(v, w), q is the child of u in T1 that is an

ancestor of v, and r is the parent of u in T ′
1. After the merge, min{v, w} and q are on

T [u,max{v, w}]. (a) Node x is in T2 and y is in T ′
2 but not in T2. Then y is not a descendant

of u in T1, so ncaT1
(x, y) < u. Since x ∈ T2, min(T2[x, v]) > u. These two facts imply

ncaT (x, y) = min(T ′[x, y]). (b) Node x is in T ′
2 but not in T2 and y is not in T ′

2. Then
ncaT (x, y) = min(T ′

1[x, y]) < u. All nodes in T ′
1[v, w] are greater than or equal to u; thus

ncaT (x, y) = min(T ′[x, y]).
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5 Persistence Pairings via Mergeable Trees

Our motivating application for mergeable trees is a problem in computational topology, that
of computing an extended persistence pairing of the critical points of a 2-dimensional con-
nected manifold embedded in R3. An algorithm for this problem was proposed by Agarwal
et al. [2, 3]. The use of mergeable trees in this algorithm gives an O(n logn)-time imple-
mentation, where n is the number of critical points. We shall describe the pairing algorithm
in some detail, because the exact form it takes affects the set of operations needed on the
mergeable trees. In particular by modifying their algorithm, we are able to avoid the need
for parent queries, thereby allowing the use of the implicit mergeable trees of Section 4. We
also fill in a lacuna in their algorithm.

The critical points of a manifold are the local minima, local maxima, and saddle points in
a particular direction, say increasing z-coordinate. The algorithm of Agarwal et al. computes
a directed acyclic graph called the Reeb graph that represents the skeleton of the manifold,
during a z-increasing sweep over the manifold. The Reeb graph is actually a multigraph;
that is, multiple arcs (arcs with the same start and end vertices) can occur. The vertices of
the Reeb graph correspond to the critical points. Agarwal et al. assume that the manifold is
perturbed so that the critical points all have different z-coordinates, and so that the skeleton
of the manifold has no vertex of degree exceeding three. In particular, each vertex is of one
of four kinds: a source, with in-degree zero and out-degree one; a sink, with in-degree one
and out-degree zero; an up-fork, with in-degree one and out-degree two; or a down-fork, with
in-degree two and out-degree one. The vertices of the Reeb graph are topologically ordered
by the z-coordinate of the corresponding critical point. We call this the canonical order
(there may be other topological orderings).

The algorithm of Agarwal et al. pairs the vertices of the Reeb graph, and hence the critical
points of the manifold, during a sweep of the graph that visits the vertices in canonical order,
modifying the graph as it proceeds. This is the part of the algorithm that uses mergeable
trees. The pairing can be done during the sweep over the manifold that builds the graph,
but for our purposes it is better to think of the pairing process as a separate sweep. We
identify each vertex with its number in canonical order. The pairing sweep maintains three
invariants: (1) each vertex, once visited, has in-degree at most one; (2) a visited vertex is
paired if and only if both its in-degree and its out-degree are one, or both its in-degree and
out-degree are zero; and (3) the vertex order is topological. When visiting a vertex x, the
pairing sweep applies the appropriate one of the following cases:

• Case 1: x is a source. Do nothing.

• Case 2: x is an up-fork. Do nothing.

• Case 3: x is a down-fork, with incoming arcs from v and w (which may be equal).
Concurrently walk backward along the paths ending at v and at w, each time taking a
step back from the larger of the two vertices on the two paths, until reaching a vertex y
common to the two paths, or trying to take a step back from a source y. Pair x with y.
Merge the two paths traversed, arranging the vertices in order along the merged path.

• Case 4: x is a sink, with an incoming arc from v. Delete x. While v is paired, delete v
and replace it by its predecessor (before the deletion). Pair x with v.
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It is straightforward to prove by induction on the number of visited vertices that the
pairing sweep maintains invariants (1)–(3). If the manifold is connected, as we have assumed,
the second alternative in invariant (2) applies only after the last vertex (a sink) is processed;
it is paired (in Case 4) with the first vertex, which becomes the only vertex of in-degree
and out-degree zero. If the manifold is disconnected, there will eventually be one instance
of the second alternative in invariant (2) for each connected component of the manifold,
corresponding to the pairing of its global minimum and global maximum points.

The pairing sweep algorithm can be implemented directly. Vertices need not be deleted
in Case 4 but merely traversed, since each such vertex is traversed only once; deleting them
merely makes the statement of invariant (2) simpler. The running time is O(n) plus the time
spent walking backward along paths in Case 3, which can be Θ(n2). To reduce this time we
use mergeable trees.

Specifically, we store the set of visited vertices as the nodes of a collection of mergeable
trees and perform appropriate mergeable tree operations in Cases 1–4. When visiting a vertex
v, we first make it into a new, one-node mergeable tree and then apply the appropriate one
of the following cases:

• Case 1′: x is a source. Do nothing.

• Case 2′: x is an up-fork, with an incoming arc from v. Do merge(x, v).

• Case 3′: x is a down-fork, with incoming arcs from v and w. If v and w are in different
trees, pair x with max{root(v), root(w)}; otherwise, pair x with nca(v, w). In either
case do merge(x, v) and merge(x, w).

• Case 4′: x is a sink, with an incoming arc from v. Do merge(x, v). While v is paired,
replace v by its parent in its mergeable tree. Pair x with v.

See Figure 8. This is a restatement of the algorithm of Agarwal et al. that explicitly uses
mergeable trees, with a lacuna corrected in Case 4: Agarwal et al. imply that the predecessor
of x is unpaired, but this need not be true. Edelsbrunner (private communication, 2006)
suggested fixing this problem by eliminating paired nodes from the mergeable trees, replacing
each paired degree-two node by an arc from its child to its parent. But we prefer the method
above, since it requires no restructuring of the trees, and it leads to the two-pass pairing
algorithm we develop below. Agarwal also pair the first and last vertex separately, but this
is redundant, since this pair is found by the method above in Case 4′.

The total number of mergeable tree operations done by this method is O(n), since each
case except 4′ does O(1) tree operations, and the total number of tree operations done by
all executions of Case 4′ is O(n): any particular vertex v can be replaced by its parent in
at most one execution of Case 4′, since such a replacement corresponds to the deletion of
v in the corresponding execution of Case 4. The time spent in addition to mergeable tree
operations is O(n). The mergeable tree implementations discussed in Sections 2 and 3 can
be used, since no cuts are needed. The fastest method of Section 3 has an amortized O(logn)
time bound per mergeable tree operation, giving an O(n logn) time bound for pairing.

We can avoid the need for parent queries in the mergeable trees by doing two passes of
a streamlined version of the method above, one in topological order and the other in reverse
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topological order. This allows the use of the mergeable tree implementation described in
Section 4, which uses ordinary dynamic trees as a black box. In order to obtain this result,
we need an observation about the pairing that the algorithm produces. Each pair is of one of
four types: (a) a down-fork and an up-fork, found in Case 3; (b) a down-fork and a source,
also found in Case 3; (c) a sink and an up-fork, found in Case 4; or (d) a source and a
sink, also found in Case 4. As mentioned above, there is exactly one source-sink pair if the
manifold is connected, as we are assuming. If we reverse the direction of all the arcs of the
Reeb graph, then every source becomes a sink and vice-versa, and every up-fork becomes a
down-fork and vice versa. If we run the pairing algorithm on the reversed graph using as the
topological order the reverse of the original topological order, we compute the same pairing,
except that every type-(b) pair becomes a type-(c) pair and vice-versa; type-(a) pairs and
type-(d) pairs remain type (a) or (d), respectively. But this means that every pair except
the unique type-(d) pair will be found in Case 3 of either the forward sweep or the reverse
sweep. Thus we can find all the pairs by pairing the first and last vertices, and running
forward and reverse sweeps of the above method with Case 4′ replaced by the following:

• Case 4′′: x is a sink, with an incoming arc from v. Do merge(x, v).

See Figure 9. With this method the only operations needed on the mergeable trees are
insert, root, nca, and merge. Use of the mergeable tree implementation of Section 4 gives
an O(n logn)-time pairing algorithm. Though this does not improve the asymptotic time
bound, it avoids the complexities of Section 3, and it avoids the iteration in Case 4.

6 Complexity

In this section we make several observations related to the inherent complexity of the merge-
able trees problem, in an effort to clarify under what circumstances further improvements
or alternative methods might be possible. We begin by bounding the number of possible
merge operations in the absence of cuts. If each merge is of two leaves, then the number of
merges is at most n−1, since each merge reduces the number of leaves by one; a leaf deletion
cannot increase the number of leaves. On the other hand, if merges are of arbitrary nodes,
there can be Θ(n2) merges, each of which changes the forest. Figure 10 gives an example
with Ω(n2) merges. Since any merge that changes the forest must make at least one pair of

nodes related, there can be at most
(

n
2

)

merges.
We can also bound the number of parent changes in the absence of cuts. Section 2 gives

a bound of O(m + n logn). The example in Figure 10 gives a lower bound of Ω(m). The
following example gives a bound of Ω(n log n). Combining this example and the one in Figure
10 gives an example with a bound of Ω(m + n log n), thus showing that the O(m+ n log n)
bound is tight. Start with n = 2k one-node trees. Merge these in pairs to form two-node
paths, then merge the pairs in pairs to form four-node paths, and so on, until there is only
a single tree, consisting of a single path. Order the nodes so that in each merge the nodes
of the two merged paths are perfectly interleaved. Then the number of merges is n− 1 and
the number of parent changes is n/2 + 3n/4 + 7n/8 + ... = Ω(n log n).

Next, we consider the merging method originally proposed by Agarwal et al. [3] and
mentioned in Section 2: to do a merge, insert the nodes of the shorter merge path one-by-
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Figure 8: Example of the execution of the single-pass pairing algorithm that uses mergeable
trees that support the parent operation. (a) The forward Reeb graph. (b)-(d) The mergeable
tree rooted at 1. (b) The mergeable tree after processing vertices 1 to 7. For each vertex v the
number in the parenthesis is the vertex paired with v. (c) After processing vertex 8, which
is a down-fork with incoming arcs from 6 and 7. Vertex 8 is paired with nca(6, 7) = 4 and
then we perform merge(8, 7) and merge(8, 6). (d) After processing vertex 9; the arc (9,8)
is inserted as a result of merge(9, 8). To pair 9 we perform successive parent operations,
starting from 9, until we reach the first unpaired vertex, which is 6.
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Figure 9: Example of the execution of the two-pass pairing algorithm. (a) The mergeable
tree (rooted at 1) produced during the first pass; all pairs except (6,9) were found. (b) The
reverse Reeb graph used in the second pass. (c) The mergeable tree rooted at 10, after
processing vertex 6 which is a down-fork in the reverse graph with incoming arcs from 10
and 8. Vertex 6 is paired with min{8, 10} = 8 (which has label greater than the label of 10
in the reverse graph) and then we perform merge(6, 8) and merge(6, 10).
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Figure 10: An example with Θ(n2) merges. The sequence of merges consists of k rounds,
each with k merges; the ith merge of round j merges nodes k+ i and j. The number of nodes
is n = 2k + 1. Figure 10(a) is the initial tree, Figure 10(b) is the tree after the first round
of k merges, and Figure 10(c) is the tree after all k2 merges.
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Figure 11: Initial tree for a sequence of merges whose shorter merge paths have Ω(n3/2)
nodes. The ith merge is of the shallowest leaf and the leaf that is

√
k deeper.

one into the longer merge path. We shall show that in the absence of cuts and if all merges
are of leaves, the total number of nodes on the shorter of each pair of merge paths is Θ(n3/2),
thus showing that this method of merging does not give a polylogarithmic amortized time
bound for merging, though it does give a sublinear bound. We denote by pi the number of
nodes on the shorter of the merge paths in the ith merge.

To obtain the lower bound, start with the tree in Figure 11, where n = 2k + 1 and k
is an arbitrary perfect square. Do a sequence of k −

√
k merges in which the ith merge is

merge(k+ i, k+
√
k+ i). Each merge is of the shallowest leaf with the leaf that is

√
k deeper.

For each merge, the longer merge path is the one starting from the deeper leaf; it contains√
k+2 nodes. The shorter merge path contains two nodes for the first

√
k merges, three for

the next
√
k, four for the next

√
k, and so on. Thus

k−
√
k

∑

i=1

pi =

√
k−1
∑

i=1

(i+ 1)
√
k =

√
k

√
k−1
∑

i=1

(i+ 1) =
k
√
k + k − 2

√
k

2
= Ω(n3/2).

To show that this bound is tight to within a constant factor, assume without loss of
generality that all insert operations precede all other operations. Considering only nodes
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that participate in merge operations, let Φ be the number of unrelated pairs of nodes in the
forest of mergeable trees. After all insertions but before any merges, Φ =

(

n
2

)

. As merges

take place, Φ cannot increase but must remain non-negative. The ith merge decreases Φ by
at least (pi − 1)2. Thus

∑

i(pi − 1)2 ≤
(

n
2

)

. Subject to this constraint, the sum of pi’s is

maximized when they are all equal, say to p+ 1. Then mp2 ≤ n2, which implies p ≤ n/
√
m

and
∑

i pi ≤ m+ n
√
m. Since all merges are of leaves, m < n, giving

∑

i pi = O(n3/2).
Finally, we discuss lower bounds for three versions of the mergeable trees problem. If

cuts are allowed, the lower bound of Pătraşcu and Demaine [13] for the dynamic trees
problem applies. They show that in the cell probe model of computation, a sequence of
intermixed insert, link, cut, and root operations take Ω(log n) amortized time per operation.
This bound applies to mergeable trees even if there are no merge operations. The data
structure of Section 2 meets this bound except for merges, for which there is a logarithmic
gap. We conjecture that there is a solution to the mergeable trees problem with an amortized
logarithmic bound for all operations; specifically, we think that the structure of Section 2
implemented using Sleator and Tarjan’s self-adjusting dynamic trees [15] attains this bound.
We leave this question as the most interesting open problem emerging from our work.

If there are no cuts, we can obtain a lower bound by reducing sorting to the mergeable
trees problem. Specifically, we can sort n numbers using a sequence of insert, merge, and
parent operations, as follows. We construct a one-node tree out of the first number by an
insert. For each successive number, we first construct a one-node tree by an insert and then
merge it with the existing tree, which is a path. We keep track of the maximum in this
tree and use it as one parameter of the merge so that the new tree is also a path. Finally
we retrieve the numbers in reverse sorted order by starting at the maximum and doing
n−1 parent queries. Thus any data structure that supports insert, merge, and parent needs
Ω(log n) amortized time per operation, in any computation model in which sorting takes
Ω(n log n) time, such as a binary decision model. In such models the structures of Sections
3 and 4 are optimum to within a constant factor.

In the absence of both cuts and parent queries, we can obtain a non-constant lower
bound by reducing a form of disjoint set union to the mergeable trees problem. The Boolean
union-find problem is that of maintaining a set of n sets, initially singletons, under an
intermixed sequence of two kinds of operations: unite(A,B), which adds all elements in set
A to set B, destroying set B, and find(x,A), which returns true if x is in set A and false
otherwise. Kaplan et al. [12] showed that a sequence of m finds and intermixed unites takes
Ω(mα(m,n)) time in the cell probe model with cells of size lg n, where α is an inverse of
Ackermann’s function. To solve the Boolean union-find problem using mergeable trees, we
maintain for each set a tree, whose nodes are its elements and that is a path. As the set
identifier we use the maximum element in the set (with respect to an arbitrary total order);
we can use an array to maintain the mapping from the names used by the set operations
to the corresponding maximum nodes. Initialization takes n insert operations. Each unite
becomes a merge (of two different trees). Each find can be done either by a single nca
query or by two root queries. The Kaplan et al. bound implies an Ω(α(m,n)) amortized
time bound per mergeable tree operation for any structure that supports insert, merge, and
either nca or root, for the cell probe model. We conjecture that this lower bound is far from
tight.
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