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The notion of class (or object pattern) as defined in most object-oriented languages is forrnahzed

using known techniques from algebraic specifications, Inheritance can be viewed as a relation

between classes, which suggests how classes can be arranged in hierarchies. The hierarchies

contain two kinds of reformation: on the one hand, they indicate how programs are structured

and how code is shared among classes; on the other hand, they give information about compati-

ble assignment rules, which are based on subtyping. In order to distinguish between code

sharing, which is related to lmplementatlonal aspects, and functional speclalizatlon, which is

connected to the external behavior of objects, we introduce an algebraic specification-based

formalism, by which one can specify the behavior of a class and state when a class inherits

another one. It is shown that reusing inheritance can be reduced to specialization inheritance

with respect to a virtual class The class model and the two distinct aspects of inheritance allow

the defimtion of clean interconnection mechanisms between classes leading to new classes which

mherlt from old classes them correctness and their semantics.
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1. INTRODUCTION

The 1980s have witnesses a fast growth of the object-oriented methodology

and related languages, and it is expected they will be prevalent in the next

decade. In object-oriented programming languages, programs are often con-
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sidered as a collection of objects and messages. An object, also called in-

stance, is a single entity integrating data and operations which operate on

these data, usually called methods. Messages are execution requests of

operations. Objects with similar properties and features belong to the same

class, which is an object pattern.

In recent years the ever greater need for quality software has led to a

number of techniques to enhance reusability, extensibility, and compatibility

of software components. Among them, inheritance characterizes the object-

oriented programming languages. This mechanism allows the use of old

classes in the definition of new ones. The usual terminology gives the names

of superclasses for the former and subclasses for the latter.

Unfortunately, the explosive spread of key notions such as inheritance,

encapsulation, and subtyping was not followed by the development of a

uniform terminology [Nelson 1991]. The term inheritance, for example, has

been used to mean anything from the preservation of given characteristics

with the addition of new ones, to the use, without constraints of any kind, of

parts of a class, whether intended to be reused or not.

Even apparently similar meanings of a term can turn out to have distinc-

tively different implementations. To understand and compare better the

intended meaning of similar terms in various object-oriented languages and

to analyze conceptually different uses of the same word, we propose a

formalization of the concept of class. This formalization is based on algebraic

specifications, intended in the widest possible sense, although presented in

their simplest form for clarity of exposition. The choice of the algebraic

framework was dictated by the simplicity of its semantics and the modularity

of its tools.

The class model is intended to capture both the corresponding features in

existing langaages and suggestions borrowed from other areas [Ehrig and

Mahr 1990].

One of the features included in most languages is encapsulation, which

provides for a distinction between what the class implements and what the

designer of the class allows to be seen (and therefore used) from the outside.

This technique allows the designer to change some internal details without

affecting the clients as long as the behavior of the class remains compatible.

Some of the features of a class visible to the outside may not be strictly

related to each object instance of that class: a separate interface (usually

included in the interface of the class containing visible data and methods) is

useful to set aside the messages to which the instances can react [Snyder

1986], in order to avoid compromising the encapsulation benefits because of

inheritance. The danger of accessing inherited variables in a subclass leaves

the designer of the superclass unable to rename, reinterpret, or suppress

them without rendering the subclass illegal.

The possibility of modeling genericity [Meyer 1986] has suggested another

part of the class, namely, a parameter part, intended to model what are

called unconstrained and constrained genericity with the possibility, addi-

tionally, to specify some of the properties required of the methods in the
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parameter. This technique allows us to write generic software components

which are modular and reusable.

Finally, inspired by the work on module specifications [Blum et al. lg~T],

we propose an explicit import interface, which can be viewed as a (highly!)

virtual class on which the rest of the class being built is based. Unlike other

languages with features such as use, the import interface specifies only what

is needed, but not which class is intended to provide the methods and class

variables needed, leaving it to the interconnection mechanism to indicate the

appropriate match. The presence of the import as well as of the class

interface allows the development of a system bottom-up by extending al-

ready-built data types successively, top-down by refining and implementing

abstract data types successively as well as middle-out, where certain class

(or instance) interfaces can at first be realized assuming the existence of

certain functionalities expressed in the import interface; then the class

interface is enriched or extended to obtain the desired methods and the

realized import interface using other classes until all import interfaces are

eliminated. Among the advantages, there is the possibility of combining one

class with several different classes.

The proposed model of the class consists then of five parts: two interfaces,

instance interface and class interface, for the two different roles of the class;

another one, the import, requiring a producer for that class; a parameter part

to model genericity, and an implementation part that includes the other four,

in addition to the hidden features of the class. With such a model as basis, we

are then able to distinguish between the notion of inheritance based on

specialization and the notion of inheritance based on the reuse of code. We

show that the two notions are related and that, in fact, the former is

sufficient to express the latter.

In this article we propose a formalization which allows us to analyze,

criticize, and compare several object-oriented languages with respect to the

features modeled by this notion of class and by our definitions of inheritance

which can be interpreted under different views. The languages that we have

analyzed belong to the dimension of czass centric according to the classifica-

tion in Gabriel et al. [1991]. In these languages, the class is the main factored

description in which the internal structure of the objects and the behavior of

methods is specified. Some of the languages which are considered operation

centric, i.e., which do not support the message-passing metaphor, are also

covered. Object systems have been classified also by Wegner [1987]. Lan-

guages are defined to be object based, class based, and object oriented

depending on the existence of objects, classes, and inheritance. With the

proposed model, we are able to describe the last two categories of classes.

The relationship between the type and class notions is not homogeneous:

while in languages such as Trellis/Owl [0’Brien et al. 1987; Schaffert et al.

1986] and POOL [America 1987; America and van der Linden 1990], there is

not a one-to-one correspondence between types and classes, and different

classes may implement the same type; in BETA [Kristensen et al. 19871, a

programming language in the tradition of Simula, one is not allowed to

consider different classes as being of the same type.
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The notion of type is quite general, and one of the main characteristics of a

language is the relationship between the notion of type and that of class. In

either case, the type concept deals with a specification of behavior. At the

moment, in the space of languages we can find systems such as OOZE

[Alencar and Goguen 19911 and the OBJ family, which are able to handle

behavior in a proper way. One way to consider type classes as separate

concepts is to restrict the specification of behavior to signatures, and deal

only with signature types. In the POOL programming language, a type

specification is a signature with a list of property identifiers. This specifica-

tion method is very simple but could play an important role in the task of

programming, considering a property identifier as an abbreviation for a

formal specification.

Another key notion in object-oriented methodology is inheritance, which

allows the definition of new classes starting from variables and methods of

old classes. But this definition of inheritance is not precise enough, and it has

been pointed out that there are different views of such a mechanism [Snyder

1986]. Although both called inheritance, there is no confusion between the

idea of code sharing and the notion of functional specialization. While

the BETA programming language gives the possibility to extend in a subclass

the old methods defined in a superclass in general, in the other languages

taken into consideration, inheritance allows the redefinition of an old method,

resulting in a specialization process without being able to say anything about

correctness. In such a framework, multiple inheritance can be considered only

for sharing and combining code; BETA does not allow multiple inheritance,

but POOL does, by decoupling inheritance and subtyping.

Other aspects taken into account concern encapsulation, genericity, and

strict typing. We agree with Madsen et al. [ 1990] and Schaffert et al. [1986]

that a programming language must offer a proper tradeoff between flexibility

and static checking in order to be useful. The object-oriented programming

languages we have analyzed are C ++, Eiffel, Trellis/Owl, POOL, BETA,

Smalltalk, but also characteristics of other languages such as, OOZE and

CLOS, will be mentioned.

In the following sections, we give the formal definition of our model of class

and introduce the notions of specialization and reusing inheritance. These

two relations show how specialization is different from code reusing. Then we

show how to simulate the former by the latter via a virtual class. Two new

relations between pairs of classes are presented, relations based on the use of

the import interface and the parameter part. One relation indicates whether

one class produces an instance interface which satisfies the constraints set

forth in the parameter part of another class. The effect of substituting the

class for the parameter is shown to be a clean (i.e., whose semantic effect can

be predicted) way to obtain a new class which inherits by specialization from

the old one. The other relation matches the producer of some methods to a

potential consumer of those methods by finding a correspondence between the

class interface of a class and the import interface of another class. The effect

of matching the needed import with the provided class interface is again seen
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as a clean way to obtain a new class which inherits by implementation from

the producer and by specialization from the consumer.

2. PRELIMINARY NOTATION

In this section, we review briefly some basic notions of algebraic specifica-

tions; details can be found in Ehrig and Mahr [1985] and Wirsing [1991]. A

signature Z is a pair (S, OP) where S is a set of sorts and OP a set of

constants and flmction symbols. A pointed signature is a signature ~ =

(S, OP) with a distinguished element of the set S of sorts denoted by pt (Z).

By a X-algebra A = ( S~, OP4 ) on a signature z = (S, OP ), we mean a family

SA = (A, ),. ~ of sets and a set OP~ = ( N~)~. OP of operations. The category

of all ~-algebras is denoted by Alg(Z). If El = (Sl, OPI ) and Z2 = (S2, OPZ )

are signatures, a signature morphism h: ZI ~ Ez is a pair of consistent

‘p” OPI - OPZ ). Every signature morphism h: Elfunctions (hs: SI - Sz, h .

+ Zz induces a forgetfld functor Vh: Alg(Xz ) * Alg(Xl ). A pointed signature

morphism is a signature morphism h: El ~ Ez such that hs(pt(Zl)) = pt(Zz ).

By an algebraic specification SPEC = (1, E) we intend a pair consisting of a

signature E and a set E of (positive conditional) equations. If SPECI =

(xl, El) and SPECZ = (Xz, Ez) are two algebraic specifications, a specifica-

tion morphism f SPEC1 * SPECZ is a signature morphism f El + E2 such

that the translation f‘( El) of the equations of SPECI is contained in Ez. A

pointed algebraic specification is an algebraic specification with a pointed

signature. A pointed specification morphism between pointed specifications

is a pointed signature morphism which is also a specification morphism. For

notational convenience, when SPEC = (X, E) is a pointed specification the

distinguished sort pt(~) will be also denoted by pt(SPEC). The algebraic

specifications and the specification morphisms form the category CATSPEC

of algebraic specifications [Ehrig and Mahr 1985]. For readability some

notions of category theory are included in the Appendix.

3. THE CLASS MODEL

In this section we propose a class specification in order to model with

generality the class notion present in the current object-oriented program-

ming languages. Such a mathematical notion could be fruitfully exploited to

understand better the main mechanisms and their interactions.

The importance of inheritance is widely recognized, but it is not the only

peculiar feature of the object-oriented paradigm: encapsulation is considered

as important [America 1990]. This protection mechanism allows the designer

to draw a boundary between the implementation and the outside. The

operations which can be invoked over the instances of a class are just those

listed in the external interface of the class itself, and any attempt at

executing a private operation results in an error. The minimalization of the

interdependencies of separately written software components and the reduc-

tion of the amount of implementational details are among the major benefits

due to this technique. The concept of an abstract data type is strengthened by
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the presence of an external interface because of the separation of the func-

tionalities versus the implementation of an abstraction.

Unfortunately, inheritance can reduce the benefits of encapsulation. In fact

accessing, in a subclass, inherited variables leaves the designer of the super-

class unable to rename, reinterpret, or remove these variables. On the other

hand, there are two categories of clients of a class, those who need to

manipulate objects (the clients of the instances) and those who want to reuse

somehow the class in order to specialize it or just reuse its code (the clients of

the class) [Snyder 1986]. Thus, some languages have two external interfaces,

one for each kind of clients, and they are usually defined incrementally since

the interface for the class clients has a greater view than the instance clients.

We will call these interfaces instance and class interface (see Table I, later).

Usually, inheritance allows a designer to arrange classes in specialization

hierarchies through a top-down process. Moreover, we can also define a class

by reusing the code of another one or instances from other classes. This

results in a bottom-up process. An interesting case arises if we allow an

explicit import interface where we describe some features which are neces-

sary in order to realize the external behavior of the class. This allows the

implementation of a class assuming the existence of some functionalities but

disregarding which class will provide them. Unfortunately, most program-

ming languages have constructs for defining modules and reuse them only by

listing their names. This approach goes in the opposite direction of abstrac-

tion since we need to declare explicitly which is the supplier of a particular

abstraction.

The class that we have described in the previous section is composed of a

certain number of parts: a parameter part, an import interface, an instance,

and a class export interface. All these components declare signatures and

their properties.

Definition 3.1 (Class Specification and Semantics). A class specification

c SPeeconsists of five algebraic specifications PAR (parameter part), EXPi

(instance interface), EXP., (class interface). IMP (imnort interface), and BOD

(implementation part),

commutative diagram.

L L

and five specification morphisms as in the following

IMP -BOD

The specification EXP,, EXP,, and BOD are pointed specifications, and e,

and u are pointed specification morphisms.

The semantics SEM(C~P,C) of a class specification is the set of all pairs

(AI, A~c ) of algebras, where AI = V,(A~) and A~ = VU(A~) for some A~ =
Alg(BOD). The pointed sort pt(EXPz ) is called cl&s sort.

Interpretation. Each of the five parts consists not only of signatures, but

also of equations, which describe some of the properties of the operations. The

interfaces EXP, and EXPC describe the external access functions and their
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behavior: the former describes the messages which can be sent to the objects

that are instances of the class, while the latter contains the methods which

can be used by other classes. The part of 13011 not in ~X~C is hidden from

other classes. The specification BOD describes an implementation of the

exported methods using the ones provided by the IMP specification. The

import specification IMP contains information about what is needed by BOD

to implement EXPC, but not which class can provide it: the latter task is

provided by the interconnection mechanisms. The specification PAR models

genericity, unconstrained if the specification consists of sorts only, con-

strained when the parameter is required to have operations satisfying certain

properties.

Remark 3.2. The semantics chosen for a class specification is only one of a

number of possibilities, and the theory presented here can be developed by

choosing one of the alternatives. One possibility is a functional semantics (as

done in Parisi-Presicce and Pierantonio [ 1991]) where the meaning of a class

specification is a (functorial) transformation which takes a model (an algebra

in this case) of IMP and returns a model (again an algebra) of EXPC. In this

case, what are needed are results such as the Extension Lemma in Ehrig and

Mahr [1985] if, for example, the semantics is the composition of the forgetful

functor V,,: Alg(BOD) + Alg(EXPC) with the free functor Free,: Alg(IMP)

+ Alg(BOD). Another possibility is a loose semantics, where only some pairs

(AI, A~ ) are chosen. In the latter case, the semantics must be definable

uniformly for all classes and must be closed with respect to Amalgamation

[Ehrig and Mahr 1985].

Definition 3.3 (Class). A class C = (C,PCC, C’, ~Pl ) consists of a class specifi-

cation C,P, C and a class implementation C,~Pl such that C1~ ~1 = A~ for some

BOD-algebra AB.

Example 3.4. The morphisms in our examples of class specifications are

just inclusions. In the notation, we use the keywords Parameter, Instance

Interface, Class Interface, Import Interface, Body to declare the sub-

specification to be added to the parts already defined. For example, since

PAR L EXP,, after the keyword Instance Interface only EXP, – PAR is

listed. When a subspecification keyword is missing, the relative specification

is just the closest subspecification in the diagram. In the instance interface

the distinguished sort pt(EXPl ) is indicated by the keyword class sort.

Next, the DSTACK class specification is defined. Such an abstract data type

is a double stack which allows us to push and pop elements intojfrom two

sides, denoted by front and rear side (see Fig. 1). Moreover, pushing an

element into one side allows us to remove it from the other side, provided

that there are no elements ahead, i.e., the front and rear operations are not

totally independent. The DSTACK example also shows the role played by each

component of the class specification. The instance interface describes the

abstract properties, in the sense that the intended behavior is representation
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rear front

‘“-’

TOP: TOPj

Fig. 1. Thedouble stack abstract data type.

012345

m array

u ‘at m

E
PoPf

TOPj Fig.2. The double stack.

PUSH,

POP,

TOP.

independent. The body describes, in turn, how such data type is implemented

(Fig. 2) in terms of what is required by the formal import. The constructor

(– ,– ) :array nat * dstack

describes the record consisting of the instance variables, and the double stack

is realized by means of an array and a natural as a pointer. The equations in

the body specify how the value of the representation record changes consis-

tently with the export specification. Of course, if we wish to represent the

stack in a different way, such a constructor will be defined accordingly, e.g.,

(_ ):list ~ dstack in case the representation is based on a linked list.

The operations SHIFTL and SHIFTR shift the array (required in the

import) to the left and to the right, respectively, one position at time. The

syntax uses the underscore as a placeholder for the arguments. For example,

–[–1 ‘= – :array nat data ~ array can be used on an array a with parameters

n and x as in the term a[ n] = x. The element -!_ : ~ data is required since

we need a unique representation for each stack, i.e., our semantical frame-
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work does not allow us to implement the pop operations just by decreasing

the pointer of the stack. This problem can be overcome by relying on our

institution-independent formalism and adopting a behavioral semantics

[Nivela and Orejas 1987].

DSTACK k Class Specification

Parameter

sort data

opns L : + data

Instance Interface

class sort dstack

opns EMPTY: - dstack

PUSH ~, PUSH, :dstack data + dstack

POPf, POP, :dstack ~ dstack

TOpf, TOP, :dstack ~ data

eqns POP,(PUSH,(S, x)) = S z E {r, f}

TOP,(PUSH,(S, x)) = X i G {r, f}

POP,(PUSHJ(EMPTY, x)) = EMPTY i,j ~ {r, f}

TOP,(PUSHJ(EMPTY, x)) = X i,j ~ {r, f}

POP,(PUSH~(PUSH, (s, X1), X2)) = PUSH~(s, X2)

i)~={r, f}, t+j

TOP, (PUSHJ(PUSH,(S, Xl), X2)) = xl

i,j={r, f}, i+j

Class Interface

sort nat

opns O:+ nat

_ + l:nat ~ nat

_ .HEAD:dstack ~ nat

eqns EMPTY.HEAD = O

(PUSHZ(S, x)).HEAD = s.HE~ + 1

Import Interface

sorts array,nat

opns O:+ nat

_ + l:nat s nat

NIL: ~ array

_[ _] = _ :array nat data + array

_[ _]:array nat ~ data

SHIFTI,, SHIFTR :array - array

eqns NIL[i] = L

(cz[il= e)[j] = If i =J then e else a[j]

(cz[Z]= el)[z] = ez = cz[i]= ez

(SHIFT~(a))[ i] = a[ i + 11

(SHIFTR(a))[i + 1] = CZ[Z]

Body

opns ( –,– ):array nat: ~ dstack

eqns EMPTY = (NIL, O)

PUSHf((a, n), x) = (a[n]=x,rz + 1)
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TOPf((a, n + 1)) = a[nl

PoPf((a, n + 1)) = (a[n]:= 1, n)

PUSH,((a, n.), x) = (( SHIFTR(a))[O]= X, n + 1)

TOP,((a, n)) = a[O]

POP,((a, n + 1)) = (SHIFTL(a), n)

(a, n).HEAD = n

End DSTACK

Presenting this class model, we intend to cover a large number of class

structures as they are defined in current object-oriented languages. We have

focused on the importance of avoiding uncontrolled code reuse without any

constraint, and therefore, in the proposed model, we provide an explicit

import interface. None of the languages analyzed allows us to specify some

requirements for the import, although some allow the direct importing of

other existing classes, incorporating (with the use clause) a combination

mechanism. The opportunity to hide some implementational aspects gives to

a class designer the freedom to modify the implementation without affecting

the clients of the instances of that class. All the languages analyzed but

BETA have constructs for the protection of data representation. The set of all

public operations of a class forms the external interface, which we call

instance interface. Another form of protection is given to prevent another kind

of client, the designer of a subclass, to access some variables. We have named

this other interface, which contains the instance one, class interface. The

C ++, POOL, and Trellis/Owl languages have an explicit class interface,

distinct from the instance interface. For instance, in the C++ language the

instance interface consists of all public items which can be declared via a

public clause, while the class interface includes both the public and the

subclass-visible items, declared through a protected clause, accessible only to

derived classes.

Encapsulation and inheritance are the major features of object-oriented

methodology, but other techniques can as well enhance some quality factors.

In Meyer [1986] an informal comparison between genericity and inheritance

is presented. Genericity represents a good solution to achieve a good amount

of flexibility with a static type system (untyped languages provide a great

deal of flexibility, but the errors can be detected only at run-time). Many

languages, such as Eiffel, Trellis/Owl, POOL, BETA, and OOZE, allow

genericity, although with some differences. The only properties treated by

these languages are signature properties; OBJ allows the specification of

behavior with an equational language, by means of theories and views, while

OOZE uses pre- and postconditions in the style of Z. All these languages

supply an actualization mechanism in order to instantiate the generic classes.

In Table I we have indicated which of the components of our model of class

are explicitly present in the notion of class in some of the analyzed languages.

In this table we distinguish among unconstrained and constrained genericity

(which are indicated by the zmconstr. and constr. keywords, respectively).
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Table I. Class Components

BETA c++ Eiffel POOL Smalltalk Trellis/Owl

Instance Interface NO YES YES YES YES YES

Class Interface NO YES NO “ YES NO b YES

Genericity constr. NO unconstr,’ constr. NO constr.

Import with requirements NOd NO NOd NOd NO NO d

“The class interface coincides with the implementation part.

hThe class interface coincides with the instance interface.

cWe refer to the version described in Meyer [ 1986; 1988].

‘Although it is possible to import through actualization, there is no explicit import interface

The former kind of genericity does not allow operations on the generic type

parameters while the latter does.

4. INHERITANCE

Inheritance is one of the main notions of the object-oriented paradigm. Its

importance is widely recognized because it allows designers to reuse, extend,

and combine abstractions in order to define other abstractions. It allows also

the definition of new classes starting from the variables and methods of other

classes. The usual terminology calls the former subclasses and the latter ones

superclasses. Unfortunately, in the space of languages the notion of inheri-

tance is not homogeneous since it ranges from functional specialization to the

reuse of code without any constraint. We can consider inheritance as a

technique for the implementation of an abstract data type and its use as a

private decision of the designer of the inheriting class. The omission and\or

shadowing of features can be reasonable. Through this mechanism we can

arrange classes in hierarchies which describe how programs are structured:

we call this technique reusing inheritance. On the other hand, we can

consider inheritance as a technique for defining behavioral specialization

and its use as a public declaration of the designer that the instances of the

subclass obey the semantics of the superclass. Thus each subclass instance is

a special case of superclass instance: we call this kind of inheritance special-

ization inheritance. The hierarchies obtainable by means of the specialization

inheritance contain two kinds of information. From one side they describe

how code is distributed among classes and thus how programs are structured.

On the other side they produce compatible assignment rules which are

related with the subt yping relation: each context which expects a superclass

instance can accept a subclass instance since the behavior of the subclass is

at least that of the superclass.

We now present a formal distinction between these two different notions

Definition 4.1 (Reusing Inheritance). Let Cl = (cl,P~C, CIZ~P~) and C’2 =

(C2,P,C, C2 ,mpl) be classes. Then

(1) C2 weakly reuses Cl, notation C2 Wreuse Cl, if there exists a mor-

phism

f: EXPCl - BOD, ,
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PAR, “EX~’~EXP,l— .

il I IIv~ az uV2

IMPI ~BODl IhfP2 .BOD2
51 S2

Fig. 3. Reusing inheritance.

(called reusing morphism) as in Figure 3, such that f is pointed, i.e.,

fs(@(ExPc,)) = u:(pt(ExPc2));

(2) C2 strongly reuses Cl, notation C2 Sreuse Cl, if, additionally,

vf(c2Lmpl ) = Vul(cl,mp/).

Interpretation. The morphism f from the export of Cl to the body of C2

indicates that the methods provided by C 1 are used inside the class C2. The

only constraint imposed is that the sort of interest of Cl coincides (in 130~2 )

with the sort of interest of C 2. There may or may not be a relationship

between EXPCI and EXPCZ, and all the “reused items” could be hidden and

relabeled via u ~.

Example 4.2. In this example, we introduce a counted stack, i.e., an

ordinary stack with an additional count operation which returns the number

of elements present in the stack. The reusing inheritance allows the defllni-

tion of such an abstract data type starting from DSTACK. Actually, we remove

as visible attributes the rear operations, which remain anyway in the body of

CSTACK, and introduce a new operation called count. Moreover, in the exam-

ple, we show how the class interface visibility of DSTACK allows us to

implement the count operation in the body of CSTACK. The front operations

of DSTACK are renamed via the reusing morphism flDSTACK.EXPC +

CSTACK.BOD, defined here.

fs foP

Lw L

EMPTY w EMPTY

PIJSH~ w PUSH

data w data PoPf - POP

dstack * cstack TOPf * TOP

nat x nat PUSH, +-- PUSH,

POP, * POP,

TOP, w TOP,

_.HEAD _ _ .HEAD

Notice how the inherited features are defined from scratch in the body of

the derived class while, for instance, the naturals are required in the formal

import. The body describes how CSTACK is implemented. If the class interface

did not have the head item we would be unable to implement the count
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operation; in this case, we would have to introduce an extending representa-

tion record (_, _ ) :dstack nat - cstack and redefine EMPTY, PUSH, and

POP in order to keep track of the inserted and removed elements on the

additional natural. This procedure corresponds to adding an instance variable

in a derived class.

CSTACK is Class Specification

Parameter

sort data

opns L : ~ data

Instance Interface

class sort cstack

sort nat

opns (): - nat

_ + l:nat ~ nat

EMPTY: s cstack

PUSH: cstack data ~ cstack

POP:cstack + cstack

TOP:cstack ~ nat

COUNT: cstack - nat

eqns POP(PUSH(S, x)) = S

TOP(PUSH(S, x)) = x

COUNT(EMPTY) = O

COUNT(PUSH( S, x)) = COUNT(s) + 1

Class Interface

opns _ .HEAD:stack - nat

eqns EMPTY.HEAD = O

(PUSH(S) x )).HEAD = s.HEAD + 1

Import Interface

sort nat

opns _ + l:nat - nat

Body

opns PUSH, :cstack data - cstack
POP, :cstack + cstack
TOPr :cstack ~ nat

_. HEAD: cstack ~ nat

eqns IPOP,(PUSHT( S, x)) = S
TOP,(PUSH,( S, x)) = x
POP(PUSH,(EMPTY, x) = EMPTY
POP.(PUSH(EMPTY, x)) = EMPTY
TOP(PUSH,(EMPTY, x)) = x
TOP,(PUSH(EMPTY, x)) = x
POP(PUSH,(PUSH(S, xl), x,)) = PUSH, (S, *2)

POPr(PUSH(PUSH,(s, xl, X2)) = PUSH(S, X2)
TOP(PUSHr(PUSH(s, xl), XZ )) = xl
TOP,(PUSH(PUSH,(S, X1), X2)) = Xl
EMPTY.HEAD = O
(PUSH(S, x)).HEAD = s.HEAD + 1

(PUSH,(S, x).HEAD = s.HEAD + 1
COUNT(s) = s.HEAD

End CSTACK
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Fig. 4, Specialization inheritance.

The second notion of inheritance is that of specialization inheritance which

allows the enrichment of the functionalities of a class and can be modeled by

morphisms from the inherited class to the inheriting class in such a way that

behavior is preserved.

Definition 4.3 (Specialization Inheritance). Let C 1 = (Cl~P,C, (71, ~ ~1) and

C2 = (C2 specJc2 ,mpl) be classes. Then

(1) C2 is a weak specialization of Cl, notation C2 Wspec Cl, if there exist

pointed morphisms (called specialization morphisms)

L : EXPZI ~ EXP,2 , fC: EXPCI ~ EXPC2 ,

such that eC2 o ft = fc o eCl, as in the commutative Figure 4

(2) C2 is a strong specialization of Cl, notation C2 Sspec Cl, if, addition-

ally,

vfJvu2(c2Jmp~)) = V,,l(cltnpl).

Interpretation. The morphisms ~ and f, indicate that the class and

instance interfaces of the specialization C2 must contain all the

methods—with the same properties—of C 1 and possibly new auxiliary sorts,

new methods on old sorts, and properties for both old and new methods. The

sort of interest must be maintained. If f~ and fC determine a renaming, it is

required that it be done consistently.

Example 4.4. In order to illustrate the specialization inheritance we con-

sider the following STACK which is implemented as the DSTACK by an array

and a pointer

STACK is Class Specification

Parameter

sort data

opns L :- data

Instance Interface

class sort stack

opns EMPTY: - stack

PUSH: stack data ~ stack

POP:stack - stack

TOP:stack ~ data
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eqns POP(PUSH(S, x’)) = S

TOP(PUSH(S, x)) = x

Class Interface

sort nat

opns O:+ nat

_ + l:nat -+ nat

_ .HEAD:stack -+ nat

eqns EMPTY:HEAD = O

PUSH(S, x)).HEAD = s.HEAD + 1

Import Interface

sorts array,nat

opns (): + nat

_ + l:nat ~ nat

NIL: - array

_[ _]=_ :array nat data ~ array

_[ _]:array nat - data

eqns NIL[k] =L

(a[i]:= e)[.j] = if i =j then e else cz[j]
(a[i]:= el)[i]:= e2 = a[i]= ez

Body

opns (_, _ ):array nat: ~ stack
eqns EMPTY = (NIL, O)

PUSH((a, n), x) = (a[n]:= x,n + 1)

TOP((a, n + 1)) = a[n]
PoP((cz, rz + 1)) = (CL[n’1= ~ ,~)

(a, n).HEAD = n

End STACK

Now we can define a CSTACK (specializing STACK) as follows with the inclu-

sions as specialization morphisms:

CSTACK is Class Specification

Parameter

sort data

opns L : + data

Instance Interface

class sort cstack

sort nat

opns O: + nat

_ + l:nat ~ nat

EMPTY: ~ cstack

PUSH: cstack data ~ cstack

POP:cstack ~ cstack

TOP:cstack - nat

COUNT: cstack + nat

eqns POP(PUSH(S, x)) = S

TOP(PUSH(S, x)) = x
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COUNT(PUSH(S ,

Import Interface

sort nat

opns _ + l:nat - nat

Body

opns _ .HEAD:stack -+
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=0

x)) = COUNT(s) + 1

nat

eqns EMPTY.HEAD = O

(PUSH(S, x)).HEAD = s.HEAD + 1

(PUSH,(S, x )).HEAD = s.HEAD + 1

COUNT(S) = s.HEAD

End CSTACK

Remark 4.5. In general, the inheritance at the specification level is twofold

since it can be instantiated at the specification level and at the code level. For

instance, in the specialization inheritance the incremental requirement of

properties and/or operations in the subclass implies the refinement of the set

of all models of the superclass. This is captured by the weak specialization

and is mainly intended to support monotonic decision steps in the software

design process. On the other hand, each of the models of the superclass may

be related to a specific model of the subclass which is a subalgebra of the

superclass model. Such a pointwise relation among algebras (abstract imple-

mentations) corresponds to the inheritance relation at the programming

language level.

Although both are called inheritance, there is no confusion between the

idea of code sharing and the notion of functional specialization. Notice how, in

general, reusing inheritance does not create correctness problems when its

use is intended: unfortunately, its use can be also unintended. Indeed,

although the redefinition of methods may be useful to refine inherited

operations, it can be, at the same time, dangerous: in fact, the redefinition

can violate the invariants of the superclass obtaining something with an

unexpected behavior. In other words, the intended specialization inheritance

degenerates in reusing inheritance while the designer is expecting to use the

subclass as a subtype, i.e., as something with a compatible behavior.

This is particularly true for C++ and Smalltalk but also for Eiffel, even if

it allows the specification of the methods by pre- and postconditions. The

BETA programming language does not allow the redefinition of methods and

gives the possibility to extend in a subclass the old method defined in a

superclass. The extension consists of a portion of code specified in the

subclass. When a message is received by a class instance, the method

executed is from the topmost superclass containing the message; the execu-

tion can, in turn, trigger another execution (by the imperative inner) from a

subclass, and so on. Unfortunately there is no constraint in providing the

methods extension, and this could violate the invariants of the superclass as

well.

The two inheritance relations satisfy some properties formalized in the

following propositions. The first one justifies our use of the adjectives strong

and weak.
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PROPOSITION 4.6. The strong relations Sreuse and Sspec imply the weak

relations Wreuse and Wspec, respectively.

PROOF. It is straightforward from the definitions of the relations. ❑

The next one shows that the specialization relation is stronger than the

corresponding reuse relation. It is easy to construct an example to show that

the coverse in not true.

PROPOSITION 4.7. Let Cl = (C1,,P,C, Cl,~,Pl) and C’2 = (C2~P,C, C2,nPl) be

classes. Then

(1) if’C2 Wspec Cl then C2 Wreuse Cl

(2) i~C2 Sspec Cl then C2 Sreuse Cl

PROOF.

(1) By definition there exists a pointed morphism fC: EXPCI + EXPC,. Then

f = U, o fC: EXpCl - BOD, is the reusing morphism between C’z and C’1

since

fs(pt(EXPCl)) = vj(f;pt(EXPCl))

= vj(pt(EXPCz)).

Thus C2 Wreuse Cl.

(2) Since the Sspec relation implies the Wspec one, C2 Wreuse Cl by the
previous point via the morphism f = Uz o f,. If, additionally,

Vf,(V~2(C2,~P~) = V“l(Cl,~Pl) then

vL,l(clzmpl) = (Vfc 0vL,2)(c2,mp1)

“2. fjc2Hnp,~‘v

= vf(c2,m,1). ❑

In the next proposition, we show that specialization is transitive and that

reuse (obviously not transitive) satisfies a similar approximate property.

PROPOSITION 4.8. Let Cl = (Cl,P@,, Cl,~Pl), C2 = (C2~P,C, C2t~Pt) and

C3 = (C3SP,C, C31~Pl) be classes.

(1) Each of the two relations Sspec and Wspec is transitive;

(2) ifC3 Wreuse C2 and C2 Wspec Cl then C3 Wreuse Cl;

(3) ifC3 Sreuse C2 and C2 Sspec Cl then C3 Sreuse Cl.

PROOF.

(1) If C3 Wspec C2 and C2 Wspec Cl, then there exist morphisms
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such that

eC,O~=f~OeC,

and

eC, Of~=f~OeC1.

It is easy to check that C3 Wspec Cl via the morphisms fc = f[ of: and

~ = f; 0 f:. If C3 Sspec C2 and C2 Sspec Cl, then, additionally,

and

vf:(v.2@2Lmpl)) = vul(c&mpl).

Then, with fC and f, as above

vfc(vL!3(%mpl )) = vf:((vf:c3,mp1))

= vf; (vuJc2,mp/ ))

= vu~(cl,mp~)

and therefore C3 Sspec C 1.

(2) If C3 Wreuse C2 and C2 Wspec Cl then there exist morphisms

f’: EXPC, * BOD,

f;: EXPC1 ~ EXPC2 .

The morphism f = f’ of: is the reusing morphism between C3 and Cl

since

fs(pt(EXPCl)) = f’s( f:s(pt(EXPCJ))

= f’s(pt(EXPC, ))

= U~(pt(EXPC3))

Thus C3 Wreuse Cl.

(3) Since Sreuse and Sspec imply Wreuse and Wspec, respectively, C3
Wreuse C 1 by the previous point. Moreover

vfl(c3,mpl) = Vuz(cztmpl)

and

Vf:(vuz(cztmpt )) = Vu,(clz.zp, ).

Then, with f = ~ o f: as above,

vf(c3,mp/) = Vf:(vfl(mzmpl))

= vf:(vv2(c2Lmp1 ))

= Vul(cl,mpl)

and therefore C3 Sreuse C 1 ❑
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Another important notion is that of a virtual class which is formalized in

the following definition. Virtual class is not intended in the same sense of the

BETA language where it represents the parameter part of a class. It is

virtual in the sense that it does not include an import part IMP and the

implementation BOD (relative to IMP). It resembles the use of the word

virtual in C++.

Definition 4.9. A virtual class V consists of a triple (PAR, EXPi, EXPC) of

algebraic specifications, a specification morphisms e,: PAR + EXP,, and a

pointed specification morphism eC: EXP, + EXPC as in Figure 5.

The following result shows that it suffices to consider specialization inheri-

tance as the only relation generating a hierarchy of classes. The reuse

relation can be obtained as the composition of the specialization relation and

its (set-theoretic) inverse,

THEOREM 4.10. Let Cl = (Cl~P,C, Cll~Pl) and C2 = (C2~p,C, C21n2pt) be

classes. If C2 Wreuse Cl then there exists a virtual class C such that

(,1) Cl Wspec C;

(2) C2 Wspec C.

PROOF. Since C 2 Wreuse C 1, there exists a reusing morphism

f: EXPCI ~ BODZ. Then define PAR, EXP,, and EXPC as the specification

obtained by the pullback of the morphisms f and u ~, Vz o ec2 and f o ecl, and

V2 Oe, z Oelz and f 0 eCl o eL1, respectively, as in Figure 6. The morphisms

e,: PAR ~ EXPl and eC: EXP, - EXPC are uniquely defined by the universal

property of pullbacks. The specifications PAR, EXPL, and EXPC and the

morphisms e, and e, define a virtual class C. Moreover, by the construction

of the pullbacks, there exist induced morphisms f;: EXP, - EXP,I, H: EXP,

* EXPL, , f;: EXPC - EXPC1, and f:: EXPC - EXPCZ. Thus C 1 Wspec C and
C2 Wspec C. Notice that since

fs(pt(EXP,l)) = U:(pt(EXPCz))

and the morphism e, ~, e, ~, e,l, eCz are pointed, so are the specifications EXPC,

EXPl, and PAR and the morphisms f:, C, f;, f:, f;, f;. ❑

Remark 4.11. In case C2 Sreuse C 1, it is possible to construct a class C

such that Cl Sspec C and C2 Sspec C. We can, in fact, consider BODZ and

IMPZ as body part and import interface, respectively, and take as implemen-

tation Cl ~ ~1 the algebra C2 ,mPl. As a rule, there are several ways to complete

the virtual class: for instance the parameter part and the class interface are

other candidates, and they are minimal with respect to C 1 and C2,

By using the specialization inheritance (which implies subtyping) it is

possible to represent the implementation inheritance (which usually reflects

the development over time of the system) and keep the correctness under

control. On the other hand, the theorem allows us to consider only monotonic

decision steps (via specialization inheritance) since omitting properties and\or

operations, i.e., non monotonic steps, can be reduced to monotonic ones.
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“ ExP,—PAR— ‘c EXPC Fig. 5. Virtual class.

Example 4.12. We already know how the CSTACK can be implemented

from DSTACK via reusing inheritance. The theorem assures the existence of a

class, say VSTACK, which is (weakly) specialized by DSTACK and CSTACK

VSTACK is Class Specification

Parameter

sort data

opns L : e data

Instance Interface

class sort vstack

opns EMPTY: ~ vstack

PUSH: vstack data - vstack

POP:vstack ~ vstack

TOP:vstack ~ data

eqns POP(PUSH(S, x)) = S

TOP(PUSH( S, x)) = x

End VSTACK

The specialization morphism and the morphisms ~~ and f“ are inclusions.

As pointed out earlier, strong specialization should imply subtyping. Up to

now, such a notion has not been formally introduced. As usual, the terminol-

ogy in the literature is sometimes misleading although it is somehow an

intuitive concept. For instance, Goguen, and later Breu [1991], calls subtyp-

ing what is called strong specialization here.

The subtyping relationship is a more general relation than strong special-

ization since the latter implies the former but not vice versa. Furthermore,

subtyping may hold also without inheritance since the external behavior

should be representation independent. Some languages like POOL and Trel-

lis/Owl allow the explicit definition of subtyping statements even if the

classes are defined in different inheritance hierarchies. This allows to define

different classes for different representations of stacks or complex numbers,

for instance, and consider them as being of the same type.

In Wegner and Zdonik [1988] different definitions of subtyping are given.

They are mainly distinguished into a subset compatibility, where the set of

subclass instances is a subset of the set of superclass instances, and subcom -

plete compatibility, which, additionally, requires that the operations in the

subclass behave as the corresponding operations in the superclass restricted

to the instances of the subclass. The latter notion leads to the subalgebra

concept which, naturally, captures such a subtype notion. We consider the

subalgebra-based subtyping better behaved than the subset-based one since
it is operation closed and guarantees that the subtype has a predictable

behavior. For instance, if we consider the naturals modulo 8 as (subset-based)

subtype of naturals, it is possible to have division by O whenever there is an

attempt at dividing a natural by the successor of 7, which is 8 for the

naturals but O for the considered subtype.
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f:
P.4R, - P.4RI

PARZ — EA’P,Z — EXPCZ w BODZ
G2 ec2 t12

Fig. 6. Theorem diagram

As a rule, the subtyping relation should guarantee that the carrier set of

the subclass sort is an operation-closed subset of the carrier set of the

superclass sort while the other carriers are left unchanged. This definition

would be too restrictive, not allowing other carrier sets to be reduced and

therefore causing an incompatibility between actualization and subtyping.

For instance, if we consider strings and strings without repetitions, the latter

is a subtype of the former, and it is reasonable to consider a stack of strings

without repetitions as a subtype of a stack of strings. In order to have such an

induced subtyping, we need a more relaxed definition of subtyping where

also other carrier sets can be restricted.

Definition 4.13. Let Cl and C2 be classes and u: Sig(EXP,l) ~

Sig(EXP,z ) be a signature morphism, then C2 is a subtype of Cl if

va(vec,(v”2(c2, mpL))j~ c VJvul(cl,mpl)),

for s = sorts(EXPl ~).

Interpretation. The signature morphism u requires that the instance
interface of C2 contains all the methods of the instance interface of C’1,

although their properties may not be formally preserved.

The next result shows that one way to obtain a subtype is by specialization

inherit ante.

THEOREM 4.14. Let Cl = (Cl~P,C, Cl,~Pl) and C2 = (C2,PeC, C2,~Pl) be

classes. If C2 Sspec Cl then C2 is a subtype of Cl.

PROOF. If C2 Sspec Cl, then

vf(vu2(c2Lmpt)) = vu~(clLm, J
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for fC and t, such that eCz o L = f, o eel. Let u be the specification morphism
~, restricted to S’ig(EX~Ll). Then

VJ7J7U2(C2 ,J)) = v,cJvfc(vu2(c21 rep,)))

— Jze(l(vul(clzmpl ))

and in particular

5. STRUCTURED INHERITANCE

In this section, we define two additional relations between class specifications

and between classes (weak and strong relations, respectively) which describe

mechanisms for interconnecting class specifications and define new classes,

which inherit from the old ones. The two relations correspond to instantiating

the parameter part of a (generic) class and to replacing the import interface

of a (semivirtucd) class with the class export of another class.

Definition 5.1 (Actualizable). Given classes Cl = (Cl,,,,, Cl,~Pl ) and

C2 = (c2.pee, C2 ,m,l) with PAR, = IMP,

(1) Cl is weakly actualizable by C2, denoted by Cl Watt C2, if there exists

a specification morphism f PARI -+ EXP,Z

(2) Cl is strongly actualizable by C2, denoted by Cl Sact C2, if Cl Watt

C2 with f and Vf(V,G$VUz(C2 ,mp~))) = V,,(v,cfv,,,(cltmp j))).

Interpretation. The binary relation Watt indicates that the parameter

part of the class Cl can be replaced by the instance interface of the class C2,

i.e., that the instances of class C2 satisfy the constraints of the parameter of

Cl. The distinction between weak and strong again separates the class

specification from the class. In Cl Watt C2, a realization of the class

specification C2 ~p~, can be used for the parameter part of a realization of the

class specification Cl~p~C. On the other hand, Cl Sact C2 indicates that the

realizations Cl,~pl and C2, V,pl of the class specification coincide on their

PAR I part.

The restriction imposed on the class C2 that PARZ = IMPZ is both techni-

cal and methodological. On the technical side, it makes the construction of

the resulting class specification after replacing the parameter part cleaner.

On the methodological side, it requires that only complete classes, i.e., classes

which do not rely on other classes for their completion of the import specifica-

tion, be considered as actual parameters of generic classes. By allowing the

actualizing class to have a nonempty parameter, we do not restrict the
actualizing steps to be bottom up, but we are able to construct, for example,

strings of( sets of( bags of nat )) from strings of data actualized with sets of

elements and then actualizing the result with bagsofnat, with more flexibility

on the strategy.
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Fig. 7, Actualization

We now describe the result of actualizing the parameters part PAR1 of Cl

by C2. The categorical constructions and the detailed proofs of syntactical

and semantical properties are also provided.

Definition 5.2 (Parameter Passing). Let Ci = (Ci,P.C, CiZnP1), i = 1,2 be
classes with Cl Watt C2 via f PAR ~ ~ EXP, Z. The actualization of C 1 by

C2, denoted by ACT(C 1, f, C2), is the class specification C3 ~P,C as in Figure

7 (where the pushout morphisms of BOD are omitted for clarity) with

—the parameter part PARZ is the parameter part PAR ~ of C2;

—the instance interface EXP,~ is the union of EXP, ~ and EXP,Z (i.e., the

pushout of f and eLl);

—the class interface EXPC~ is the union of EXPCI and EXPCZ (i.e., the

pushout of f 0 ecz and e,l o eCl);

—the import interface IMPS is the union of IMPI and PARZ (i.e., the

pushout of the two with respect to the intersection of PAR I and PARZ’);

—the implementation part BOD~ is the union of BOD ~ and BODZ with

respect to PARI.

The specification morphisms are induced by the universal properties of the

pushout objects. The distinguished sorts of EXP,~, EXPC~, and BODa are the

ones inherited from EXP, ~, EXPCI, and BODI, respectively, in the union

construction.

Interpretation. The new class specification ACT(C1, f, C2) is obtained by

replacing the parameter part PAR ~ in EXPl ~ and EXP,Z with the instance

and class interface, respectively, of C2~PeC, and in BOD ~ with the implemen-

tation part BODZ. The new parameter part is just the parameter PARZ of

C2, which is also added to IMPI to obtain the new import interface.
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Now we show why actualization has been called a clean operation: the

semantics of the result can be expressed explicitly by using the semantics of

the actualizing class C2. The proof, left to the reader, is an application of the

Amalgamation Lemma in the Appendix.

THEOREM 5.3 (INDUCED SEMANTICS). The semantics of the class specifica-

tion ACT(C1, f, C2) is the set of all pairs (AI,, A~,,,) such that:

for some Al, E Alg(IMPj) and A~C, ~ Alg(EXPCJ).

The next two theorems show (as expected) that the result of actualizing a

class C 1 is a new class which inherits by specialization from C 1.

THEOREM 5.4 (INDUCED INHERITANCE). If C 1 Watt C2 uia f, then

ACT(C1, f, C2) Wspec Cl.

PROOF. The result follows from the existence of the induced morphisms

~1: EXPL1 ~ EXP,3, fCl: EXPCI ~ EXPC~ with the appropriate commutativity

guaranteed by the pushout properties in the category CATSPEC. Notice that

both morphisms must be pointed. ❑

If the relation between C 1 and C2 is strong, then it is possible to use the

realization of C 1 and C2 to construct a realization of ACT(C 1,f,C2) as the

next result shows.

THEOREM 5.5 (INDUCED STRONG INHERITANCE ). If C 1 Sact C2 uia f, then

there exists an algebra C3Z ~Pl = Alg(BOD~) such that

(1) (ACT(C1, f, C2), C3 ,n,l) is a class (still denoted by ACT(CI, f, C2))

(2) ACT(C1, f, C2) Sspec Cl.

PROOF. Cl Sact C2 implies that Cl Watt C2, then ACT(C1, f, C2) Wspec
Cl by Theorem 5.4. The induced morphisms fl: BODI - BOD~,

f,: BOD, + BOD,, f,,: EXPCI - EXPC, and fC,: EXPC, ~ EXPC, satisfy

V30 fC, = fz o V2 and USo fCl = fl o U1 by the universal property of pushouts.

By definition, BOD~ is the specification obtained from the pushout of

Vz o ec2 of: PAR1 * BOD1

and

. PARI A BODI.vlOeCzOe~l.

Since by assumption C 1 Sact C2 via f, then for some PAR1-algebra A

V~(V,c,(VJC2i~Pl ))) = A
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Define C3L~Pl as the amalgamation sum of C 1,~ ~1 and C2 ,~Pl with respect

to A. By definition, C3,~Pl is a BOD~-algebra. Furthermore

~fcJL@L?@ )) = vL)qofcfc3,mpl)

=V ~l. ujc3LmPl)

= vL1~vfj@mpl

= V,,{cl, mpl).

Hence C3 Sspec Cl.

)

❑

In Meyer [1986] it is shown how inheritance can simulate genericity, by

allowing generic classes in an object-oriented language. But the price to pay

for this simulation is recognized to be high due to some difficulties with static

type checking; our model allows us to specify some of the properties of the

generic type parameters, while in most of the languages analyzed only

signatures can be specified.

Example 5.6. 0BJ3 allows the specification of behavior through equa-

tional logics, and the parameter properties are formalized in a theory. The

actualization of a parametric class consists of providing a view, which repre-

sents a signature morphism, between the theory and the actual parameter. If

the properties of the theory (parameter part) are derivable from those of the

formal parameter, up to the renaming determined by the provided view, the

result of actualization becomes the pushout object between the theory and the

actual parameter.

We are now able to prove that our notion of subtyping is compatible with

the mechanism of actualization. In particular we show that if C2 is a subtype

of C 1, then actualizing C with C2 yields a subtype of the actualization of C

with C 1.

THEOREM 5.7 (SUBTYPING COMPATIBILITY). Let C, Cl, and C2 be classes. If

C2 is a subtype of Cl via O, C Sact C2 via fz, C Sact Cl via fl and

f~ = ~ 0 f, (as signature morphism), then ACT(C, f,, C2) is a subtype of
ACT(C, fl, Cl).

PROOF. For notational convenience, let C3 = ACT(C, fl, Cl) and C4 =

ACZ’(C, fz, C2). From the universal property (see Appendix) of the pushouts

used in the construction of C 3 and C4, there exists a unique signature

morphism ~: Sig( EXPL ~) ~ Sig( EXP, ~) with the usual commutativity proper-
ties.

We need to show that for s ~ sorts(EXPt~)

@,c4(vu4@4Lmpt ))), G vec3(vL,3(c3Lmp1)),.

By Theorem 5.3 and the fact that C is strongly actualized by both Cl and C2,

we have for the same A ● Alg( PAR)

C3 zmpl = C,mPL +~Cl,~Pl and C41~PZ = c,~,l +AC2Z~Pt.
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By the uniqueness of Amalgamation (see Appendix)

‘ec,(vu3(c3impl )) = ve(vu(c[mp~)) ‘/&ecfvul(clL~P1))

and

Ve,,(V.4(C4,~P1)) = v,~v.(%p~)) ‘AveC,(v,2(c2,ql)).

Now, by definition of C3, if s @ sorts(EXPZ3), then either s ● sorts(EXP,)

or s @ sorts( EXP, ~) (or both). In the former case, what we need to prove

reduces to

which holds trivially; in the latter case, it reduces to

vu(v’.c2(vu2@%mpl ))). ~ v,t~vul(umpl)).

which holds since by assumption C2 is a subtype of C 1. ❑

The other relation that we are going to introduce relates a class C2, viewed

as producer of its class interface, with another class C 1, viewed as consumer

of its import interface. Again we distinguish between a potential producer

(weak notion) and a factual producer (strong notion).

Definition 5.8 (Combinable). Given classes Cl = (Cl,P~C, Cl,~PJ) and C2

= (Czspec,cz,mp,)

(1) Cl is weakly combinable with C2, denoted by Cl Wcomb C2, if there
exists a specification morphism h: IMPI + EXPCZ;

(2) Cl is strongly combinable with C2, denoted by Cl Scomb C2, if Cl

Wcomb C2 via h and

Interpretation. The relation Wcomb indicates that C2 can provide, through

its class interface, the data and operations needed in the import interface of

C 1. The strong counterpart Scomb indicates that the specific realization of
the class C2 provides exactly the import part of the chosen realization of C 1.

The availability of a class C2 which can be combined to a class C 1

determines an interconnection of classes equivalent to a single class which we

are going to define now. The construction is similar to the composition of

module specifications in Blum et al. [1987].

Definition 5.9 (Import Passing). Let Cz = (Ci,P,C, Ci, ~Pl), i = 1,2, be

classes with C 1 Wcomb C2 via h: IMPI ~ EXPCZ. The combination of C 1 and
C2, denoted by COMB( C 1, h, C2), is the class specification C3,P,C as in

Figure 8,

—EXP13 and EXPC3 are just EXP, ~ and EXPCI, respectively.

—IMPB is just IMPZ.
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PA Rz----~PARl - EXPlz— EXPI=

D3

—the new implementation part is the union (pushout) of 110~1 and BODZ

with respect to liI@l, with distinguished sort the one inherited from

BOD1.

—the new parameter part PAR ~ is the intersection (pullback) of PAR I and

PARZ in (with respect to) EXPCZ.

The specification morphisms are the appropriate compositions deducible from

the diagram.

Interpretation. The new class specification COMB(C 1,h, C’2) is obtained

by replacing the import interface of C 1 with the product of C2. The new

implementation part is that of Cl where the yet-unimplemented part IMPI

is replaced by the implemented part of EXPCZ, via the fitting morphism h.

The specification IMPI is no longer the import, having been provided by

EXPCZ, which in turns needs IMPZ, which becomes the overall import inter-

face. The new parameter PAR a, part of the instance interface EXP,~, is no

longer PAR I: the reason is that the composition h o i ~ associates EXPCZ to the

items of PAR I, and thus the only elements still “generic” are those not

determined in EXPCZ, i.e., those also in PAR ~. Hence the definition of PAR3

as the intersection of P&ll and PARZ in EXPCZ.

The next theorem again justifies the term clean for the combination. By

viewing the semantics of a class as a relation (a set of pairs of algebras), the

semantics of the result of the combination of C 1 and C2 can be seen as the

composition (possibly via the renaming determined by h) of the semantics of
C 1 and C2. Again the proof is a direct application of the Amalgamation

Lemma.

THEOREM 5.10 (INDUCED SEMANTICS). The semantics of the class specifica-

tion COMB(CI, h, C2) is the set of all pairs (A I,, A~c31 such that

—(A[, >A~,z) = SEM(C2,P,C)

–(AI,, AJ G SEM(C1,5P,C)
—AI, = Vk(A~c2)

for some A.C, G Alg(EXPC, ) and A,l E Alg(IMP1).
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The next two theorems show that combination is one way to obtain a new

class by reusing an old one. This reuse is predictable since the semantics of

the new class can be expressed using those of the combining classes.

THEOREM 5.11 (INDUCED INHERITANCE ). If Cl Wcomb C2 via h, then

COMB(C1, h, C2) Wspec Cl. If, additionally, sj(pt(BODz)) = pt(BODa) for

s’: BODZ ~ BOD~, then COMB(C1, h, C2) Wreuse C2.

PROOF. By definition COMB( C 1,h, C2) and C 1 have the same instance

and class interfaces; the specialization morphisms are identities over EXP, ~

and EXPCI. Thus COMB(C1, h, C2) Wspec Cl. Let s’: BODZ ~ BOD~ be the

induced morphism and define f = s’ o U2. If s~( pt( BODZ )) = pt(BOD~), then

f is a pointed morphism and therefore a reusing morphism. Thus

COMB{C1, h, C2) Wreuse C2. ❑

As in the case of actualization, if the relation between C 1 and C2 is strong,

then it is possible to construct a realization of COMB{CI, h, C2) using those

of Cl and C2. The proof of this result is based on standard properties of

amalgamation [Ehrig and Mahr 1985].

THEOREM 5.12 (INDUCED STRONG INHERITANCE). If Cl Scomb C2 via h,

then there exists an algebra C3, ~Pl = Alg( BODB ) such that

(1) (COMB(cl, h, c2), c31mPl ) is a class (still denoted by COMB(C1, h, C2))

(2) COMB(C1, h, C2) Sspec Cl

(3) If, additionally, s’s(pt(BODz)) = pt(BOD~) then COMB(C1, h, C2)
Sreuse C2.

PROOF.

(1) Cl Scomb C2 implies that Cl Wcomb C2, then COMB(C1, h, C2)
Wspec Cl by Theorem 5.11. By definition, BOD~ is the specification

obtained from the pushout of

SI: IMPI + BODI and Vz o h: IMPI + BODZ.

Let s’: BODZ ~ BOD~ and U’: BODI _ BODZ be the induced mor-

phisms. Since Cl Scomb C2 via h, we have

V,fcltmpl) = vJ7u$c2L/J)

call this lMP1-algebra A. Define C3, ~P ~ as the amalgamated sum of

c1 ,mpl and C2,~Pl with respect to A. By definition, C3, ~Pl is a BOD~-

algebra, and therefore C3 = (C3~P~C, C31n Pi), with COMB(C1, h, C2) =

C3 ~peC,is a class.

(2) With U3:EXPCZ + EXPCI - BODa given by v’ 0 Vl, we have

v,d(c3,mpt) = vu2(v,l(c3tmp1))

= vu$c2Lmpl)

and thus C3 Sreuse C2. ❑

It is possible, following the lines Ehrig and Mahr [1990] and Parisi-Presicce

[1987a] to show that combination and actualization are associative, and thus
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they do not require that the classes be built in a specified order. There are

also several connections among these two relations and the interconnection

mechanism. Furthermore, it is possible to extend the notion of Combination

and Actualization to the case where one class provides only part of what

another class needs [Parisi-Presicce 1987b]. We can define in these cases

notions of partial actualization and combination and obtain results similar to

the weak and strong induced inheritance mentioned above.

Most of the current languages allow importing from separately written

classes. But they do not provide any combination mechanism since the

importing procedure requires the name of the class from which we wish to

import and produces an implicit combination of the imported code with what

is being developed. The only way to require something, and then provide a

supplier for it, is by means of genericity and the actualization mechanism. Of

course this does not represent a satisfactory solution because it is just a

special case of combination.

6. CONCLUDING REMARKS

The algebraic theory of class specifications presented here is general enough

to model all the features in the analyzed languages. Not all languages provide

all the features of our model, some identifying the instance and the class

interface, some the class interface and the implementation, none providing an

explicit import interface without an explicit reference to an existing (virtual

or not) class. The class specification allows a designer to distinguish formally

between two common forms of inheritance, the reusing one and the special-

ization one. In fact, as shown, the reusing inheritance can be viewed as

syntactic sugar, since it can be expressed in terms of the relation of special-

ization inheritance (and its inverse), but without any control on the correct-

ness or the preservation of semantics. Other two relations between classes

have been proposed: in both cases (but with different intentions and use) they

relate a class in need to be completed (either by choosing a generic part PAR

or by implementing a virtual part IMP) with another class able to produce

what is needed. For both relations, new hierarchies of classes can be con-

structed, representing the usability of certain classes. These hierarchies are

closely related to inheritance hierarchies, as shown in the Section 5: the

producer C of an interface which satisfies the constraints of the parameter or

of the import part of a class C’ determines a new class which inherits from it

by reusing and from C’ by specialization. We believe this to be very impor-

tant since its provides a restricted reuse of code where we can predict the

behavior of the outcome. We have presented here definitions and theorems

using the simplest form of algebraic specifications, but both the formaliza-

tion and the results can immediately be extended to other frameworks based

on institutions [Goguen and Burstall 1983] other than the equational one and

on different specification logics [Ehrig et al. 1991]. In particular, we plan to

consider different semantics for the classes, such as the behavioral one.

We have outlined how the reusing inheritance is not useful since it can be

simulated by the specialization. Moreover, some problems arise when the

intended use of specialization degenerates in reusing inheritance. Actually, in
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current object-oriented languages it is not possible to refine a method without

redefinition: a shadowing method can violate the invariants of the superclass

because it does not assure the capatibility of related semantics. Refinement,

as realized in current object-oriented programming, can therefore be consid-

ered harmful.

Different techniques can be used in order to enhance the quality of soft-

ware. Among them, inheritance and genericity play an important role. An

informal comparison between these two techniques can be found in Meyer

[1986] where the author claims that inheritance is more powerful than

genericity. Section 5 provides a formal proof of this result through Theorems

5.4 and 5.5.

Some formalizations of inheritance have been provided recently. In Breu

[1991] the specification language OS is introduced in which the class specifi-

cation is defined following the CIP-approach without distinguishing the

different roles played by the subspecifications in the class specification. The

formalization of inheritance is distinguished in inheritance and subtyping,

which correspond to our weak and strong specialization, respectively, without

formalizing the notion of reusing inheritance. Moreover, OS is extended

through environment algebras to take into account identities and in order to

give a formal semantics to an object-oriented language defined in Breu

[1991], In Clerici and Orejas [1988] an algebraic specification language with

inheritance operators is proposed. The inheritance is used to complete incom-

plete specifications in the software design process and to restrict superclasses

in order to obtain subtypes. Reusing inheritance is not considered; the class

specification is flat, and parameterization is implemented via inheritance as

done in Meyer [1986]. In Gaudel and Moineau [1988] a theory of software

reuse is provided where programs are models for the specification. Moreover,

there is a distinction between reuse and efficient reuse: the former is ob-

tained essentially via a forgetful functor, while the latter requires also the

restriction of the forgotton model to the generated part of the algebra. These

notions could be related with our reusing inheritance and specialization

inheritance although the framework is not concerned directly with the object

paradigm. The reusing specialization implies the efficient reuse, while spe-

cialization is just reuse.

The relations determing potential interconnections between classes can

also be generalized to their partial version, where the producer provides only

part of the parameter or of the import interface [Parisi-Presicce 1987a;

1987b]. The properties of such partial interconnections are related to the

problem of multiple inheritance, which is currently under investigation.

Further work will be devoted to the analysis of simulation of a class, by

means of another class and related morphisms, as a relation of subtyping.

APPENDIX

Some Basic Notions of Category Theory and Algebraic Specifications

In this section, we review briefly some basic notions on algbraic specifica-

tions; details can be found in Ehrig and Mahr [1985] and Wirsing [1991]. A
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signature Z is a pair (S, OP) where S is a set of sorts and OP a set of

constant and function symbols; constant symbols are referred to as operation

symbols of arity O. The set S is sometimes denoted by sorts(Z) and the set OP

by opns(~). Each operator symbol N G OP has associated a signature SI “”.

sn bs for SI ““” s~ =Sq and s ● S (for constant symbols it is denoted by

~ s). A pointed signature is a signature Z = (S, OP) with a distinguished

element of the set S of sorts denoted by pt (D. By a Z-algebra A = (SA, OPA)
of a signature ~ = (S, OP ) we mean two families SA = (A,,), es and OPA =

(NA)~ Go~, where AS are sets for all s ● S, which are called domains of A,

and NA: As, X ... x A, + A ~ are functions for all operator symbol N: SI “””

s~ ~s and all SI ““. S~G S+, s E s (for constant symbols N: ~ S, NA G A,).

The set of all X-algebras is denoted by Alg(Z).

If El = (Sl, OPI) and & = (Sz, OPZ ) are signatures, a signature morphism
h: xl j Zz is a pair of functions (hs: S’l - Sz, hop: OPI ~ OPZ) such that for

each N: SI ““. s. - s in OPI and n z O we have hOp(N): As(sl) ””” hs(s. ) ~

hs(s ) in OPZ. A signature morphism h: El - Ez induces a forgetful functor

Vk: Alg(Zz) ~ Alg(Zl) defined, for each &-algebra A, by Vh(A ) = A’ ~

Alg(El) with A, = ~h~(.) for each s G Sl, NA = hOp(N)A for each N ● OP1.

A pointed signature morphism is a signature morphism h: ZI - Zz such

that hs( pt(~l)) = pt(X2 ). It is easy to check that pointed signature mor-

phisms are closed under composition.

By an algebraic specification SPEC = (Z, E) we intend a pair consisting of

a signature X and a set E of (positive conditional) equations. For conve-

nience, sorts(~) in this case is also denoted by sorts(SPEC). If SPECI =

(Zl, El) and SPECZ = (Zz, Ez ) are two algebraic specifications, a specifica-

tion morph ism f: SPECI _ SPECZ is a signature morphism f El + Ez such
that the translation f #( El) of the equations of SPECI is contained in Ez. A

pointed algebraic specification is an algebraic specification with a pointed

signature. A pointed specification morphism between pointed specifications is

a pointed signature morphism f such that f#(El) L Ez.
For notional convenience, when SPEC = (.x, E) is a pointed specification

the distinguished sort pt(Z) will be also denoted by pt(SPEC).

The algebraic specifications and the specification morphisms form the

category CATSPEC of algebraic specifications [Ehrig and Mahr 19851.

Definition 4.1 ( Pushout ). Given two specification morphisms gl: S - SI
and gz: S + S’z in CATSPEC, the pushout of gl and g2 consists of S*,

hl: SI ~ S*, hz: Sz - S* such that as in Figure 9:

—hl o gl = hz o g2 (commutativity) and

—for all specification S’ and specification morphisms k ~: SI - S’ and k Z: Sz

- S’, such that k ~o gl = k z o g2 there is a unique specification morphism

k: S* * S’ with k o hl = kl and k o h2 = kz (universal property).

Given two specification morphisms gl: S ~ SI and gz: 5’- Sz we denote

the pushout object by SI +s S2 if the context is sufficient to avoid ambiguity.

The dual notion of pushout is the pullback.
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,s — s,
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!71

1
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92 = hl
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s“ ~ s,

Fig.9. Pushout diagram.

Fig. 10. Pullback diagram.

~,~h; ’21
1 —s

Definition A.2 (Pullback). Given

and gz: S,, ~ S in CATSPEC, the

two specification morphisms gl: S1 G S

pullback of g, and g, consists of S*,

hl: S< ‘~ Sl, hz: S“ s Sz such that as in Figure 10-: --

—gl o hl = g2 o h2 (commutativity) and

—for all specification S’ and specification morphisms k ~: S’ j SI and k ~: S’

- Sz, such that gl o k ~ = gz o h ~ there is a unique specification morphism

k: S’ + S* with hl 0 k = k ~ and hz 0 k = kz (universal property).

THEOREM A.3. The CA TSPEC category is closed with respect to push out

and pullbacks.

PROOF. We are just going to show how a pushout is constructed: details on

the similar construction for pullbacks and on the verification of the desired

properties can be found in Ehrig and IVIahr [1985]. Given gl: SI + S and

gz: S’z + S, the specification S* is constructed as follows:

—sorts(S* ) is the set sorts(Sl ) + sorts(Sz )/ - ~ of equivalence classes of the

disjoint union sorts(Sl) + sorts(Sz ) by the equivalence relation = .s gener-

ated by gl(s) = gz(s) for s = sorts(S)

—opns(S* ) is similarly the quotient set opns(Sl ) + opns(Sz )/ = OP

—eqns(S* ) = g~(eqns(Sl)) u g~(eqns(Sz )) where g,#(eqns(SZ)) is the trans-

lation of the equations of S, to ( sorts(S* ), opns(S* ))

The morphisms hl and h2 map each element (sort or operation symbol) into

its equivalence class. ❑

Definition A.4 (Amalgamation). Given a pushout diagram as in Figure 9,
and the algebras Al @ Alg(Sl), Az = Alg(Sz), and A ● Alg(S) with

V&j Al) =A =V~,(Az)
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the amalgamated sum, or short amalgamation, of Al and Az with respect to

A, written

Al +~ Az

is the S*-algebra A* defined for all s ● sorts(S1) U soi-ts(S2), N E 0PW(5’1)

U opns(Sz )

A% = ifs G sorts(S2) then (A,). else (Al).

NA. = if N = opns(Sz) then N~, else N~l.

LEMMA A.i!i (AMALGAMATION LEMMA). Given a pushout diagram as in Fig-

ure 9, the amalgamated sum Al + ~ Az has the following properties

—given algebras Al, Az, and A as in Definition A.4 the amalgamated sum

Al +* Az is the unique S*-algebra A* satisfying

V~jA*) = Al and Vk,(A*) =Az.

Vice versa each S*-algebra A* has a unique representation

Al +A Az

where (Vfij A*) =Al, Vh~A*) =Az, and V~~Al) =A = V~~Az).

—An S*-algebra A* is isomorphic to the amalgamated sum Al +~ Az, if and

only if

V~j A*) =Al and V~,(A*) = Az.

A similar property holds for morph isms.
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