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Abstract

In the k-matches problem, we are given a pattern and a text, and for each text
location, the desired output consists of all aligned matching characters if there are k
or fewer of them, and any k aligned matching characters if there are more than k of
them. This problem is one of several string matching problems that seek not only to
find where the pattern matches the text, under different “match” definitions, but also
to provide witnesses to the match. Other such problems include: k-aligned ones [5],
k-witnesses, and k-mismatches [23]. In addition, the solutions to several other string
matching problems rely on the efficient solutions of the witness finding problems.

In this paper we provide a general method for solving such witness finding problems
efficiently. We do so by casting the problem as a generalization of group testing, which
we then solve by a process we call peeling. Using this general framework we obtain
improved results for all of the above problems. We also show that our method also
solves a couple of problems outside the pattern matching domain.

1 Introduction

Pattern matching is a well studied domain with a large collection of problems. In classical
pattern matching the goal is to find all occurrences of a pattern in a text [19]. One avenue of
research within pattern matching is the extension of this problem to allow for more general
matching criteria. Another is to allow a bounded number of errors to occur. In both of these
extensions the desired output is the locations that match, or the locations which mismatch,
under the extended criteria or other limitations.

In several applications it is not sufficient to output the locations which matched or mis-
matched. Rather we will want a witness to the match or mismatch. For example, consider
the classical pattern matching problem. If we have a pattern p = ‘aba’ and a text t = ‘aabaa’.
Then the pattern matches at text location 2 but not at any other text location. The |p|-length
substring beginning at text location 1 is ‘aab’. A witness to the mismatch at location 1 is the
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second character of the pattern as it is ‘b’ in p and ‘a’ in ‘aab’. Of course, match is a general
term which is application dependent and also witness needs change with the application.
Finding witnesses arises in several applications which we mention below. However, doing so
efficiently is not a simple task.

The concept of finding a “witness” was independently introduced for applications of
boolean matrix multiplication, specifically for the all-pairs shortest path. Formally let C' be
the (boolean) multiplication of A and B. Then if ¢;; = 1, we say that ¢ is a witness if
Aiy=1and B;; = 1.

We now mention several applications where finding k& witnesses is desired.

Aligned Ones and Matches Lett =1%y---t,_1 beatextandp=pg---pn_1 be apattern.
Consider an alignment of p with ¢ starting at location 7 in ¢, namely p, is aligned with ¢;,
p1 is aligned with ¢;14, and so on. We say that (j,7+ j) is a match pair in the alignment if
p; = tiyj, and otherwise (7,7 + j) is a mismatch pair in the alignment. The k-aligned ones
problem, defined in [5] and further explored in [23], is the following. For text and pattern
both over the alphabet ¥ = {0, 1}, for every alignment of p with ¢ which has at most & match
pairs of the character 1, output all of these match pairs (in this problem, we ignore match
pairs of the character 0). Note that no output is required for alignments that have more
than & match pairs. The k-aligned ones problem was used in [5] to solve a two-dimensional
pattern matching problem called half-rectangular matching.

In the k-witnesses problem, the goal is to find k match pairs of the character 1 for every
alignment of p with ¢ (for alignments with fewer than & match pairs of 1, all of the match
pairs of 1 in these alignments need to be found). The solution in [5] to the k-aligned ones
problem is a very interesting, but rather involved and costly procedure. In [23] a simpler
solution was suggested and it hints at the direction we take.

In the k-matches problem, the desired output consists of all the match pairs if there are
k or fewer of them, and any k£ match pairs if there are more than k of them. In contrast
to the k-witnesses problem, here all match pairs are considered and not only match pairs of
the character 1. Moreover, the problem is over general alphabets whereas the k-witnesses
problem is over the alphabet {0,1}.

Mismatches under General Matching Relations A similar problem to the above is
the k-mismatches problem. Here the problem is to find all alignments in which the number
of mismatch pairs does not exceed k.

This problem is well-studied (e.g. [1, 6, 15, 21]), and the most efficient algorithm [6] runs
in time O(nv/klogk). The algorithms of [15, 21], which run in time O(nk), also enable the
mismatch pairs to be reported.

All of the above works assume that the matching relation (between pattern elements and
text elements) is the equality relation. In some applications, however, other “matching” re-
lations may arise, for example wildcard matching [10, 14], smaller matching [5], and distance
matching [12]. In such problems, the matching is defined by a ¥ x ¥ matching matrix M,
where 3 is the alphabet. The k-mismatches problem [23] is the problem of finding, for each



alignment of p with ¢, at least k£ mismatch pairs (under M) if possible; if there are fewer
than & mismatch pairs, of finding all mismatch pairs.

For general matching relations M the suffix tree methods of [15, 21] do not work.
Muthukrishnan [23, Theorem 5] showed a relationship between the k-mismatches problem
and the k-witnesses problem.

Matrix Multiplication Witnesses and All-Pairs k-Shortest Path Let A and B be
two boolean n x n matrices, and let C' = A - B, where multiplication is the logical A and
addition the logical V. The witness for boolean matriz multiplication problem is to find, for
each 7, j such that ¢;; = 1, an index ¢ such that a;; = b;; = 1. Alon, Galil, Margalit, and
Naor [3] and Seidel [24] independently discovered a simple randomized algorithm to solve
the problem. Both use the witness for boolean matrix multiplication problem to solve the
all-pairs shortest path problem on undirected unweighted graphs.

A natural extension to the all-pairs shortest path problem is the problem of the all-pairs
k-shortest paths; that is, for every pair of vertices u,v, to output the & (not necessarily
disjoint) shortest paths between u and v (if they exist). It turns out that one way to
solve this problem is to extend the witness problem to the k-witnesses for boolean matriz
multiplication problem: Let C' = A - B with multiplication over the integers. reals. For
each 4, j, find k' = min(k, ¢; ;) “witnesses” for ¢; ;, i.e. indexes ty, ..., t;, such that for each
te{ti,....tw}, a;p = by j = 1. We will show in the sequel that the all-pairs k-shortest paths
problem can be solved in the same time complexity as the k-witnesses for boolean matrix
multiplication problem. Note that one cannot solve the latter problem by simply reiterating
the procedure of the one witness problem as it may rediscover the same witness repeatedly.

1.1 The Reconstruction Problem

To solve the above-mentioned problems, we define a generalization of group testing which is
a process in which we “peel witnesses”, called the reconstruction problem. We solve several
variants of the reconstruction problem in this paper and utilize them to solve our witness
problems. We believe that the peeling process is interesting in its own right, although we
view the main contribution of the paper as a generalized setting and solution for the set
of problems mentioned below. We first describe a group testing setting and then return to
show how this helps to solve the above-mentioned problems.

Let U be a universe of m distinct items, all taken from some commutative group G. The
group testing problem is to determine the members of a set S C U, |S| < k, by queries of the
form “does A contain an element of S7”, where A is some subset of U. Our goal in group
testing is to determine S with a minimal number of queries.

Many variants of group testing have been considered. One of these variants is a change
of query asking for |S N A| rather than whether S N A is empty or not. This problem is
known as quantitative group testing, see [13], or interpolation set [17, 18]. In additive group
testing, a query asks for the value of ) _-, u for some set A.

Here we consider a generalization of the above. Consider a collection of unknown sets
St,...,8, C U, and suppose that we are interested in reconstructing 51, . .., Sy, or in finding



k elements of each S; (for some parameter k). We are provided with procedures such that
for any set A C U, we can compute:

e Intersection Cardinality: IS1ZEg, g, (A) = (|S1 NA[,...,|S, N A]).
e Intersection Sum: ISUMg, s, (A) = (X cqnat 5 2 ues,nath)-

Clearly, given a sufficient number of calls to these procedures, it is possible to fully reconstruct
St,...,5,. However, we aim at doing so with a minimal amount of work. We note that an
efficient algorithm for this problem must provide:

1. The list or sequence of sets A on which to compute IS1zEg, g, (A) and/or ISUMg, .. s, (A)
(note that for determining the A’s we do not have explicit knowledge of Sy, ..., S,),

2. An efficient procedure to reconstruct k elements of each S; based on the information
provided by these computations.

In this paper we consider two variants of the general setting outlined above. In the first
variant, the sizes of S,..., S, can be arbitrary, and we are interested in finding min(k, |.S;|)
elements of S; for all i. We call this the k-reconstruction problem. In the second variant,
we are interested in fully reconstructing every set S; of size at most k. We call this the
bounded k-reconstruction problem. We present efficient solutions to both these problems.
The solutions are based upon a combinatorial structure, which we call peeling collections,
and a matching algorithmic procedure, which we call the peeling procedure. The basic idea
is as follows. If a set A C U satisfies |S; N A| = 1, then we can “peel” the unique element of
the intersection of S; by querying ) g 4 u. A peeling collection is a collection of sets such
that for any S its elements can be peeled one by one by peeling and updating the other sets
to reflect that an element has been peeled. The full details appear in Section 2.

We point out the following differences from previous works:

1. Most group testing codes are universal in the sense that the elements of any set S can
be recovered using the codes. In [9] a lower bound of Q(klogm) was given on the con-
struction of k-selective codes equivalent to the deterministic bounded-reconstruction
(see Section 2). Here we consider reconstructing a single set S (which one can view as
a special code for one unknown S) with high probability, beating the lower bounds for
the k-selective codes.

2. The problem is an n-set problem as opposed to the one-set problems in the previous
variants. While the problem can be solved by finding separate tests for each set,
sometimes it can be solved more efficiently directly. Moreover, we show applications
that fall nicely into this setting.

3. The peeling method. This gives an adaptive flavor to a non-adaptive setting. It should
be mentioned that the peeling method appears implicitly in [18] yet is rather inefficient
and under-exploited.



As far as we know, k-reconstruction problems have not been studied explicitly before. How-
ever, in previous works, these problems have been solved implicitly: Amir et al. [5] implicitly
gave a deterministic algorithm that solves the bounded k-reconstruction problem. A deter-
ministic algorithm for this problem can also be obtained from [18] with some simple obser-
vations. For the unbounded problem, Seidel [24] and Alon and Naor [4] implicitly solved
the unbounded 1-reconstruction problem. Muthukrishnan [23] implicitly gave a randomized
algorithm for solving the unbounded k-reconstruction problem.

New results We now describe our results for the reconstruction problem, which improve
the previous (implicit) results. Suppose that computing IS1ZEg, g, (A) and ISUMg, . g, (A)
for a single set A takes O(f) steps. We assume that f = Q(m + n) as the size of the input
to IS1zEg, . s, (-) and ISUMg, . s, (-) is ©(m) (in the worst case) and the size of the output
is ©(n). For the bounded k-reconstruction problem we present a deterministic algorithm
that runs in O(fk - polylog(m)) steps, and a randomized algorithm that runs in expected
O(f(k +logk -logn) + nklog(mn)) steps. For the (unbounded) k-reconstruction problem,
we give a deterministic algorithm with time complexity O(fklogn - polylog(m)), and a
randomized algorithm with expected time complexity O(f(k(logm+logk-loglogm)-+logn-
logm) + nklogn).

Given the efficient solutions to the general problems, we show problems that can be cast
as special cases of this general framework. Accordingly, we provide improved algorithms
for these problems. We now list the new results. In the following, let T;(n, m, k, f) (resp.,
T.(n,m, k, f)) be the time needed to solve the bounded (resp., unbounded) k-reconstruction
problem with parameters n, m, k, and f.

,,,,,

1.2 Our Results

Aligned Ones and Matches For the k-aligned ones problem, Amir and Farach [5] gave
an O(nk3logmlogk) time deterministic algorithm, and Muthukrishnan [23] provided an
O(nk?log* m) randomized algorithm. Muthukrishnan [22] improved this to an O(nk log* m)
randomized algorithm.

We show that the k-aligned ones problem can be solved in time O (- T;(2m, m, k, mlogm)).
Therefore, we obtain an O(nk - polylog(m)) deterministic algorithm, and an O(nlogm(k +
log k - logm)) randomized algorithm for the problem. Moreover, the k-matches problem can
be solved in O(|X[2T,(2m, m, k,mlogm)) time.

Mismatches under General Matching Relations Muthukrishnan [23, Theorem 5]
showed that the k-mismatches problem over arbitrary M can be solved with cpn(G) calls to
the k-witnesses problem, where G is the conflict graph (the bipartite graph corresponding
to the complement of M) and cpn(G) is the minimum number of edge-disjoint bipartite
cliques of G. Additionally, [23] provided an O(n+/kmlogm) deterministic algorithm, and
an expected O(nk?log® mlogn) randomized algorithm to the k-witnesses problem. An open



problem presented in [23] was to find a deterministic algorithm for the k-witnesses problem
with time comparable to the randomized algorithm.

The k-witnesses problem can be solved in O(2T,(2m,m, k,mlogm)) time. Therefore,
we obtain an O(cpn(G) - nk - polylog(m)) time deterministic algorithm and an O(cpn(G) -
nlog m(k(log m+log k-loglog m)-+log® m)) time randomized algorithm for the k-mismatches
problem over arbitrary M.

Matrix Multiplication Witnesses and All-Pairs k-Shortest Paths Alon, Galil, Mar-
galit and Naor [3] and Seidel [24] independently discovered a simple randomized algorithm to
solve the problem of finding a witness for Boolean matrix multiplication that runs in expected
O(M(n)logn) time, where M (n) is the time of the fastest algorithm for matrix multipli-
cation. Alon and Naor [4] derandomized the algorithm, providing an O(M (n) - polylog(n))
deterministic algorithm for this problem.

Using our construction we solve the k-witness problem for matrices in O(M(n) - k -
polylog(n)) time by a deterministic algorithm, and in O(M (n) - (k(logn + log k - loglogn) +
log?n)) time by a randomized algorithm. This yields a solution to the all-pairs k-shortest
paths problem with the same time complexity as the k-witnesses for the Boolean matrix
multiplication problem.

2 The Peeling Processes

2.1 Peeling Collections and the Peeling Process

Consider the k-reconstruction problem which was defined in the introduction. We are inter-
ested in finding k elements of each set S; with minimal work. Thus, we seek an algorithm
that both uses few calls to these procedures and allows for efficient reconstruction of the k
elements based on the results obtained from these calls.

Definition 1. For sets S and A we say that A peels S if |[SNA| =1. If SNA = {s} we
say that A peels the element s.

Definition 2. Let S be a set and F' a collection of sets. We say that F' is a k-separator for
S if there are sets Ay, ..., Amin,s)) € F' such that:

1. for each i, A; peels S,
2. fori#j, SNA #SNA; (ie. the sets peel different elements of S).

For a collection of sets S = {S1,...,S,} we say that F is a k-separator for S if it is a
k-separator for each S € S.

Suppose that F is a k-separator for S. Then, it is possible to reconstruct & = min(k, |S|)
elements of S by simply invoking the procedure IS1zEg(A) for all A € F'. For each A such
that IS1ZEg(A) = 1 compute s4 = ISuMg(A). The element s, is necessarily a member of
S, and since F' is a k-separator, there must be at least &’ distinct s4’s.
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A k-separator requires that for each element s € S to be recovered, there is a distinct
set A € F that peels s. We now show how to reconstruct k&’ elements of S with a weaker
condition. We do so by iteratively “peeling off” elements from S.

Let P = (Aq,..., Ag) be a sequence of sets. We say that P is a peeling sequence for S if
fori=1,...,k, A; peels (S — Ué;lAj). Let F' be a collection of sets, and P = (Ay,..., Ag)
a sequence of sets. We say that F' contains P if Ay,..., Ay € F.

Definition 3. Let S be a set and F' a collection of sets. We say that F' is a k-peeler for S
if F' contains a peeling sequence for S of length k' = min(k, |S]).

For a collection of sets S = {S1,...,5,} we say that F is a k-peeler for S if it is a
k-peeler for each S € §. We say that F' is a bounded k-peeler for S if it is a k-peeler for

every set S € S of size at most k.

Note that a k-separator for a set S is also a k-peeler for S. Let F' be a k-peeler for S.
Consider the following process, which we call the peeling procedure:

For each A € F assign z4 < IS12Eg(A) and my < ISuMg(A)
ONES ¢+~ {A € F:zy=1}
While ONES is not empty do
Choose any A € ONES and remove A from ONES
Output my
For each A’ € F such that my4 € A’ do
Zar — za4 — 1
If z4» = 1 then add A’ to ONES
Mmar <— Mg — My

© 00 1O UL W N

At each iteration of lines 3-9, the procedure finds one element of S and “peels” it off S.
In addition, the procedure also updates the corresponding values of the IS1zEg(A) and
ISumg(A), for all A € F.

We assume that the sets of F' are represented by linked lists of the elements of the set.
Thus, in time O(}_ 4. |A|) we can create for every element s € U a list of all the sets of F
that contain s, and use these lists for the loop in line 6.

Since F' is a k-peeler for S, if the procedure happens to choose (in line 4) exactly the A’s
from the peeling sequence contained in F', and in exactly the right order, then the process
will necessarily find at least &’ = min(k, |S|) elements of S. What happens if other A’s are
chosen? Or in a different order? The following lemma proves that &k’ elements are necessarily
found, regardless of the choice of the A’s and their ordering.

Lemma 1. Suppose that F' is a k-peeler for S. Then the peeling procedure necessarily finds
at least k' = min(k, |S|) elements of S.

Proof. Let (By,..., Br) be the peeling sequence for S contained in F'. Consider an invo-
cation of the peeling procedure. Let P = (Ay,..., A;) be the sequence of sets chosen so far
in the peeling process. We show that if ¢ < k&’ then P can necessarily be extended. For
j=1,...,K let b; = (S — U_B;) N B (i.e. b; is the element of S peeled by B;) and for
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j=1,...,tlet a; = (S —UZ] A;) N A;. Let jo be smallest index such that bj, & {ai,...,a:}
(such an index necessarily exists since ¢t < k’ and all b;’s are distinct). Then,

Bjo N (S - Ug:lAi) = {bjo}'
Hence, the peeling process can be continued by choosing Bj;. [

The peeling procedure can be extended to reconstruct a collection of sets S = {51, ..., 5,}
with a k-peeler F' for S: In step 1 compute (zg1,...,24,) ¢ ISIZEg, g, (A) and
(map,...,man) < ISuMg, g, (A). Then, perform steps 2-9 for every set S; separately.

Two factors determine the time complexity of the peeling procedure. One is the size of
the peeling collection F. The other is the total number of times lines 7-9 are performed
during the peeling process. This number can be bounded as follows. For an element u € U
and a peeling collection F, let Occ,(F) be the number of sets in F' that contain u. Define
MAXOCC(F) = maxy,epy {OCC,(F)}. The number of times lines 7-9 are performed when
reconstructing a collection of n sets is bounded by nk - MAXOcCC(F'). Therefore, we obtain
the following lemma (recall that a call to the procedures IS1ZEg, g, (A) and ISUMg, . g, (A)
takes O(f) steps).

Lemma 2. The time complexity of the peeling procedure is O(f - |F| + nk - MAXOCC(F)).

Hence, we seek small peeling collections with a small MAXOcc(F'). Clearly, for any set
S of size k there is a trivial k-peeler with |F| = k and MAXOcc(F) = 1. However, since we
are not provided with S explicitly, we must construct the peeling collection without explicit
knowledge of S.

We note that some of our definitions are similar to previous work. k-separators and
k-peelers are similar to k-selective collections [7, 8, 18]. A collection F' is k-selective for a
collection § if it is a 1-peeler for every set S € S with |S| < k. We also say that a collection
Fis universal k-selective if it is k-selective for the collection Sy of all subsets of U. Similarly,
F'is universal bounded k-peeler if it is a bounded k-peeler for Sy;. Constructions of universal
k-selective collections were given in [8, 18]. A lower bound for k-selective collections in a
non-universal setting was given in [7]. In the universal setting, a collection F' is universal
k-selective if and only if it is a universal bounded k-peeler!. However, in the non-universal
setting the properties of being k-selective and being a bounded k-peeler are different: Every
bounded k-peeler is also k-selective, but the converse need not be true.

Also, bounded k-peelers are similar to the universal lists in [20]. The universal lists are
defined for the universal setting. As consequence, the construction is Section 2.3.2 is more
efficient than the one given in [20].

!By definition, if F is a universal bounded k-peeler then F is universal k-selective. For the opposite
direction, suppose that F' is universal k-selective and let S C U be a set of size at most k. There is a set
A € F that peels S. Since S — A; is of size at most k— 1, there is a set Ay € F' that peels S— A;. Repeating
this process given a peeling sequence (A1, Aa, ..., A|g|) for S. Therefore, F' is a universal bounded k-peeler.



2.2 Deterministic Constructions

2.2.1 Bounded k-Peelers

Consider the problem of constructing a universal bounded k-peeler, or equivalently, con-
structing a k-selective collection. Indyk [18] showed how to deterministically construct a
universal bounded k-peeler.

Theorem 3 (Indyk [18]). There is a deterministic algorithm that for every k constructs a
universal bounded k-peeler F' with |F| = O(k-polylog(m)) and MAXOcc(F) = O(polylog(m)).
The time complexity of the algorithm is O(m - polylog(m)).

We note that there is no efficient construction of a universal (unbounded) k-peeler. More
precisely, the size of a universal k-peeler must be at least m (even for k = 1) [11].

2.2.2 k-Separators

Let S = {S1,...,S,} be a collection of sets, each of size at least ck log® m, for some constant ¢
to be determined later. We show how to construct a k-separator for S. The construction uses
the algorithm of Alon and Naor [4]. Using the terminology presented here, Alon and Naor
provided an algorithm to construct a 1-separator for S. The algorithm runs in O(flogn -
polylog(m)) time and outputs a collection F' of size O(logn - polylog(m)).

Lemma 4. There is a deterministic algorithm that for every k constructs a collection H of
subsets of U that satisfies

1. For every S C U such that |S| > cklog®m, there are disjoint sets Ay, ..., A, € H such
that S N A; is non-empty for all i, and

2. |H| = O(k - polylog(m)).
The running time of the algorithm is O(m - polylog(m)).

Proof. The proof of the lemma is similar to the proof of Theorem 3.1 in [18]. From [25],
there is an algorithm that given N and K, integer powers of two, constructs a bipartite
graph G = (A, B, F) such that

1. The degree of every vertex in A is D, where D = O(polylog(N)).
2. |A|=N.

3. KD < |B| < KD, where ¢ is a constant.
colog® N

4. For every X C A of size at least K, the number of vertices in B that are neighbors of
vertices in X is at least |B|/2.



The construction of G takes O(N - polylog(V)) time.

Given U and k, build a graph G = (A, B, ') using the above algorithm with N = a(m)
and K = a(2colog® N - k), where a(x) = 2198271 Set ¢ = 32¢y. Assign a distinct element
from A to each element u € U. For each vertex z € A, order its neighbors arbitrarily. Define
mappings hq, ..., hp from U to B as follows: h;(u) is the ith neighbor of the vertex z that
was assigned to u. For a set S C U define h;(S) = {hi(s) : s € S}. Define H to be the
collection of all sets h; ' (b) for all i < D and b € B.

Clearly, |H| = D - |B| = O(k - polylog(m)). We next show that H satisfies the first
property of the lemma. Consider a subset S of U of size at least cklog®m. We have that
K = a(2coklog® N) < 4coklog®(2m) < cklog®m. Therefore, | U2, h;(S)| > |B|/2. By the
pigeon-hole principle, there is an index 4 such that |h;(S)| > |B|/(2D) > K/(2colog® N) > k.
Let by, ..., by be k distinct elements from h;(S). The sets A; = h;*(b;) for j = 1,...,k are
disjoint and S N A; # 0 for all j. [

To construct a k-separator for Si,...,S, do the following. Let H be the collection
provided by Lemma 4. For every A € H, use the Alon-Naor algorithm to construct a
I-separator for S1 N A,..., S, N A. The union of these 1-separators is a k-separator for
S1,...,S5,. We obtain:

Theorem 5. There is a constant ¢ such that the following holds. Let S = {S1,...,S,} be
a collection of sets each of size at least cklog® m. There is a deterministic algorithm that
constructs a k-separator collection F' for S such that |F| = O(klogn - polylog(m)). The
construction of F' takes O(fklogn - polylog(m)) time.

2.3 Randomized Constructions
2.3.1 Preliminaries

For p € [0, 1], build a subset of U by choosing each element of U independently at random
with probability p. We call the resulting set a p-random set. Let a = 1/(2e).

Lemma 6. Let A be a 1/t-random set, and let S be a set with t/2 < |S| < t. Then,
Pr[A peels S] > a.

Proof. Let k denote |S|. Let X be the number of elements from S chosen to A. The random
variable X has binomial distribution N(k,1/t). Hence,

k—1 t—1
Pr[X:l]:lf1 . zﬁ I zle—l. |
t t t 2

Consider a set S of size t and a collection of sets F'. We say that F' peels S down to size
t"if Fis a (t —t)-peeler for S.

Corollary 7. Let F be a collection of r 1/t-random sets, and let S be a set witht/2 < |S| < t.
Then Pr[F does not peel S down to size t/2] < 2'(1 — a)".
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Proof. For a set S" C S of size greater than ¢/2, let Es be the event that F' does not peal
S’. Clearly, if none of the events Es/ occur, then F' peals S down to size ¢/2. Thus, by
Lemma, 6,

Pr [F does not peel S down to size /2] < Pr [Ugcss/>t/2Es/]

Y PrEg]<2¥(1-a)y <2(1-a). m

s'cs
|S7|>t/2

IN

In the next sections we use the following inequalities of Hoeffding [16].

Lemma 8 (Hoeffding’s inequality). Let Xi,..., X, be independent random variables, with
0<X; <1 foralli, andlet X =Y | X;. Then, for every a > E[X], Pr[X > E[X]+a] <
e=3 and for every § > 0, Pr[X < (1 —0)E[X]] < e ¥ FXI/2,

2.3.2 Bounded k-Peelers

Let S be a collection of n sets. We now show how to construct a collection F' such that
with probability > 1 — %n_l, F' is a bounded k-peeler for S. For k = 1, the collection {U}
is a universal bounded 1-peeler, so assume for the rest of the section that k > 2. Construct
F as a union of collections FU), j = 0,...,[logk] (throughout the paper, logz = log, z).
F© = {U}. For j > 0, the collection F) consists of r; J--random sets, with r; = %

(to simplify the presentation, we omit the ceiling function in the definition of r;).

Theorem 9. Let S be a collection of n sets. With probability > 1 — %nil, F is a bounded
k-peeler for S, and MAXOCC(F) = O(log(nm)). The size of F' is O(k + logk - logn), and
the time complexity for constructing F is O(mlog(nk)).

Proof. Consider some set S € S of size k' < k, and let S(°8%'D denote S. Use F(ogkD) tq
peel Sk D) down to a set of size 2M°8*¥ 1= Denote the resulting set by S(M°e*1-D  Use
F(ogk1=1) 6 peel S(Mogk1-1) down to size 2/°&¥1-2 Denote the resulting set by S(Mog+'1-2),
Continue in this way until the entire set S is peeled, or until FU) fails to peel SU) down to size
27=1 for some j. Assuming that S was peeled successfully to S, by Corollary 7, the probabil-
ity that FU) fails to peel S¥) down to size 271 is < 22’ (1—«)™ = (nk)~3. Thus, the probabil-
ity that F'is not a bounded k-peeler for .S is < Z]“i%“ Pr [F ) fails to peel SU) down to size 27 _1} <
[log k'] - (nk)™3 < %n_Q. Therefore, the probability that F is not a bounded k-peeler for &

is < in .
Next we bound MAXOcc(F). We have that
[log k]
; 2/ 4 3log(nk) [log k] + 3log(nk)
Occ,(F)l =1 < <201 k).
£l " Y i) < oy S 20

Hence, by Hoeffding’s 1nequa11ty,

Pr[Occ,(F) > 40log(nm)] < Pr[Occ,(F) > E[Occ,(F)] + 20log(nm)]

>
< 672010g(nm)/3 < 71.

(nm)

AN
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There are m different u’s, so Pr [MAaxOcc(F) > 40log(nm)] < in~t.

The size of F'is

[log k]

Ly
1"

23 + 3log(nk)
og(1/(1 — )

|F| =1+ = O(k + logk -log(nk)) = O(k + logk - logn).

The time complexity for building F' by a straightforward algorithm is O(|F| - m) =
O((k +logk - logn)m). We now describe a faster construction algorithm. For every u € U,
the number of sets in FU) that contain u has binomial distribution N(r;,277). Therefore, to
build FU), create r; empty sets A? ), e ,Ag). For every u € U, randomly select a value d,
from the distribution N(r;,277). Then, randomly select d,, distinct sets from Agj o ,A,(ﬂg),

and add u to the selected sets. The expected running time of this algorithm is O(|F| +
E[Occ,(F)] - m) = O(mlog(nk)). |

2.3.3 k-Separators

Let S be a collection of n sets, each of size > 4k. We show how to construct a col-
lection F' such that with probability > 1 — %nil, F' is a k-separator for §. For j =

[log(4k)], ..., [logm], let FUY) be a collection of r; &-random sets, with r; = 1%1n(2n) +
. . [log m i
2jk/(j —1—logk). Let F = U] %og (48] FO).

Theorem 10. Let S be collection of n sets, each of size > 4k. With probability > 1 — %n‘l,
F is a k-separator for S. The size of F' is O(k(logm + logk -loglogm) + logn - logm), and
the time complexity for constructing F is O(mlog(nmk) + klogk - loglog m).

Proof. Consider a set S € S, and let j be an integer such that 277! < |S| < 27. Note that
|S| > 4k, so j > [log(4k)]. Let X be the number of sets in F') that peel S. By Lemma 6,
the probability that a fixed set A € FU) peels S is at least a. Hence, E[X] > ar;. By
Hoeffding’s inequality,

1

1 1
o [X = 50””]} =P {X S —E[X]] e BIXVS < gmarif8 <

S

\)

For an element s € S, we say that s is peeled if there is a set in I’ that peels s. Let P be
the set of peeled elements in S. A set in FY is equally likely to peel any element of S and
the sets in FV are all independent. Therefore, for S’ C S, Pr[P C §'|X = z] = (|9'|/|S])*.
Therefore, assuming that X > %arj,

/ - E—1 %arj . k %arj 1
pepl<is 3 pepes)sisi (S) T s () s

S'CS
1S |=k—1

2

Thus, the probability that F' is not a k-separator for S is < %n_ . Hence, the probability

that F' is not a k-separator of S is < sn™'.
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The bound on |F| stated in the theorem is straightforward. The collection F' can be
build in O(mlog(nmk) + klogk - loglogm) time using the same approach described in the
proof of Theorem 9 (we can give a smaller bound on the construction time, but the given
bound suffices for our purpose). [

2.4 Solving the k-Reconstruction Problem

We are now ready to show how to use the separating and peeling collections to solve the
reconstruction problems presented in the introduction. Recall that given a collection &
containing n subsets of a set U of size m, the k-reconstruction problem is: For each S € S,
find min(k, |S|) elements of S. The bounded k-reconstruction problem is: Fully reconstruct
every set S € S of size at most k. We now give algorithms solving these problems.

Theorem 11. Suppose that computing IS1ZEg(A) and ISuMg(A) for all S € S and one
set A takes O(f) steps. Then, there are deterministic and randomized algorithms for the
bounded k-reconstruction problem with the following running times:

e Deterministic: O(fk - polylog(m)) steps.
e Randomized: O(f(k + logk -logn) + nklog(nm)) steps.

Proof. Given an instance S of the bounded k-reconstruction problem, construct a bounded
k-peeler for S using the deterministic construction of Theorem 3 or the randomized con-
struction of Theorem 9. Then use the peeling procedure. By Lemma 2, the time complexity
of the peeling procedure is O(f - |F| + nk - MAXOcC(F')). In the deterministic construc-
tion, |F'| = O(k - polylog(m)), MAXOcc(F) = O(polylog(m)), and the time complexity for
constructing F' is O(m - polylog(m)). Therefore, the time complexity of the deterministic
algorithm is

O(m - polylog(m) + fk - polylog(m) + nk - polylog(m)) = O(fk - polylog(m)),

where the equality follows from the assumption that f = Q(m + n).

In the randomized construction, |F| = O(k + logk - logn), MAXOcc(F) = O(log(nm)),
and the time complexity for constructing F' is O(mlog(nk)). Thus, the time complexity of
the randomized algorithm is

O(mlog(nk) + f(k +logk -logn) + nk -log(nm)) = O(f(k + log k - logn) + nklog(nm)). m

The randomized algorithm solves the reconstruction problem with probability at least
1/2. One can repeatedly run the algorithm until all sets are reconstructed, and the above
result second bound is the expected number of steps.

Theorem 12. Suppose that computing IS1ZEg(A) and ISuMg(A) for all S € S and one
set A takes O(f) steps. Then, there are deterministic and randomized algorithms for the
k-reconstruction problem with the following running times:

13



e Deterministic: O(fklogn - polylog(m)) steps.
e Randomized: O(f(k(logm + logk -loglogm) + logn - logm) + nklogn) steps.

Proof. Choose some integer £, and construct both a bounded k’-peeler, which will be used
to fully reconstruct sets with at most &’ elements (using the peeling procedure), and a k-
separator, which will be used to reconstruct & elements from sets with at least &’ elements.
For the deterministic algorithm choose & = cklog® m (where c is the constant from Theo-
rem 5), and use Theorem 3 for the bounded k’-peeler and Theorem 5 for the k-separator. As
in the proof of Theorem 11, the time complexity for building the bounded k’-peeler and using
the peeling procedure is O(fk’ - polylog(m)) = O(fk - polylog(m)). By Theorem 5, the time
complexity for building the k-separator is O(fklogn - polylog(m)), and the time complexity
for using the k-separator to reconstruct elements is O(f - |F|) = O(fklogn - polylog(m)).
Therefore, the time complexity of the deterministic algorithm is O(fklogn - polylog(m))

For the randomized algorithm choose k' = 4k, and use Theorem 9 for the bounded &'-
peeler and Theorem 10 for the k-separator. The time complexity for building the bounded &'-
peeler and using the peeling procedure is O(f(k+log k-logn)+nklog(nm)). By Theorem 10,
the time complexity for building the k-separator is O(mlog(nmk) + klogk - loglogm), and
the time complexity for using the k-separator to reconstruct elements is

O(f - |F|) = O(f(k(logm + log k - loglog m) + logn - logm)).

By summing the bounds above and using the assumption that f = Q(m + n), we obtain the
bound stated in the theorem. [ |

We note that except for the deterministic algorithm for the (unbounded) k-reconstruction
problem, the other algorithms are non-adaptive, in the sense that the set of A’s on which
the procedures IS1ZEg(A) and ISuMg(A) are performed is determined independently of the
outcomes of any other such calls. The deterministic algorithm for the k-reconstruction
problem is adaptive due to the adaptive algorithm of Alon and Naor.

3 Applications

3.1 Matrix Multiplication Witnesses and All-Pairs k-Shortest Paths

Consider the undirected unweighted shortest paths problem. Let G = (V| E) be some undi-
rected graph, where V' ={0,...,n— 1}. We use §(u,v) to denote the length of the shortest
path between vertices u and v. Let py(u,v) denote the number of paths from u to v in a
graph H.

For a vertex v from G, we define the v-successor graph of G, denoted G, to be a directed
graph with vertex set V', which contains an edge (u,w) for every pair of vertices u,w € V
such that there is a path from u to v of length 6(u,v) that contains the edge (u,w). The
following claim is trivial.

Claim 13. For every graph G and a vertex v in G,
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1. G, is acyclic.
2. Fvery path from u to v in G, is a shortest path from u to v in G, and vice versa.

3. Given G,, | < pg,(u,v) different paths from u to v in G, can be reported in time
O(l-n).

A k-subgraph of a directed graph H is a subgraph H' of H such that for every vertex v
in H, if v has [ outgoing edges in H, then H' contains exactly min(k,[) of these edges.

Lemma 14. If G’ is a k-subgraph of G, then for every vertex u, per(u,v) > min(k, pg, (u,v)).

Proof. Let G’ be some k-subgraph of G,. We prove the lemma using induction on the
distance between v and v. If u = v or u is a neighbor of v then the lemma is trivially true.
Suppose that we proved the lemma for all vertices with a distance of at most d — 1 from v.
Let u be a vertex with §(u,v) = d. Let uy, ..., u, be the neighbors of v in G,. If r > k, then
u has k neighbors in G’. For each such neighbor wu;, by the induction hypothesis there is at
least one path in G’ from u; to v. Therefore, pg: (u,v) > k.

If r < k then uq, ..., u, are also neighbors of v in G’. Hence, by the induction hypothesis,

per(u,v) = ZPG/(UZ'?U) = Zmin(k’,p(;v (ui,v)).

i=1 i=1
If pe, (u;, w) > k for some ¢ then clearly per(u, v) > k. Otherwise, per(u,v) = > i, pa, (Ui, v) =
pa, (u,v). |
Seidel [24] gave an algorithm for computing 0(u,v) for every pair of vertices u,v in G
in time O(M(n)logn), where M(n) is the time needed to multiply two n-by-n matrices.
Moreover, he showed that (u,w) is an edge of G, if and only if w is a neighbor of u and

d(w,v) = d(u,v) — 1 (mod 3). Therefore, the algorithm for the k-shortest paths problem is
as follows.

1. Compute §(u,v) for all v and v.

2. Let B be the adjacency matrix of G, and let C® = {cz(f)v} for 1 = 0,1, 2, be Boolean
matrices such that i) = 1 if and only if d(u,v) =i —1 (mod 3).
3. Solve the k-witnesses problem for the products BC®, i =0,1,2.

4. For every v, set G, = (V, E,), where E, is defined as follows. For every vertex u € V
such that position u, v in the product BCO®v)med3) i 1 B contains edges (u,w) for
the up to k witnesses w for the 1 in position u,v in the product, as found in (3).

5. For every u and v, report min(k, pg, (u,v)) different paths in G,.
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To solve the k-witnesses problem for the product BC®, set U = V to be the universe.
Define sets Sy, ..., S,2_1 as follows. For every pair of vertices u and v, Sy, is the set of

..... Sn2—1<A> for some A C U, define C' = {¢y, }, where ¢,,, = 1 if w € A and cg?v =1,
and ¢y, = 0 otherwise. Also define C' = {c, ,}, where ¢, , = w if ¢y, = 1, and ¢, = 0
otherwise. Then, ISiZEg,, (A) and ISUMg A) are the elements at position u,v in the
products BC' and BC', respectively.

The correctness of the algorithm follows from Claim 13 and Lemma 14. By Theorem 12,
the time complexity is O(M (n) - k- polylog(n)) for the deterministic algorithm and O(M (n) -
(k(logn + logk - loglog n) + log®n)) for the randomized algorithm.

un—+uv (

3.2 Aligned Ones and Matches

Let a text t = ty---t,_1 and a pattern p = pg - - - p,_1 be the input for the k-aligned ones
problem. Set U = {0,...,m — 1} to be the universe. For each location i of ¢ define S; C U
to be the set of all indices j such that p; = ¢;1; = 1. We can assume w.l.o.g. that n < 2m,
since if n > m, we can split ¢ into pieces of length at most 2m with an overlap of m — 1
characters between consecutive pieces.

To solve the k-aligned ones problem we need to reconstruct every set S; with size at most
k. This is exactly the setting of the peeling procedure and all that is needed is to describe
how to compute the cardinality and sum functions, IS1zEg, g, (A), ISUMg, . g, (A).

One of the widely used methods in pattern matching problems is the convolution method [14].
This method was also used in [5, 23]. We use this method here as well. Let a[0...n — 1]
and b[0...m — 1] be vectors of elements over a semiring R with operations (@, ®). The
convolution of a and b is defined as a vector a * b such that (a * b)[i] = &7 (ali — j] ® blj])
for 0 <i <n —1 (out of range values are assumed to be 0). We also define a o b to be the
closely related array (a o b)[i] = @T:_Ol(a[i + j] ® b[j]) where —m + 1 < i < n —m (out of
range values are assumed to be 0). It is easy to see that this operation and convolutions can
be computed within the same time bound. We will be interested in polynomial convolutions,
namely, where R = (4, X) is over a field, in our case R.

We use convolutions as follows. To compute ISIZEg, g, (A) define the vector a to be ¢ and
set b[i] tobe 1ifi € Aand p; = 1, and 0 otherwise. It is easy to see that (aob)[i] = IS1ZEg, (A).
To compute ISUMg, .. g, (A) define the vector a to be t and set b'[i] to be i if b[i] = 1, and 0
otherwise. Once again, it is easy to see that (a o 0')[i] = ISuMg, (A).

Each of the two convolutions can be computed in O(nlogm) time [2]. Hence, by The-
orem 11 it follows that there is an O(nk - polylog(m)) time deterministic algorithm and an
O(nlogm(k + logk - logm)) time randomized algorithm for the k-aligned ones problem.

The k-matches can be solved with the same reductions assuming that the alphabet of the
text and pattern is binary. When X, the alphabet of p and ¢, is larger one can simply invoke
the k-matches for binary alphabet procedure ¥ times, once for each a € . By Theorem 12,
this yields an O(|X|nk - polylog(m)) deterministic algorithm and an O(|X|nlog m - (k(logm+
log k - loglogm) + log® m)) randomized algorithm.
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3.3 Mismatches under General Matching Relations

In [23, Theorem 5] it was shown that the k-mismatches problem over arbitrary M can be
solved with cpn(G) calls to the k-witnesses problem over binary alphabets (see Section 1.2).
The k-witnesses problem can be transformed into a k-matches problem by complementing
the (binary) pattern p and retaining the text t as is. Obviously, every mismatch pair is
now a match pair. Hence, the k-mismatches problem can be solved with an O(cpn(G) -
nk - polylog(m)) time deterministic algorithm and an O(cpn(G) - nlogm - (k(logm + logk -
loglogm) + log? m)) time randomized algorithm.
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