Programming Wireless Sensor Networks: Fundamental Concepts
and State of the Art

LUCA MOTTOLA, University of Trento and Swedish Institute of Computer Science
GIAN PIETRO PICCO, University of Trento

Wireless sensor networks (WSNs) are attracting great interest in a number of application domains concerned
with monitoring and control of physical phenomena, as they enable dense and untethered deployments at
low cost and with unprecedented flexibility.

However, application development is still one of the main hurdles to a wide adoption of WSN technology.
In current real-world WSN deployments, programming is typically carried out very close to the operating
system, therefore requiring the programmer to focus on low-level system issues. This not only distracts the
programmer from the application logic, but also requires a technical background rarely found among appli-
cation domain experts. The need for appropriate high-level programming abstractions, capable of simplifying
the programming chore without sacrificing efficiency, has long been recognized, and several solutions have
hitherto been proposed, which differ along many dimensions.

In this article, we survey the state of the art in programming approaches for WSNs. We begin by presenting
a taxonomy of WSN applications, to identify the fundamental requirements programming platforms must
deal with. Then, we introduce a taxonomy of WSN programming approaches that captures the fundamental
differences among existing solutions, and constitutes the core contribution of this article. Our presentation
style relies on concrete examples and code snippets taken from programming platforms representative of
the taxonomy dimensions being discussed. We use the taxonomy to provide an exhaustive classification
of existing approaches. Moreover, we also map existing approaches back to the application requirements,
therefore providing not only a complete view of the state of the art, but also useful insights for selecting the
programming abstraction most appropriate to the application at hand.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classification; D.1 [Soft-
ware]: Programming Techniques; C.2.4 [Computer Communication Networks]: Distributed Systems

General Terms: Languages, Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Wireless sensor networks, networked embedded systems, programming
abstractions, middleware.

ACM Reference Format:

Mottola, L. and Picco, G. P. 2011. Programming wireless sensor networks: Fundamental concepts and state
of the art. ACM Comput. Surv. 43, 3, Article 19 (April 2011), 51 pages.

DOI = 10.1145/1922649.1922656 http://doi.acm.org/10.1145/1922649.1922656

1. INTRODUCTION

Wireless sensor networks (WSNs) are distributed systems typically composed of embed-
ded devices, each equipped with a processing unit, a wireless communication interface,
as well as sensors and/or actuators. Many applications have been proposed to date that

This work is partially supported by the Autonomous Province of Trento under the call for proposals “Major
Projects 2006” (project ACube), by the Cooperating Objects Network of Excellence (CONET) under EU
contract FP7-2007-2-224053, and by the Swedish Foundation for Strategic Research (SSF).

Author’s address: Luca Mottola; email: luca@sics.se.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2011 ACM 0360-0300/2011/04- ART19 $10.00

DOI 10.1145/1922649.1922656 http://doi.acm.org/10.1145/1922649.1922656

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:2 L. Mottola and G. P. Picco

show the versatility of this technology, and some are already finding their way into the
mainstream. Most often, in these scenarios tiny battery-powered devices are used for
ease of deployment and increased flexibility [Akyildiz et al. 2002]. This enables em-
bedding processing and communication within the physical world, providing low-cost,
fine-grained interaction with the environment.

Although hardware advances play an important role in WSNs, the power of this
technology can be fully harnessed only if proper software platforms are made avail-
able to application developers [OnWorld; CONET]. However, of the several experiences
reported in the literature where WSN applications have been deployed in the real-
world, only a few exceptions rely on some high-level programming support [Ceriotti
et al. 2009; Buonadonna et al. 2005; Whitehouse et al. 2004]. In the majority of de-
ployments, programming is instead carried out very close to the operating system,
forcing programmers to deal with low-level system issues as well as with the design of
distributed protocols. This not only shifts the programmer’s focus away from the appli-
cation logic, but also requires a technical background rarely found among application
domain experts.

There is a growing awareness about this problem in the research community, and an
increasing number of approaches are being proposed. However, on one hand, existing
approaches provide a wide and diverse set of functionality and, on the other hand,
WSN applications have widely different characteristics and requirements. Choosing
the best platform for a given application demands a clear understanding of the ap-
plication needs and of the basic differences among programming approaches. Thus
far, the research community has investigated these aspects only to a limited extent.
Therefore, we begin by presenting a taxonomy of WSN applications in Section 2. Many
applications have been proposed to date, which differ greatly along many dimensions.
Therefore, it is useful to identify their fundamental differences, in that these ulti-
mately determine the applicability of a given programming approach to the problem at
hand.

The main contribution of this article is an extensive survey and classification of the
state of the art in WSN programming approaches. However, the term “programming
abstraction” is widely used in WSNs, with different meanings. For instance, OS-level
concurrency mechanisms [Nitta et al. 2006] as well as service-oriented interfaces are
sometimes termed as “programming abstractions for WSNs”. In this work, we place
the emphasis on the distributed processing occurring inside the WSN, focusing on
solutions that allow programmers to express communication and coordination among
the WSN nodes. These aspects are of utmost importance in WSN programming, and
no well-established solution exists yet.

Nonetheless, clearly defining the conceptual boundaries between the subject of this
article and the overall state of the art is a particularly tricky issue in WSNs, where
abstraction layers often blend for optimizing resources. Section 3 describes a reference
architecture whose purpose is to clearly define what belongs to our survey and what
does not. In addition, it provides the reader with a background about WSNs by concisely
covering issues that bear an influence on programming abstractions.

The rest of the article focuses on a taxonomy of WSN programming approaches. Our
work captures the fundamental differences among existing solutions and is exhaustive
in covering the current state of the art. Section 4 contains a brief overview of the
goals and structure of our taxonomy, whose presentation is split in two complementary
parts. Section 5 focuses on the characteristics of the language constructs provided to the
programmer, thereby analyzing the different approaches for expressing communication
and computation, the model used for accessing data, and the programming paradigm
adopted. Section 6 focuses on architectural issues, by classifying approaches according
to whether they replace or complement others, to whether they can only be used for

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:3

building end-user applications or lower-level mechanisms as well, to the extent they
can be configured in their low-level aspects, and to their execution environment.

We illustrate each dimension in our taxonomy by analyzing the features of existing
systems representative of such dimension. The presentation of each system always
includes some code fragments or small applications to provide the reader with a concrete
grasp of the differences among approaches. Given the number of dimensions in our
taxonomy, the set of systems we use as examples allows us to cover in detail a significant
fraction of the existing approaches. The overall picture is completed in Section 7 with
a brief description of the remaining systems, thus covering the entire state of the art.

This work would not be complete without a mapping of the programming approaches
being surveyed onto the taxonomy proposed. This is presented in Section 8. Moreover,
in the same section we also map existing programming approaches onto the application
taxonomy we described in Section 2. As a result, the reader gains not only a complete
classification of the systems in the current state of the art, but also a tool to under-
stand which approach is best suited for a given application. We believe that these two
perspectives—features and applicability of programming approaches—together consti-
tute an asset for both researchers and practitioners. The global view on the state of the
art is also the opportunity to draw general observations about the field, and identify
themes worth addressing by the research community. These aspects are discussed in
Section 9, which also ends the article with brief concluding remarks.

We are not the first to undertake a survey of programming approaches for WSNs [Sug-
ihara and Gupta 2008; Hadim and Mohamed 2006; Romer 2004; Rubio et al. 2007;
Chatzigiannakis et al. 2007; Henricksen and Robinson 2006]. However, most of the
existing surveys are based on a taxonomy with only few dimensions, mostly revolving
around the well-known duality between node-centric programming and macroprogram-
ming noted by many authors [Newton et al. 2007; Gummadi et al. 2005; Bakshi et al.
2005]. Here, instead, we present a taxonomy that subsumes such distinction, and pro-
vides a more in-depth analysis through a richer set of dimensions. Other distinctive
traits of our survey are the concrete illustration through code examples; the distinction
between language and architectural issues the complementary view on application
requirements; and the exhaustive coverage and mapping of the state of the art.

2. WIRELESS SENSOR NETWORK APPLICATIONS

WSNs are being employed in a variety of scenarios. Such diversity translates into dif-
ferent requirements and, in turn, different programming constructs supporting them.
In this section we identify some common traits of WSN applications that strongly affect
the design of programming approaches, and cast these aspects in a dedicated taxonomy.
Figure 1 graphically illustrates the dimensions we identified.

Goal. In the applications that made WSNs popular (e.g., Mainwaring et al. [2002]),
the goal is to gather environmental data for later, off-line, analysis. Figure 2(a) illus-
trates the network architecture traditionally employed to accomplish this functional-
ity. A network of sensor-equipped nodes funnels their readings, possibly along multiple
hops, to a single base station—typically much more powerful than a WSN node—that
acts as data sink by centrally collecting the data.

Along with sense-only scenarios, a new breed of applications emerged where
WSN nodes are equipped with actuators. In wireless sensor and actuator networks
(WSANSs) [Akyildiz and Kasimoglu 2004], nodes can react to sensed data, therefore
closing the control loop. The resulting sense-and-react pattern drastically affects the
application scenario. Indeed, in principle, the data sensed can still be reported to a
single sink that also hosts the control logic and issues the appropriate commands
to the actuators. However, to reduce latency and energy consumption, and to increase

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:4 L. Mottola and G. P. Picco

WSN
Applications

] 1] 1] v L

Interaction - .
Goal Pattern Mobility Space Time

Sense-only) One-to-many) Static) Global) Periodic)

Sense-and-react) Many-to-many) Mobile nodes) Regional) Event-triggered)
Many-to-one) Mobile sinks)

Fig. 1. A taxonomy of WSN applications.

TRP P o QKRN O

: : D sink Q ivé actuator
{> routeto 1
route to 2

) Sense-only.) Sense-and-react.

Fig. 2. Network architecture in sense-only and sense-and-react applications.

reliability by removing the single point of failure, it is advisable to move the application
and control logic inside the network [Akyildiz and Kasimoglu 2004]. This results in a
radically different network architecture, illustrated in Figure 2(b), where sensor nodes
need to report to multiple receivers. The system becomes heterogeneous, in contrast
with the mostly homogeneous architectures employed in sense-only scenarios. More-
over, the application behavior also changes. Applications tends to be stateful, that is,
determined by the current conditions and past evolution of the system, in contrast with
the mostly stateless behavior of sense-only applications. Also, multiple activities must
be carried out simultaneously, for example, to control actuators installed in different
parts of the system as in heating, ventilation, and air-conditioning (HVAC) systems in
buildings [Deshpande et al. 2005].

Interaction Pattern. Another fundamental distinction is in how the network nodes
interact with each other, which is somehow also affected by the application goal they
are to accomplish. To date, sense-only WSNs mostly feature a many-to-one interaction
pattern, where data is funneled from all nodes in the network to a central collection
point. Nevertheless, one-to-many and many-to-many interactions can also be found.
The former are important when it is necessary to send configuration commands (e.g.,
a change in the sampling frequency or in the set of active sensors) to the nodes in the
network. The latter is typical of scenarios where multiple data sinks are present, a
situation commonly found in sense-and-react scenarios.

Mobility. Wireless sensor networks are characterized by highly dynamic topologies,
induced by fluctuations in connectivity typical of wireless propagation and by duty-
cycle patterns necessary to extend the network lifetime. However, some applications
introduce an even greater degree of dynamism, due to the need to support physically
mobile devices.

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:5

Mobility may (or may not) manifest itself in different ways.

—In static applications, neither nodes nor sinks move once deployed. This is by far the
most common case in current deployments.

—Some applications use mobile nodes attached to mobile entities (e.g., robots or ani-
mals) or able to move autonomously (e.g., the XYZ nodes [Lymberopoulos and Sav-
vides 2005]). A typical case is wildlife monitoring where sensors are attached to
animals, as in the ZebraNet project [Liu and Martonosi 2003].

—Some applications exploit mobile sinks. The nodes may be indifferently static or
mobile: the key aspect is that data collection is performed opportunistically when
the sink moves in proximity of the sensors [Shah et al. 2003].

Space and Time. The distributed processing required by a given application may
span different portions of the physical space, and be triggered at different instants in
time. These aspects are typically determined by the phenomena being monitored.

The extent of distributed processing in space can be:

—global, in applications where the processing, in principle, involves the whole network,
most likely because the phenomena of interest span the entire geographical area
where the WSN is deployed.

—regional, in applications where the majority of the processing occurs only within
some limited area of interest.

For what concerns time, distributed processing can be:

—periodic, in applications designed to continuously process sensed data. The applica-
tion performs periodic tasks to gather sensor readings, coordinates with other parts
of the system, and possibly performs actuation as needed.

—event-triggered, in applications characterized by two phases: (i) during event detec-
tion, the system is largely quiescent, with each node monitoring the values it samples
from the environment with little or no communication involved; (ii) if and when the
event condition is met (e.g., a sensor value rises above a threshold), the WSN begins
its distributed processing.

Note that, in accordance with the goal of the article, our focus here is on the dis-
tributed processing required to enable a functionality, not on the functionality itself.
Consider an application required to trigger an alarm whenever a condition is met. If
the condition is checked at the sink by periodically collecting data, such application
would fall in the periodic class, not in the event-triggered one.

Interestingly, space and time are orthogonal, and existing WSN applications cover all
combinations of these two dimensions. Figure 3 illustrates the concept using paradig-
matic examples drawn from the literature. For instance, habitat monitoring [Mainwar-
ing et al. 2002] is an application where the distributed processing is typically global
and periodic. Building automation (HVAC) [Deshpande et al. 2005], instead, exempli-
fies applications with periodic processing that, when implemented in a decentralized
fashion, limit their operation to a specific portion of space (e.g., an air conditioner in a
room that operates based on the readings of nearby temperature sensors). Likewise, in
applications with event-triggered processing, the triggered functionality may be either
global or regional. Flood monitoring [Hughes et al. 2007; IST CRUISE Project] falls
in the first class, as the processing occurring after a flood is detected still spans the
entire WSN. In this scenario, application domain experts are indeed interested in un-
derstanding how the flood may affect areas which it has not yet reached. In intrusion
detection [Arora et al. 2004], instead, after a potential breach is detected, the system
operates only within its surroundings, as data coming from global observations are no
longer relevant.

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:6 L. Mottola and G. P. Picco

Space

Global -f--4, "M Soooo- T S

Regional -F---5, _ .0 N------N, T Ne-----

P Time

Periodic Event-triggered

Fig. 3. Space and time characteristics of the distributed processing in example WSN applications.

A more extensive classification is shown in Table I, which maps a representative set
of applications found in the literature to the taxonomy illustrated in Figure 1. Although
the mapping is not exhaustive, several observations can be drawn.

—Sense-only applications are mostly characterized by many-to-one interactions. In
the few requiring many-to-many interactions, this is due to the need to support data
access from multiple users at different locations.

—The space and time characteristics of the processing in sense-only applications covers
all combinations. Applications periodically gathering data on a global scale are the
most frequent.

—In contrast, sense-and-react applications are typically characterized by periodic and
regional processing. The enforcement of control laws requires continuous monitoring
of the environment, approximated through periodic sampling. Moreover, actuators
are limited in the extent to which they can influence the environment, and there-
fore they do not usually require to gather sensor readings outside their range of
actuation [Akyildiz and Kasimoglu 2004].

Before moving to the main contribution of this article, the taxonomy of WSN program-
ming approaches, we must clearly define its scope. We do so by relying on a reference
architecture, described next.

3. REFERENCE ARCHITECTURE

The boundaries between programming abstractions and the rest of the software execut-
ing on a WSN node is often blurred. The scarce computing and communication resources
available in WSNs, along with their application-specific nature, foster a cross-layer de-
sign where the application is often intertwined with system-level services. In addition,
programming abstractions are intimately related to a number of other issues in WSNSs.
These include application and services (e.g., routing) built on top of the abstractions,
down to the hardware and operating system the abstractions are built upon.

To help clearly delimit what is—and especially what is not—in the scope of our work,
we introduce here a reference architecture, shown! in Figure 4. In the following we
describe each of its constituents, thus establishing a context for our taxonomy of WSN
programming approaches.

IThe layering shown is purely conceptual, and does not necessarily reflect the code structure of actual
systems, which often break layers to achieve better resource utilization.

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:7

Table I. Mapping Example WSN Applications onto the Taxonomy of Figure 1

[Application |Goal| Interaction | Mobility | Space | Time |
Habitat Monitoring SO | Many-to-one Static Global Periodic
[Mainwaring et al. 2002; Buonadonna
et al. 2005]

Zebra Monitoring SO | Many-to-one |Mobile nodes| Global Periodic
[Juang et al. 2002]

Glacier Monitoring SO | Many-to-one Static Global Periodic
[Martinez et al. 2004; Padhy et al. 2006]

Grape Monitoring SO | Many-to-one Static Global Periodic
[Burrell et al. 2004]

Landslide Detection SO | Many-to-one Static Global Periodic
[Sheth et al. 2005]

Volcano Monitoring SO | Many-to-one Static Global Periodic
[Werner-Allen et al. 2006]

Passive Structural SO | Many-to-one Static Global Periodic
Monitoring [Lynch and Loh 2006;

Ceriotti et al. 2009]

Fence Monitoring SO | Many-to-one Static Regional | Event-triggered
[Wittenburg et al. 2007]

Industrial Plant Monitoring SO | Many-to-one Static Global Periodic
[Krishnamurthy et al. 2005]

Sniper Localization SO | Many-to-one Static Regional | Event-triggered
[Simon et al. 2004]

Intrusion Detection SO | Many-to-one Static Regional | Event-triggered
[Arora et al. 2004]

Forest Fire Detection SO | Many-to-one Static Global |Event-triggered
[Hartung et al. 2006]

Flood Detection SO | Many-to-one Static Global |Event-triggered
[IST CRUISE Project ; Hughes et al.

2007]

Health Emergency Response SO | Many-to-one Static Regional Periodic
[Lorincz et al. 2004]

Avalanche Victims Rescue SO | Many-to-many Static Regional Periodic
[Michahelles et al. 2003]

Smart Tool Box SO | Many-to-many Static Global |Event-triggered
[Lampe and Strassner 2003]

Vital Sign Monitoring SO | Many-to-many Static Global |Event-triggered
[Baldus et al. 2004]

Robot Navigation SO | Many-to-one | Mobile sinks | Regional | Event-triggered
[Batalin et al. 2004]

Badger Monitoring SO | Many-to-one |Mobile nodes| Global Periodic
[WildSensing Project]

Sheep Monitoring SO | Many-to-many | Mobile nodes| Global Periodic
[WASP Project |

Electronic Shepherd SO | Many-to-many | Mobile nodes| Global Periodic
[Thorstensen et al. 2004]

Vehicular Traffic Control SR | Many-to-many Static Regional Periodic
[Manzie et al. 2005]

Smart Homes SR | Many-to-many Static Regional Periodic
[Petriu et al. 2000]

Assisted Living SR | Many-to-one/ Static Regional Periodic
[Stankovic et al. 2005] One-to-many
Building Control and SR | Many-to-one/ Static Regional Periodic
Monitoring [Dermibas 2005] One-to-many
Active Structural SR | Many-to-many Static Regional Periodic
Monitoring [Lynch and Loh 2006]

Heating Ventilation and SR |Many-to-many/ Static Regional Periodic

Air Conditioning Control One-to-many
[Deshpande et al. 2005]

Tunnel Control and SR |Many-to-many/ Static Regional Periodic
Monitoring [Costa et al. 2007] One-to-many

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:8 L. Mottola and G. P. Picco

Application
Programming Abstractions
System Services
S g
) (2} =
g |8 |3 |8|s
s N » 3 3
=] Q S Q 3
«Q o 5] ® 3
=] =3 g
MAC Operating System
Hardware
Fig. 4. Reference architecture.
Volatile Program External
Memory Memory Storage
Actuators
\4
g cPU)
\4 Y
-
Radio Ports | | Sensors
Power Source

Fig. 5. A high-level schematic representation of a WSN node hardware.

Hardware. Figure 5 illustrates a very abstract view of the hardware in a typical WSN
node. A plethora of WSN platforms exist, both as commercial products and research
prototypes [Crossbow Tech.; MotelV; Body Sensor Network Nodes; BTNode; Eyes
WSN Nodes; Project SunSPOT; MeshNetics Tech.; ScatterWeb Inc.; Aduino Sensor
Node Platform]. However, the individual components used do not differ drastically.
Many platforms use a 16-bit Texas Instruments MSP430 micro-controller or an 8/16-
bit chip of the Atmel ATMega family. Notable exceptions are the IMote2 and SunSPOT
platforms, based on the more powerful Intel PXA and ARM920T chips, respectively.
Typical amounts of volatile memory range from 2 KB to 512 KB. This is used to
store runtime data during program execution. The binary program code is stored in
a dedicated memory whose size is typically between 32 KB and 128 KB. In addition,
nodes are often equipped with separate, external storage devices (e.g., flash memory)
whose size may vary from 128 KB to several gigabytes. Their use depends on the
specific application. As for radio hardware, most platforms work in the 2.4 GHz ISM
band, and feature IEEE 802.15.4-compliant [Baronti et al. 2007] radio chips (e.g., the
ChipCon 2420). Alternative solutions operate in the 868/916 MHz band, for example,

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:9

using the ChipCon 1000 transceiver, or relying on Bluetooth interfaces. The specific
type of sensing and actuating device is largely application-specific, and often custom-
integrated.

Medium Access Control (MAC). MAC protocols for WSNs must guarantee efficient ac-
cess to the communication media while carefully managing the energy budget allotted
to the node. The latter goal is typically achieved by switching the radio to a low-power
mode based on the current transmission schedule. In contrast to other wireless plat-
forms where the MAC functionality is realized in hardware, a WSN MAC protocol is
typically implemented mostly in software, using the low-level language associated with
the operating system.

Most of the existing protocols fall in two categories. Contention-based protocols [Ye
et al. 2002; Polastre et al. 2004; van Dam and Langendoen 2003] regulate the access to
the physical layer opportunistically, based on the current transmission requests. Con-
versely, time-slotted protocols assign the nodes with predefined time-slots to schedule
their transmissions over time [Rajendran et al. 2003, 2006]. The former class of proto-
cols is easier to implement and better tolerates nodes joining or leaving. Instead, the
latter enables higher reliability and greater energy savings, but with the additional re-
quirement of tight time synchronization among the nodes in some k-hop neighborhood.

A survey of the many MAC protocols available can be found in Demirkol et al. [2006]
and Naik and Sivalingam [2004].

Operating System. In contrast to mainstream computing, in WSNs the operating
system is essentially a library linked with the application code to produce a binary for
execution. The operating system usually supports a companion programming language,
which is typically C or a WSN-specific dialect (e.g., nesC [Gay et al. 2003] for the
TinyOS [Hill et al. 2000] operating system). A low-level communication facility is also
commonly provided, for example, the Active Message [Culler et al. 2001] interface of
TinyOS. Such companion language and communication primitives define the lowest-
level abstraction available to programmers. In a sense, they resemble the use of the C
language and sockets in mainstream computing as the core programming abstractions
provided by the operating system.

Several operating systems for WSNs have been proposed so far, the most com-
mon being the aforementioned TinyOS. Alternatives include Contiki [Dunkels et al.
2004]; SOS [Han et al. 2005]; Mantis [Abrach et al. 2003]; RETOS [Cha et al. 2007];
LiteOS [Cao et al. 2008]; t-Kernel [Gu and Stankovic 2006]; and NANO-rk [Eswaran
et al. 2005]. The concurrency model employed varies from event-driven approaches [Hill
et al. 2000] to preemptive, time-sliced multithreading [Abrach et al. 2003; Cha et al.
2007; Cao et al. 2008]; cooperative multithreading [Dunkels et al. 2006]; and asyn-
chronous message passing [Han et al. 2005]. Some of the preceding operating systems
(e.g., SOS, LiteOS, and Contiki) also provide dynamic linking capabilities, that is, new
code modules can be added at runtime to the application running on a node. Dynamic
linking is particularly important in supporting wireless reprogramming of the WSN,
one of the system services described next.

System Services. While applications deliver useful data directly to the end user,
system services are typically useful in support of applications. Examples are local-
ization mechanisms [Langendoen and Reijers 2003]; time synchronization protocols
[Elson and Roemer 2003; Sundararaman et al. 2005]; distributed storage services
[Ratnasamy et al. 2002; Luo et al. 2007]; code deployment and reprogramming
functionality [Wang et al. 2006]; and routing protocols [Al-Karaki and Kamal 2004].
Notably, some approaches in routing play at the border between system services
and programming abstractions. For instance, in Directed Diffusion [Intanagonwiwat

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:10 L. Mottola and G. P. Picco

et al. 2003] programmers specify the characteristics of the data required using
attribute-value pairs. The emphasis of these approaches, however, is mostly on routing
and communication issues. As a consequence, unlike the systems surveyed in the rest
of the article, they feature only very limited expressiveness, as they do not provide a
well-defined, structured programming abstraction.

System services are built atop the core functionality provided by the operating system
by using either the operating system language (e.g., nesC) or some of the programming
abstractions we discuss in this article. For instance, localization and routing have
been implemented successfully in Hood [Whitehouse et al. 2004]. In our survey, we
distinguish between programming approaches that are also suitable to the development
of system services, and those geared only towards applications.

4. TAXONOMY OVERVIEW

The focus of our work is on high-level language constructs allowing programmers to
express various forms of distributed processing among the WSN nodes.

In this field, the only characterizing dimension that hitherto received some atten-
tion is the one of node-centric programming vs. macroprogramming [Gummadi et al.
2005]. The former generally refers to programming abstractions used to express ap-
plication processing from the point of view of the individual nodes. The overall system
behavior must therefore be described in terms of pairwise interactions between nodes
within radio range. Macroprogramming solutions, instead, are usually characterized
by higher-level abstractions that focus mainly on the behavior of the entire network,
rather than on the individual nodes.

Nonetheless, in many respects the distinction above falls short of expectation in
capturing the essence of currently available programming approaches. As a result,
solutions offering radically different abstraction levels are considered under the same
umbrella, ultimately rendering the distinction ineffective. For instance, both Tiny-
DB [Madden et al. 2005] and Kairos [Gummadi et al. 2005] are commonly regarded
as macroprogramming solutions. However, the former provides an SQL-like interface
where the entire network is abstracted as a relational table. Therefore, internode inter-
actions are completely hidden from the programmer. The latter, on the other hand, is
an imperative programming language where constructs are provided to iterate through
the neighbors of a given node and communication occurs by reading or writing shared
variables at specific nodes. Therefore, unlike TinyDB, in Kairos the application pro-
cessing is still mostly expressed as pairwise interactions between neighboring nodes,
and yet the level of abstraction is very different from node-centric programming ap-
proaches.

These considerations have been our motivation for defining a taxonomy of program-
ming approaches that goes beyond the traditional dichotomy between node-centric and
macroprogramming, and examines a wider set of concepts. Our taxonomy is structured
along two main dimensions, each contained in a separate section of this article.

—In Section 5, we study the language aspects of available WSN programming ap-
proaches. These are analyzed to understand the primitives provided to programmers
for expressing communication and computation and the peculiarities of the program-
ming model.

—In Section 6, we consider the architectural aspects related to existing WSN program-
ming solutions by analyzing features such as their intended use, their reach into the
low-level layers of the architecture, and their execution environment.

Our objective is to provide the reader with an understanding of the expressive power of
the various approaches in the first part, while in the second part we intend to explore

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:11

Physical
neighborhood

Connected
Multi-hop
rou
group Non-connected

System-wide

o Scope

A 4

Physical

— Addressing

Communication

Logical

Explicit
—» Awareness

Local

Computation | |

G
Scope roup
Global
g Language Database

Data sharing

Data Access | |
Model

Mobile code

Message
passing

Sequential
™ Imperative
Event-driven

Functional

Rule-based
SQL-like
Special-purpose

w| Programming | |
Paradigm

—» Declarative

Hybrid

Fig. 6. A taxonomy of language aspects in WSN programming abstractions.

how these approaches can be used in application development, and their relationship
to the rest of the architecture, depicted in Figure 4.

For each dimension of classification, we illustrate its meaning first in abstract terms
and then by focusing on a representative approach taken from the state of the art. The
style of presentation is made concrete by relying on code fragments and by concisely
reporting key implementation details.

5. PROGRAMMING WIRELESS SENSOR NETWORKS: LANGUAGE ASPECTS

Figure 6 provides an overview of the language dimensions in our taxonomy. We classify
the various approaches based on the constructs that allow us to express communication
and computation, on how these are framed into a data access model, and on the more
traditional dimension related to the adopted programming paradigm.

The communication dimension is particularly important. In most applications, WSN
nodes can hardly perform any useful task if left alone; it is the overall collaboration and

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:12 L. Mottola and G. P. Picco

(a) Multihop, connected group. (b) Multihop, nonconnected group.

Fig. 7. Topological characteristics of group-based communication; grey nodes are group members.

coordination of numerous devices that allow the system to accomplish a higher-level
goal. As shown in Figure 6, we further distinguish among aspects related to the scope of
communication, the type of addressing used, and the extent to which the programmer
is aware of communication.

5.1. Communication — Scope

We define the scope of communication as the set of nodes that exchange data to accom-
plish a given application processing.

Classification. Three approaches emerge in the current state of the art.

—Physical neighborhood. Programmers are provided with constructs that allow data
exchange only among nodes within direct radio range.

—Multihop group. Data exchange is enabled among a subset of nodes across multiple
hops. Two subcases can be identified based on the connectivity among the nodes in
the group:

—Connected. The nodes exchanging data may be multiple hops away from each other,
yet any two nodes in the group are connected via nodes that are also part of the
group; an example is depicted in Figure 7(a).

—Nonconnected. No assumption is made on the location of nodes belonging to the
group, as in Figure 7(b).

—System-wide. All the nodes in the WSN are possibly involved in some data exchange.

As an example of a system where communication is restricted to the physical neighbor-
hood, we illustrate Active Messages [Culler et al. 2001] and the companion language
nesC [Gay et al. 2003]. As for communication within a multihop group, we study Enviro-
Suite [Luo et al. 2006] for the connected case, and Logical Neighborhoods [Mottola and
Picco 2006a, 2006b] for the nonconnected one. Finally, we illustrate TinyDB [Madden
et al. 2005] as an example of system-wide communication.

5.1.1. Physical Neighborhood: Active Messages and nesC. Querview. Active Messages is
a set of interfaces providing basic communication primitives in the nesC program-
ming language. This is an event-driven programming language for WSNs derived from
C, whose goal is to provide programming support for the TinyOS operating system.
Applications are built in nesC by interconnecting components that interact by pro-
viding or using interfaces. An interface lists one or more functions, tagged as com-
mands or events. Commands are used to start operations, while events are used to
collect the results asynchronously. A component providing an interface implements
the commands it declares, whereas the one using the interface implements its events.

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:13

1| interface AMSend {
2 command error_t send(am_addr_t addr, message_t* msg, uint8_t len);
3 command error_t cancel(message_t* msg);
4 event void sendDone (message_t* msg, error_t error);
5 command uint8_t maxPayloadLength();
6 command void* getPayload(message_t* msg, uint8_t len);
7|}
Fig. 8. nesC Active Message interface.

1| module Sampler {

2 uses interface Boot;

3 uses interface TemperatureSensor;

4 uses interface AMSend;

51}

6

7| implementation {

8 bool transmitLock;

9 message_t msgBuffer;

10

11 event void Boot.booted {

12 call TemperatureSensor.read();

13 }

14

15 event void TemperatureSensor.readDone(uinti6_t v){

16 uint16_t* msg_payload = (uintl6_t*) call AMSend.getPayload(msgBuffer);
17 *msg_payload = v;

18 if (!'transmitLock) {

19 transmitLock = TRUE;
20 if (!call AMSend.send (TOS_BCAST_ADDR, &msgBuffer, sizeof (message_t))) {
21 transmitLock = FALSE;
22 }
23 }
24 ¥
25
26 event void AMSend.sendDone (message_t* msg, result_t success) {
27 if (transmitLock && msg == msgBuffer) {
28 transmitLock = FALSE;
29 } else {
30 // Error...
31 }
32 }
33| }

Fig. 9. Sense and broadcast component in nesC using Active Messages.

Therefore, data may flow both ways between components connected through the same
interface.

In Active Messages, messages are tagged with an identifier that specifies which com-
ponent must process them upon reception. Components use Active Messages through
nesC interfaces. An example is shown in Figure 8. Additional interfaces are provided
for low-level configuration (e.g., to set the transmission power level). Although higher-
level communication abstractions are available atop nesC [Levis et al. 2004], they all
rely on Active Messages. In a sense, Active Messages play a role similar to sockets in
mainstream distributed computing, by providing a basic building block enabling the
development of higher-level functionality.

Example. Figure 9 shows a code fragment implementing a component that queries
the sensing device and sends the reading in broadcast. The booted event in the Boot
interface is signalled at system start-up. Inside the event handler (lines 11-13), the com-
ponent calls the read command (line 12) in the TemperatureSensor interface, whose pro-
viding component is bound to the sensing device. This is a typical split-phase operation
[Gay et al. 2003]: the command returns immediately and the caller is asynchronously
notified when the device completes its operation, in our case using the readDone event

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:14 L. Mottola and G. P. Picco

object VEHICLE {

object condition = ferrous_object() && vehicle_sound();

object_attribute location {
attribute_value = AVERAGE(position());
attribute_degree = 2;
attribute_freshness = 500 ms;

b

object_main_function = Vehicle.getLocation;

}

CONDU B W -~

Fig. 10. Vehicle tracking in EnviroSuite.

(line 15). In the corresponding event handler, the sensed value is packed in a mes-
sage and the component calls the AMSend. send command. To make sure the component
does not try to send another message while an earlier transmission is in progress,
a transmitLock flag is set just before calling the AMSend.send() command (line 19).
The flag is unset inside AMSend.sendDone, which is asynchronously called when the
transmission completes (line 26-32). As this example shows, the level of abstraction
provided is quite low. Programmers are forced to deal directly with message parsing
and serialization as well as scheduling transmissions. In addition, although the nesC
Sensor APIs [TinyOS Community Forum a] provide support for sensing, no dedicated
abstractions are offered to control externally attached devices (e.g., actuators).

Implementation Highlights. The mechanisms implementing the Active Message in-
terfaces are normally bound to the specific MAC-level mechanisms employed, or directly
to the radio hardware. As a result, most of them are platform-specific. Generally, the
implementations provide (unreliable) 1-hop unicast or broadcast transmissions. Spe-
cific solutions, nonetheless, can offer some form of reliability when coupled with specific
radio chips [Polastre et al. 2004; TinyOS Community Forum d]. Moreover, there is es-
sentially no support for packet buffering, and the application must provide its own
storage for sending and receiving messages. To overcome these limitations, multihop
protocols for data collection and dissemination have been developed atop the Active
Message interface [TinyOS Community Forum b; c].

5.1.2. Multihop Group — Connected: EnviroSuite. Overview. EnviroSuite is an object-based
programming framework aimed at monitoring and tracking applications. In Enviro-
Suite, objects represent physical entities in the environment. Object instances are
dynamically created when the corresponding physical entities are detected, and auto-
matically destroyed when the same entities move out of sensing range. A one-to-one
mapping between objects and physical entities is maintained as the latter move in the
environment. The framework provides constructs to specify the conditions for object
creation, the object attributes describing the state of the corresponding physical en-
tity, and the logic to update these attributes based on sensor data. The set of nodes
maintaining an object instance is assumed to be a connected region around the en-
vironmental phenomena at hand. A remote procedure call mechanism allowing for
interobject interactions is also included [Blum et al. 2003].

Example. Consider an application to track moving vehicles using magnetometers
and acoustic sensors. The exact vehicle position is computed by averaging the position
estimates reported by a minimum number of sensor nodes.

Figure 10 reports a fragment of the corresponding implementation in EnviroSuite
adapted from [Luo et al. 2006]. The program defines a VEHICLE object whose creation
occurs when sensors detect a ferrous object coupled with the sound signature of a vehi-
cle (line 2). The object exports a single attribute named location. Its value is derived
by aggregating the position estimates of at least two nodes, updated every 500 ms
(lines 3-7). The object main_function (line 8) indicates where to find the nesC code

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:15

node template Device
static Function
static Type
static Location
dynamic BatteryPower

create node tl from Device
Function as "actuator"
Type as "traffic_light"
Location as "entrance_east"
BatteryPower as getBatteryPower ()

HO OO WK~

=

Fig. 11. Logical Neighborhoods: node definition and instantiation for an actuator node.

implementing the main object method. In this case, the statement points to a com-
mand getLocation in interface Vehicle, where the programmer can specify dedicated
macros to send data to the base station or invoke methods on other, possibly remote,
objects.

Implementation Highlights. EnviroSuite object definitions are fed as input to a ded-
icated preprocessor that generates plain nesC code. The framework provides a library
of sensor data processing algorithms to define conditions for object creation. Based on
the object definition at hand, the preprocessor identifies the most appropriate protocol
to manage object creation and destruction. Available choices include a protocol, based
on routing trees, to maintain objects bound to a fixed set of nodes, and a scheme to deal
with objects associated to moving entities. The latter features mechanisms to maintain
the mapping between the objects and the environmental phenomena as these move
in space. A leader is elected in the connected region of nodes that senses the mov-
ing target, which collects data from other nodes in the same region and performs the
necessary computation.

5.1.3. Multihop Group — Nonconnected: Logical Neighborhoods. Overview. Logical Neigh-
borhoods is a programming abstraction that allows programmers to redefine a node’s
neighborhood based on the logical properties of the nodes in the network, regardless
of their physical position. Neighborhoods are defined using a declarative program-
ming language, called Spidey, conceived as an extension of existing WSN languages.
Programmers interact with the nodes in a logical neighborhood using an API that
mimics the traditional broadcast-based communication. Instead of the nodes within
radio range, however, the message recipients are the nodes matching a given neighbor-
hood definition. Therefore, programmers still reason in terms of neighboring relations,
but retain control over how these are established. Logical Neighborhoods is suited to
the highly heterogeneous and decentralized scenarios typical of sense-and-react ap-
plications, where the processing often revolves around programmer-defined subsets of
nodes.

Example. The definition of logical neighborhoods is based on two concepts: nodes and
neighborhoods. Nodes represent the portion of a real node’s features made available
to the definition of any logical neighborhood. Their definition is encoded in a node
template, which specifies a node’s exported attributes. This is used to derive instances
of logical nodes by specifying the actual source of data. Figure 11 reports a fragment of
Spidey code that defines a template for a generic actuator (lines 1-5), and instantiates
a logical node controlling a traffic light (lines 7-11).

A logical neighborhood is defined using predicates over node templates. Analogously
to nodes, a neighborhood is first defined in a template, which essentially represents the
membership function for the node subset targeted by the neighborhood. The neighbor-
hood template is then instantiated by specifying where and how it is evaluated. For

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:16 L. Mottola and G. P. Picco

neighborhood template TrafficLights(loc)
with Function = "actuator" and
Type = "traffic_light" and
Location = loc

create neighborhood tl_east
from TrafficLights(loc: "entrance_east")
max hops 2 credits 30

WU W~

Fig. 12. Logical Neighborhoods: Neighborhood definition and instantiation in road tunnel monitoring.

SELECT AVG(light), AVG(temp), location
FROM sensors
SAMPLE PERIOD 2 s FOR 30 s

W N =

Fig. 13. Monitoring bird nests using TinyDB.

instance, Figure 12 illustrates the definition of a neighborhood that includes the nodes
controlling the traffic lights on a specific tunnel entrance (lines 1-4). The template is
instantiated so that it evaluates only on nodes at most two (physical) hops away from
the one node defining the neighborhood and by spending a maximum of 30 “credits”
(lines 6-8). The latter is an application-defined notion of communication costs, which
allows programmers to affect the tradeoff between accuracy and resource consumption
[Mottola and Picco 2006b].

Implementation Highlights. Logical Neighborhoods is available for both TinyOS and
Contiki. A Java version is also available [Mottola et al. 2007]. Spidey definitions are
input to a dedicated preprocessor generating custom code for the platform at hand. An
efficient routing mechanism enables communication in a logical neighborhood. Nodes
periodically disseminate their profile, that is, the list of current attribute-value pairs.
To avoid flooding the entire system, the protocol exploits the redundancy among similar
profiles to limit the spreading of information. Application messages contain an encoding
of the target logical neighborhood. Based on the attributes it contains, a message follows
the routes established by the disseminated profiles back to the target nodes.

5.1.4. System-wide: TinyDB. Overview. TinyDB, similarly to its predecessor TAG [Mad-
den et al. 2003], is a query processing system for WSNs whose focus is to optimize
energy consumption by controlling where, when, and how often data is sampled. In
TinyDB, the user submits SQL-like queries at the base station. These are parsed,
optimized depending on the data requested, and injected into the network. Upon re-
ception of a query, a node processes the corresponding requests, gathers some readings
if needed, and funnels the results back to the base station. The data model revolves
around a single sensors table that logically contains one row per node per instant in
time, and one column for each possible data type the node can produce (e.g., temper-
ature or light). The data in this table is materialized only on request. Alternatively,
materialization points can be created in the network to proactively gather and process
the data. Data collection applications are easily expressed using TinyDB, as the declar-
ative nature of the database abstraction helps programmers in focusing on the data to
retrieve without specifying how to do so.

Example. Consider an application to monitor the presence of birds in nests, where
the average light and temperature close to a nest must be gathered every 2 seconds for
a total of 30 seconds. This processing can be encoded in a TinyDB query as illustrated
in Figure 13, adapted from [Madden et al. 2005]. The SELECT, FROM, and WHERE clauses
have the same semantics as in standard SQL. The location attribute is assumed to be

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:17

obtained from some external localization mechanism. The SAMPLE PERIOD construct is
used for specifying the rate and lifetime of the query. The example shows how TinyDB,
for this specific kind of application/functionality, enables a very compact encoding of
the desired behavior.

Implementation Highlights. When the query is injected from the base station, a rout-
ing tree is built spanning all the nodes in the network. The routes are then decorated
with metadata to provide information on the type and nature of data sensed by nodes in
a specific portion of the tree. While executing the query at each node, TinyDB performs
several optimizations to reduce the amount of data flowing towards the base station.
For instance, data sampling and transmissions are interleaved to minimize power con-
sumption without affecting the quality of the data reported. A dedicated transmission
scheme is also employed to schedule the transmissions at different levels of the tree.
The goal is to make data flow upward, starting from the leaves, so that intermediate
nodes can aggregate information coming from other devices before sending their own.

5.2. Communication — Addressing

Orthogonal to the communication scope, existing solutions differ in the way the nodes
involved are identified, that is, the specific addressing scheme employed. The nature
of the constructs used to determine the target nodes bears great impact on the ease in
describing the application processing.

Classification. Existing programming frameworks essentially fall in either of the two
classes of addressing.

—Physical addressing. The target nodes are identified using statically assigned identi-
fiers. Most often, this is used in conjunction with unicast or broadcast communication
within a 1-hop neighborhood.

—Logical addressing. The target nodes are identified through programmer-provided,
application-level properties. For instance, the target nodes may be determined based
on their type or current readings.

The Active Message communication stack we described in Section 5.1.1 is an example
of the former type of addressing. Both the node identifier and the Active Message
identifier that binds sender and receiver components are hard-wired in the code. The
communication target in the AMSend interface of Figure 8 is either a broadcast identifier
or the identifier of a specific node.

In contrast, the Logical Neighborhoods abstraction we illustrated in Section 5.1.3 fea-
tures a logical addressing scheme. The communication target is determined by defining
the properties characterizing the individual nodes and by providing the property val-
ues selecting the desired nodes. Thus, the nodes involved may even change over time
without modifying the definition of the neighborhoods themselves, unlike with static
node addresses.

5.3. Communication — Awareness

Another facet of how communication is made available in WSN programming is the
extent to which the programmer is aware of communication, that is, whether communi-
cation is explicitly exposed to developers, or hidden behind some higher-level construct
instead. In the former case, the functionality necessary to prepare messages for trans-
mission and to parse them on reception rests mostly on the programmers’ shoulders,
often complicating the implementation of the application processing.

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:18 L. Mottola and G. P. Picco

// Discover region
result_t Region.formRegion(<region specific args>, int timeout);

// Wait for region discovery
result_t Region.sync(int timeout);

// Set and get shared variables
result_t SharedVar.put(sv_key_t key, sv_value_t val)
result_t SharedVar.get(sv_key_t key, addr_t node, sv_value_t *val, int timeout);

OO T W -

11 // Wait for shared variable gets
12 | result_t SharedVar.sync(int timeout);

14 // Reduce ’value’ to ’result’ with given ’operator’

15| // ’yield’ returns the percentage of nodes responding

16 | result_t Reduce.reduceToOne(op_t operator, sv_key_t value,

17 sv_key_t result, float *yield, int timeout);

19| // Reduce and set result in all nodes
20 | result_t Reduce.reduceToAll(op_t operator, sv_key_t value,
21 sv_key_t result, float *yield, int timeout);

23 | // Wait for reductions to complete
24 | result_t Reduce.sync(int timeout);

Fig. 14. The API of Abstract Regions.

Classification. Based on the above consideration, we classify available solutions as
providing:

—explicit communication. Where this functionality is directly in the hands of pro-
grammers, who are in charge of dealing with aspects such as message buffering,
serialization, and parsing. In addition, programmers may be required to schedule
transmissions explicitly.

—implicit communication. Where it occurs through higher-level language constructs
with no direct intervention from programmers, who cannot precisely perceive when
and how data is exchanged among nodes. For instance, this is similar to remote
procedure calls in traditional distributed computing.

An exemplary solution belonging to the former class is again Active Messages, described
in Section 5.1.1. In this case, programmers are in charge of serializing and parsing data
by accessing the various fields of a generic message_t data structure. Moreover, in the
absence of buffering mechanisms, programmers must schedule transmissions directly.
As an example of the latter category, here we illustrate the Abstract Regions [Welsh
and Mainland 2004] programming framework.

5.3.1. Implicit Communication: Abstract Regions. Overview. Abstract Regions is a set of
general-purpose programming primitives providing addressing, data sharing, and ag-
gregation among a subset of nodes defined as a region. For instance, a region may in-
clude all nodes within a given distance from each other. Data sharing is accomplished
using an associative array associated to the region, while dedicated constructs are
provided to aggregate information stored at different nodes within a region. Although
Abstract Regions is built atop nesC/TinyOS, it also employ a lightweight thread-like
concurrency model called Fibers to provide blocking operations. The Abstract Regions
API is depicted in Figure 14 [Welsh and Mainland 2004]. By its nature, Abstract
Regions targets applications exhibiting spatial locality, for example, tracking moving
objects or identifying the contours of a physical area [Liu et al. 2002].

Example. We illustrate a simple object-tracking application developed using the
API in Figure 14. The application takes periodic measures from sensor devices (e.g.,

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:19

1| location = get_location();

2

3| // Region setup to include 8 nearest neighbors

4| region = k_nearest_region.create(8);

5

6 | while (true) {

7 reading = get_sensor_reading();

8

9 // Store data as shared variables

10 region.put (reading_key, reading);

11 region.put(reg_x_key, reading * location.x);

12 region.put(reg_y_key, reading * location.y);

13

14 if (reading > threshold) {

15 // Retrieve the id of the node with max reading
16 max_id = region.reduceToOne (OP_MAXID, reading_key);
17

18 // If this node is leader

19 if (max_id == my_id) {

20 // Compute centroid

21 sum = region.reduceToOne (OP_SUM, reading_key);
22 sum_x = region.reduceToOne (0OP_SUM, reg_x_key);
23 sum_y = region.reduceToOne (OP_SUM, reg_y_key);
24 centroid.x = sum_x / sum;

25 centroid.y = sum_y / sum;

26 send_to_basestation(centroid);

27 }

28 }

29 sleep(periodic_delay);

30| ¥

Fig. 15. Object tracking in Abstract Regions.

magnetometers), and compares them against a threshold. Nodes sensing a value above
the threshold coordinate to elect the node with the highest reading as the leader. The
leader computes the centroid of all readings and transmits the result back to a base
station.

Figure 15 shows the code to implement the above object-tracking application us-
ing Abstract Regions, adapted from Welsh and Mainland [2004]. Initially, each node
initializes the region to include the eight geographically closest nodes (k_nearest-
_region.create() in line 4). In the main loop (lines 6-30), each node queries the sensor
and makes the output available to other nodes in the region, along with its physical lo-
cation. This is achieved using different shared variables and region.put () to set their
value. If the sensor reading is above the threshold, every node first determines the
highest reading in the region by using region.reduceToOne () with operation OP_MAXID
(line 16). If the local node is the one with the highest reading, sum-reductions are per-
formed over the shared variables in the region to compute the centroid, and the result
is sent to the base station.

Implementation Highlights. Abstract Regions leverages nesC to produce executable
code. The implementation of the mechanisms behind the Abstract Regions API depends
on the particular region employed. For instance, the region used in the example is
implemented using geographically-limited flooding. In contrast, a planar-mesh region
used in a contour-finding application can be implemented based on Yao graphs [Li et al.
2002]. In general, different regions require different implementations, which in turn
may require a considerable effort.

5.4. Computation Scope

In WSNs, the duality between communication and computation plays an important
role, for example, for minimizing communication through local aggregation. The pro-
vision of language constructs that ease the description of the application processing

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:20 L. Mottola and G. P. Picco

hoods = rmap(fun(t, nd){ khood(1,nd) }, detects);
sums = rmap (sum, hoods);
base <- rfilter(fun(t){ t > CLUSTER_THRESHOLD }, sums);

1 fun abovethreshold(t) { t > CHEM_THRESHOLD }
2| fun read(n) { sense("concentration", n) }

3| fun sum(r) { rfold((+), 0, r) }

4

5| readings = rmap(read, world);

6 | detects = rfilter(abovethreshold, readings);
7

8

9

0

=

Fig. 16. Plume-monitoring in Regiment.

is therefore key to achieve efficient implementations. To address this need, WSN pro-
gramming approaches provide a variety of language constructs. Besides the particular
programming paradigm employed (discussed next), available solutions mainly differ
w.r.t. the computation scope, that is, the set of nodes directly affected by the execution of
a single instruction in the program.

Classification. In the current state of the art, the computation scope offered to pro-
grammers is one of the following.

—Local. The effect of an instruction is limited to the node where it is executed.
—Group. An instruction can alter the state of some subset of nodes at once.
—Global. An instruction can possibly affect the state of all nodes in the system.

A local scope characterizes the computation in nesC, where all instructions have only a
local effect. This includes those concerned with message passing, which indeed do not
have a direct effect (e.g., a state change) on neighboring nodes. At the other extreme,
the TinyDB system that we previously described is a natural example of a global
computation scope. Indeed, the processing triggered at the sink is perceived by the
programmer as directly affecting the entire system. As for group computation, we use
the Regiment system [Newton et al. 2007; Newton and Welsh 2004] as a concrete
example.

5.4.1. Group Computation: Regiment. Overview. Regiment is a functional language geared
towards applications exhibiting spatial locality (e.g., object tracking or intrusion de-
tection). In Regiment, programmers manipulate sets of data streams called signals.
These represent readings of individual nodes, the outcome of a node’s local computa-
tion, or an aggregate value obtained by processing multiple input signals. Regiment
also features a notion of region similar to Abstract Regions, for example, a region
may include the sensor readings generated by nodes in a limited geographic area. The
processing is expressed by applying programmer-provided functions to signals in a
region.

Example. Consider a system for early detection of plumes. Key to the correctness of
the application is to avoid false positives due to noisy readings. Thus, programmers
are to make sure that the overall sum of the readings gathered by nodes around the
phenomena exceeds a prespecified threshold.

Figure 16 depicts an example Regiment program to implement the above processing,
adapted from Newton et al. [2007]. The program first defines a set of functions used
in the rest of the program (lines 1-3) to filter sensed data (abovethreshold), gather the
reading from the sensor (read), or sum all signals in a region (sum). In the latter, rfold
is used to aggregate all values in region r into a single signal, using the + operator and
0 as initial values. Next, the program identifies a region of nodes that exceeds the local
threshold value. This is accomplished by first gathering the local readings at all nodes
in the system and then performing a filtering step. The former operation is expressed as

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:21

the application of read () to all the nodes in the system, using rmap (line 5). This takes
as input a function and a region, and applies the function to all values in the region.
The world region in the example represents all nodes in the system. The filtering part
is accomplished using rfilter, which takes a Boolean function and a region as inputs,
and returns the region that includes values for which the input function yields true
(line 6).

In the example, hoods is, instead, a nested region. It consists of the nodes in the
one-hop neighborhood of each node in the detects region (line 8). This is obtained by
applying a region formation function (khood) to all nodes in detects. The remaining
instructions are used to sum the readings in the nested regions created earlier and to
send a notification to the base station in case any of the sums turns out to be above the
safety threshold.

Implementation Highlights. The Regiment system relies on multiple steps of compi-
lation to generate the final, node-level executable. A Regiment program is first trans-
lated into an intermediate language called RQuery. Subsequently, the region streams
are translated into local streams. The output of the compiler is event-driven code, writ-
ten in an intermediate language called Token Machine Language [Newton et al. 2005].
This language does not assume a threaded concurrency model, and is therefore suited
for implementation on top of event-driven WSN operating systems such as TinyOS. As
for communication, nodes in a given region exchange data using spanning trees; these
are created and maintained by the Regiment runtime support on every node.

5.5. Data Access Model

Existing solutions provide different abstractions to provide access to the data. The
specific data access model heavily influences the way programmers deal with both
communication and computation, and therefore significantly impacts the development
process.

Classification. Four approaches emerge in the current WSN literature.

—Database. The WSN is treated as a relational database, and programmers pose
SQL-like queries to access the information. Data is returned as a stream of records,
possibly with no reference to the specific node that output the data.

—Data sharing. Data is shared in the form of remotely accessible variables or tuples.
Nodes can read or write data in the shared memory space using dedicated constructs.

—DMobile code. Data is accessed locally to a node by migrating the accessing code onto
the node where data resides. Often, this is complemented by a data sharing scheme,
although mostly for local coordination.

—DMessage passing. Data is accessed through messages exchanged among the nodes
involved.

The TinyDB system, described in Section 5.1.4, is an obvious representative of the first
class. In TinyDB, sensed data is indeed made available as entries of a sensors table,
and the user accesses the table using SQL-like queries. To cater to the peculiarities of
WSN applications, however, further constructs are provided to express, for instance,
the lifetime and period of queries.

To illustrate the remaining classes of data access models, here we present TeenyLIME
[Costa et al. 2007] for data sharing; Agilla [Fok et al. 2005] for mobile code; and DSWare
[Li et al. 2004] for message passing.

5.5.1. Data Sharing: TeenyLIME. Overview. TeenyLIME is based on the tuple space ab-
straction made popular by Linda [Gelernter 1985]. A tuple space is a shared memory
space where different processes read/write data in the form of tuples. To blend with

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:22 L. Mottola and G. P. Picco

command result_t StdControl.start() {
tuple tempTemplate = newTuple(2, actualField_uint16 (TEMPERATURE),
greaterField (TEMPERATURE_SAFETY_THRESHOLD));
call TS.addReaction(TRUE, TL_NEIGHBORHOOD, &tempTemplate);
return SUCCESS;
}
event result_t TS.tupleReady(TLOpId_t operationId,
tuple *tuples, uint8_t number) {
// Notification triggered ...

OO WU W -

=

Y

Fig. 17. TeenyLIME code for an actuator node interested in temperature values.

command result_t StdControl.start() {
return call SensingTimer.start (TIMER_REPEAT, SENSING_TIMER);
}
event result_t SensingTimer.fired() {
return call TemperatureSensor.getData();
}
event result_t TemperatureSensor.dataReady(uinti16_t reading){
tuple temperatureValue = newTuple (2, actualField_uint16 (TEMPERATURE),
actualField_uint16(reading));
10 call TupleSpace.out(FALSE,TL_LOCAL,&temperatureValue);
11 return SUCCESS;
12 }

OO U R WN -

Fig. 18. TeenyLIME code for a temperature node.

the asynchronous programming model of WSN operating systems such as TinyOS,
however, in TeenyLIME operations are nonblocking, and return their results through
a callback. Tuples are shared among nodes within radio range. In addition to Linda’s
operations to insert, read, and withdraw tuples, reactions allow for asynchronous noti-
fications when data of interest appears in the shared tuple space. In addition, several
WSN-specific features are provided. For instance, capability tuples enable on-demand
sensing, hence sparing the energy required to keep sensed information up to date in the
shared tuple space in the absence of data consumers. TeenyLIME provides constructs
useful to develop stand-alone applications as well as system-level mechanisms (e.g.,
routing protocols), as demonstrated by the real-world deployment described by Ceriotti
et al. [2009].

Example. Consider an application for fire control in buildings. Sensor nodes are
deployed to monitor temperature, along with actuator nodes triggering their attached
devices (e.g., a water sprinkler) when the temperature is above a threshold.

To implement the latter functionality, actuators install a reaction on their neighbors
to watch for tuples reporting a temperature above the safety threshold. This is shown in
the code fragment of Figure 17, adapted from Costa et al. [2007]. In particular, the first
parameter to the addReaction primitive (line 4) indicates whether reaction notifications
must be reliably delivered to the requesting node. In addition, tempTemplate identifies
the data of interest using a pattern-matching mechanism that, unlike the original
Linda model, allows for constraints on the value of the tuple fields. Temperature sensors
periodically take a sample and pack it in a tuple stored in the local tuple space, as
shown in Figure 18. Insertion is accomplished using an out operation (line 10) by
setting the target parameter to TL_LOCAL. This operation, by virtue of one-hop sharing,
automatically triggers the aforementioned reaction on neighboring nodes. Actuator
nodes process the tuple that caused the reaction firing in the tupleReady event in
Figure 17 (lines 7-10).

Implementation Highlights. TeenyLiME is built atop nesC/TinyOS and Active Mes-
sages. Remote reactions rely on a soft-state approach to deal with nodes joining or

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:23

BEGIN pushn fir
pusht LOCATION
pushc 2
pushc FIRE
regrxn // Register fire alert reaction
wait // Wait for reaction to fire
FIRE pop
sclone // Strong clone to the node detecting fire
// Fire tracking code

C O W =

Fig. 19. Fire tracking with Agilla.

failing. Each node periodically sends messages containing control data for all remote
reactions. Upon receipt of this message, a timer associated with installed reactions is
refreshed. If and when the timer expires, the corresponding reaction is removed. To
implement reliable operations, solutions such as those of van Dam and Langendoen
[2003] and Rajendran et al. [2006]) can be plugged into TeenyLiME with minimal effort.
The current TMote Sky [MoteIV] port includes a dedicated reliability layer based on
hardware-level acknowledgments.

5.5.2. Mobile Code: Agilla. Overview. Agilla is a mobile agent system for WSNs [Fuggetta
et al. 1998]. Programs are composed of one or more software agents able to migrate
across nodes. An Agilla agent is similar to a virtual machine with its own instruction
set and dedicated data/instruction memory. Local coordination among agents is accom-
plished using a Linda-like tuple space. Agents can insert data in a local data pool to
be read by different agents at later times. The use of tuple spaces allows program-
mers to decouple the application logic residing in the agents from their coordination
and communication. Agilla, therefore, provides a powerful mechanism to implement
applications requiring on-the-fly reconfiguration of some functionality in response to
external phenomena.

Example. Consider a fire-monitoring application in a forest. Fire-detection agents are
deployed to monitor the temperature in various regions. When a rise in temperature is
detected, fire-detection agents spawn fire-tracking agents that swarm around to collect
information about the exact location of the fire.

To implement such an application, Agilla provides an API to interact with the tu-
ple space at each node, and to clone agents. As for the former aspect, Agilla provides
operations to insert, read, and remove tuples. In addition, similarly to TeenyLIME,
it gives programmers the ability to add reactions to the tuple space, although the
matching mechanism here is limited to type-based matching and reactions are lo-
cal. Migration is accomplished by either relocating the agent with smove and wmove
or by cloning it on a different node with sclone and wclone. The w and s in front of
the operation name specifies whether strong or weak mobility is required [Fuggetta
et al. 1998]. Strong mobility ensures that the execution state is retained across move-
ment, enabling the agent to resume execution right after the migration instruction.
Instead, weak mobility only moves the agent code, whose execution restarts from
scratch.

Figure 19, adapted from Fok et al. [2005], shows how a fire-tracking agent is notified
about the presence of an increase in temperature. When such an agent is injected into
a node, it registers a reaction for FireAlert tuples and waits for it to be triggered
(lines 1-5). This occurs when a fire-detection agent outputs the corresponding tuple
in the tuple space. Upon triggering the reaction, the agent immediately clones itself
to a different node (lines 7-8). Once there, it possibly keeps cloning itself to gather
information in regions around the phenomena.

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:24 L. Mottola and G. P. Picco

1| INSERT INTO EVENT_LIST

2 (EVENT_ID, RANGE_TYPE, DETECTING_RANGE, SUBEVENT_SET, REGISTRANT_SET,

3 REPORT_DEADLINE, DETECTION_DURATION [, SPATIAL_RESOLUTION])
Fig. 20. Subscription format in DSWare.

1 INSERT INTO EVENT_LIST

2 (explosion, AREA, [0,0;200,200],

3 SUBEVENT_SET, user_base_station, 1 sec,

4 1 hour)

5

6 SUBEVENT_SET (

7 SAFETY_TIMEOUT,

8 MIN_CONFIDENCE,

9 (temperature > 60),

10 (light > 200),

11 (compareSound (sound,explosionSignature))

12 |)

Fig. 21. Detecting explosions with DSWare.

Implementation Highlights. Agilla is implemented on top of TinyOS. The instruction
set and the mechanisms enabling on-the-fly execution of code are based on the Maté
virtual machine [Levis and Culler 2002]. An agent manager maintains each agent’s con-
text, allocates memory when the agent arrives, and deallocates the same memory when
the agent leaves or dies. The latter aspects are dealt with using a lightweight implemen-
tation of dynamic memory, as this functionality is not available in TinyOS. A context
manager determines the node location and maintains the list of reachable neighbors,
whereas a tuple space manager implements the operations to read/write from/to the
tuple space and registers/triggers reactions when required. Migrating agents requires
reliable transmissions. This is achieved using a hop-by-hop retransmission scheme
where messages not yet acknowledged are resent upon expiration of a timeout.

5.5.3. Message Passing: DSWare. Overview. DSWare is a message-passing middleware
whose focus is on real-time applications for detection of sporadic events. It employs a
form of publish/subscribe [Eugster et al. 2003] paradigm in which users specify sub-
scriptions expressing the characteristics of the phenomena of interest, and are notified
upon the occurrence of matching phenomena. A higher-level notion of event enables
programmers to infer the occurrence of a phenomenon from raw sensor observations.
For instance, an event can be defined as the composition of two physical subevents
occurring within a specific time interval from each other. Confidence levels can also be
defined to fine-tune the relationships among subevents (e.g., their relative importance
or fitness to a pattern).

Subscriptions are issued at the user’s base station using a dialect of SQL, ac-
cording to the format in Figure 20. Besides the event identifier, RANGE_TYPE and
DETECTING_RANGE specify the group of sensors responsible for detecting the event. The
corresponding notification is reported before the REPORT _DEADLINE to every node in the
REGISTRANT_SET. DETECTION_DURATION specifies the total duration of this subscription,
whereas SPATIAL_RESOLUTION determines the geographical granularity for the event’s
detection. Finally, SUBEVENT_SET specifies a group of sub-events that must occur for this
event to be observed, their timing constraints and confidence levels.

Example. Consider an application to detect explosions in a given geographical area.
Temperature, light, and acoustic sensors are deployed to accomplish the task. Figure 21
illustrates how to describe the required processing in DSWare. The program defines
a high-level temperature subevent occurring when the temperature is higher than a
safety threshold; a light subevent corresponding to a sharp change in light intensity;

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:25

and an acoustic subevent representing the occurrence of a sound whose signature
resembles that of an explosion (lines 9-11). The higher-level explosion event is defined
as the combination of the aforementioned subevents when occurring within a specified
time interval from each other and within the same geographical region (lines 2-3).
In addition, upon detection of such an event, the program requires a notification to
be reported to the user within one second (line 3). A further option specifies that the
application must monitor these types of events for one hour (line 4).

Implementation Highlights. Subscriptions are propagated in the network until they
reach the area of interest, or all the nodes in the system. In doing so, a routing tree is
built connecting the base station to the relevant sensor nodes. Two optimizations are
performed in case multiple nodes subscribe to the same information. First, in case sub-
scriptions are for the same data, yet have different rates, DSWare places copies of the
relevant information at intermediate nodes to limit the amount of information flowing
in the network. Second, DSWare tries to merge paths leading to different base stations
to minimize redundant transmissions [Kim et al. 2003]. To guarantee real-time deliv-
ery of event notifications, an earliest-deadline-first scheduling mechanism is employed.
An alternative, energy-aware scheduling technique is also provided, although it may
occasionally fail to meet the requested deadlines.

5.6. Programming Paradigm

The programming paradigm determines the abstractions used to represent the individ-
ual elements of a program. These include functions and variables, as well as the steps
that compose a computation (e.g., assignments and iterations). The solutions hitherto
described already highlight the variety of available programming paradigms. This as-
pect bears great influence on the learning curve for new programmers, and ultimately
on their productivity.

Classification. Looking at the current state of the art in WSN programming, three
major paradigms can be identified.

—Imperative. The intended application processing is expressed through statements
that explicitly indicate how to change the program state. By far the most widespread,
it can be further classified into sequential or event-driven.

—Declarative. The application goal is described without specifying how it is accom-
plished. Relevant subclasses of declarative approaches include functional, rule-based,
SQL-like, and special-purpose.

—Hybrid. The programming approach is a combination of multiple programming
paradigms (e.g., imperative and declarative).

The nesC language, illustrated in Section 5.1.1, features an imperative event-driven
paradigm based on split-phase operations. The control flow is divided across different
operations that are asynchronously executed when some events occur, for example,
upon receiving a message. Although this increases parallelism, it generally makes
implementations more entangled and difficult to reason about. Next, we illustrate
Pleiades [Kothari et al. 2007], which instead adopts an imperative sequential paradigm.

The Regiment system, illustrated in Section 5.4, is representative of the declarative
functional paradigm. Constructs are provided to apply the given functions to nodes
in a region and store the output at a single node or at all devices in a region. In
the following, we describe Snlog [Chu et al. 2007] to illustrate declarative solutions
that adopt a rule-based approach. The TinyDB system described in Section 5.1.4 is an
example of a declarative approach based on SQL-like constructs. TinyDB programmers
specify constraints on the data of interest without specifying the exact procedure to
gather the data itself. Logical Neighborhoods, described in Section 5.1.3, exemplifies

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:26 L. Mottola and G. P. Picco

1| #include "Pleiades.h"

2 boolean nodelocal isFree=TRUE;

3 | nodeset nodelocal neighbors;

4 | node nodelocal neighborIter;

5

6| void reserve (pos dst) {

7 boolean reserved = FALSE;

8 node nodelter, reservedNode = NULL;

9 node n=closest_node(dst);

10 nodeset loose nToExamine = add_node(n, empty_nodeset());
11 nodeset loose nExamined = empty_nodeset ();

12

13 if (isfree@n) {

14 reserved = TREE; reservedNode = n;

15 isfree@n = FALSE;

16 return;

17 }

18

19 while (!reserved &% !empty(nToExamine)) {

20 cfor (nodelter=get_first(nToExamine);

21 nodelter !=NULL;

22 nodeIter = get_next(nToExamine)) {

23 neighbors@nodelter=get:neighbors (nodelter);

24 for (neighborIter@nodelter=get_first(enighors@nodelter);
25 neighborIter@nodelter !=NULL;

26 neighborIter@nodelter=get_next (neighbors@nodelter)) {
27 if (!member (neighborIter@nodelter,nExamined))
28 add_node (neighborIter@nodelter,nToExamine);
29 }

30 if (isfree@nodelter) {

31 if (!reserved) {

32 reserved=TRUE; reservedNode=nodelter;

33 isfree@nodelter=FALSE;

34 break;

35 }

36 }

37 remove_node (nodelter,nToExamine);

38 add_node (nodelter,nExamined);

39 }

40 }

41 | }

Fig. 22. A street-parking application in Pleiades.

a special-purpose declarative paradigm, whose custom constructs are used to identify
the target nodes.

Finally, the ATaG [Bakshi et al. 2005] framework, illustrated in the following,
features a hybrid approach. Communication among tasks executed on separate nodes
is described in a declarative manner, whereas the local node computation is expressed
using an imperative language. This choice decouples local processing from internode
coordination.

5.6.1. Imperative — Sequential: Pleiades. Overview. Pleiades is a programming language
providing a centralized view on the sensor network. It extends the C language with con-
structs to address the nodes in the network and to access their local state. A Pleiades
program normally features a single sequential thread of control, that is, execution
unfolds with only one node in the system executing any Pleiades instruction at any
point in time. Nonetheless, a dedicated language construct, cfor, is provided to intro-
duce concurrent executions at multiple nodes. Whenever required, the underlying run-
time guarantees serializable execution of cfor statements. Because of these features,
Pleiades targets concurrent applications that require guarantees on their distributed
execution. An example of a similar scenario follows.

Example. Figure 22 depicts a Pleiades program implementing a street-parking ap-
plication, adapted from Kothari et al. [2007]. The goal is to identify the free spot closest
to the driver’s destination. To do so, sensors are deployed in parking spots to monitor

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:27

their occupancy. The control flow iterates among the nodes in the network in search
of the first free spot, starting from the node closest to the desired destination. The
program makes use of most of the language features in Pleiades.

—The node data type abstracts a single WSN device, whereas nodeset represents a
collection of nodes. Helper functions are provided to obtain such collections. For
instance, get network nodes() returns a nodeset containing all nodes in the system,
and get_neighbors(n) returns n’s one-hop neighbors.

—Variables are normally shared across all nodes in the system, unless they are tagged
by programmers with the nodelocal attribute, for example, isfree in Figure 22
(line 2). Node-local variables are accessed using the notation var@e, where var is a
nodelocal variable and e is a node.

—The cfor construct works as a normal for loop, except the execution of its body is
concurrent w.r.t. the nodes in a nodeset. The Pleiades runtime can ensure that the
effect of a cfor corresponds to some sequential execution of the loop. Here, this is
required to make sure that only one free node is reserved for the car arriving (lines
20-39). Access to loose variables, on the other hand, is not synchronized inside cfor
loops.

Implementation Highlights. The Pleiades compiler performs data-flow analysis to
partition the program into independent execution units called nodecuts, each running
on a single node. The compiler assigns nodecuts to nodes based on the expected com-
munication cost for accessing variables at remote nodes. At runtime, the execution
flow moves from one node to the other in case the flow transitions between nodecuts
assigned to different devices. A dedicated locking mechanism is provided to implement
serializable execution of cfors. A coordinator is elected among the nodes involved. It
manages the locks on shared variables according to the current state of execution, and
monitors the execution state of the other nodes involved to determine the presence of
deadlocks (e.g., caused by nested cfor statements).

5.6.2. Declarative — Rule-Based: Snlog. Overview. Snlog is a rule-oriented approach
inspired by logical programming. The core language constructs are predicates, tu-
ples, facts, and rules. Predicates specify schemas for data as ordered sequences of
fields, analogously to how tables in relational databases specify the format of records.
Tuples represent the actual data, similarly to instantiated records in database ta-
bles. Facts are particular tuples that are instantiated at system start-up, whereas
rules express the actual processing. Similarly to Datalog-like languages, rules con-
sists of a head and body part. Programmers express in the body the conditions
for outputting the tuples specified in the head. Distributed executions are de-
scribed using a location specifier, which represents the node hosting a tuple in case
this is not co-located with the node executing a given rule. Only 1-hop interac-
tions are supported. Atomicity is guaranteed at the rule level. Native C or nesC
code can be linked to the rule engine to interact with low-level devices or imple-
ment efficient memory management. Snlog has been used at different levels of the
stack to implement applications such as tracking moving objects as well as routing
protocols.

Example. Figure 23 reports the implementation of a simplified object-tracking appli-
cation in Snlog, adapted from Chu et al. [2007]. Compared to the analogous applications
we described for EnviroSuite and Abstract Regions, here the leader (cluster head in this
example) processing the sensor measurements is statically determined. In Chu et al.
[2007], the authors mention that only four additional rules are needed to dynamically
identify the leader.

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:28 L. Mottola and G. P. Picco

builtin(trackingSignal, ’TargetDetectorModule.c’).
import (tree.snl).

message (@Src, Src, Head, SrcX, SrcY, Val) :-
trackingSignal (@Src, Val), detectorNode(@Src),
location(@Src, SrcX, SrcY), clusterHead(@Src, Head).
message (@Next, Src, Dst, X, Y, Val) :-
message (@Crt, Src, Dst, X, Y, Val),
nextHop (@Crt, Dst, Next, Cost).

OO U R WN —

=
=]

trackingLog (@Dst, Epoch, X, Y, Val) :-
message (@Dst, Src, Dst, X, Y, Val), epoch(@Dst, Epoch).
estimation (@S, Epoch, <AVG, X>, <AVG, Y>) :-
trackingLog (@S, Epoch, X, Y, Val), epoch(@S, Epoch).

P e
O Uk W N

timer (@S, epochTimer, Period) :- timer (@S, epochTimer, Period).
epoch (@S, Epoch++) :- timer (@S, epochTimer, _), epoch(@S, Epoch).

[
I

Fig. 23. An object-tracking application in Snlog.

At the top of Figure 23, the import construct includes an external Snlog file imple-
menting a tree-based collection protocol. Essentially, this makes available the nextHop
tuple used to direct data towards the leader (line 9). When a node detects the target, it
creates a tuple to report the node position to the cluster-head (lines 4-9). Upon receipt,
this information is timestamped with the current epoch value (lines 11-12) and then
used to average the position of the moving object (lines 13-14). Periodic timers are used
to update the epoch value (lines 16-17), where a timer predicate in a rule body indicates
a timer firing and the same timer predicate in a rule head represents the timer being
set.

Implementation Highlights. The Snlog compiler outputs executable nesC code. A
generic runtime layer is provided to support rule execution, whereas the individual
rules are compiled into a data-flow chain of database operators such as joins, selection,
and projection. Each operator is mapped to a nesC component obtained from a generic
template that the compiler customizes depending on the nature of the rules involved.
Optimization goals can also be set at compile time, for example, to minimize code size
as opposed to data size. Communication is handled using the Active Message stack
described in Section 5.1.1.

5.6.3. Hybrid: Abstract Task Graph (ATaG). Overview. ATaG is a programming framework
providing a mixed declarative-imperative approach. The notions of abstract task and
abstract data item are at the core of the programming model. A task is a logical
entity encapsulating the processing of one or more data items, which represent the
information. Different copies of the same task may run on different nodes. The flow of
information between tasks is specified declaratively with abstract channels connecting
a data item to the tasks that produce or consume it.

The code in a task is written in an imperative language, and relies on a shared data
pool for local communication, allowing tasks to output data or to be notified when some
data of interest becomes available. To support the former, a putData(Dataltem) opera-
tion is made available. As for the latter, programmers are provided with a task template
that lists an empty handleDataltem() function for each incoming channel. ATaG helps
programmers in expressing multistage, data-centric processing. It is therefore suited
to sense-and-react applications, where the application typically requires complex oper-
ations to decide on the actions to take.

Example. Figure 24 illustrates a sample ATaG program, adapted from Pathak et al.
[2007], specifying a cluster-based data-gathering application. Sensors within a cluster

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:29

‘ [nodes-per-instance: 1] w ([area-per-instance:w sq. m] ,|
‘ [periodic:10] __ i ‘ [anydata] ,"
~

Firing Rule

Sampler Cluster-Head

~

Abstract Instantiation
Task Rule
Channel , -
Annotations Abstract
Channel
Abstract —+1 Temperature
Data

Fig. 24. A cluster-based data collection program in ATaG.

putData(t);

(/77 ...

2 | while (TRUE) {

3 sleep (10000) ;

4

5 // VWritten by the programmer

6 int temperature = getTemperature();

7 TemperatureDataltem t = newTemperatureDataltem(temperature);
8

9

0

=

Fig. 25. Fragment of the imperative code for the Sampler tasks of Figure 24.

take periodic temperature readings collected by the corresponding cluster-head. The
former behavior is encoded in the Sampler task, while the latter is specified in Cluster-
Head. The Temperature data item is connected to both tasks using a channel originating
from Sampler and a channel directed to Cluster-Head.

Tasks are annotated with firing and instantiation rules. The former specify when the
processing in a task must be triggered. In our example, the Sampler task is triggered
every 10 seconds according to the periodic rule. The Cluster-Head fires whenever
at least one data item is available on any of its incoming channels, according to the
any-data firing rule. Tasks run on the individual nodes according to the instantiation
rules specified by programmers. The nodes-per-instance:1 construct requires the
task to be instantiated once on every node. The area-per-instance construct, instead,
partitions the geographical space according to the given parameter and determines the
deployment of one task instance per partition.

Abstract channels are annotated to express the interest of a task in a data item.
In this example, the Sampler task generates data items of type Temperature which
remains local to the node where they were generated. The Cluster-Head uses the
domain annotation to gather data from the temperature sensors in its cluster, which
binds to the system partitioning obtained from area-per-instance by connecting tasks
running in the same partition. ATaG has also been extended with instantiation rules
and channel annotations based on application-level properties of the nodes [Mottola
et al. 2007], for example, the sensing devices they are equipped with.

Based on the declarative part of an ATaG program, the compiler generates a set
of templates for the different task types that programmers fill with the impera-
tive code required. Figure 25 depicts a fragment of imperative code for the Sam-
pler task. The ATaG compiler generates a loop containing only the sleep instruction
whose parameter reflects the periodic rule used for the same task. In the case of
Cluster-Head, as illustrated in Figure 26, the handleDataItem function is entirely filled

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:30 L. Mottola and G. P. Picco

// Asynchronously called when data is available on some input channel
void handleDataltem(TemperatureDataltem t) {

// Written by the programmer
int temperature = getDataFrom(t);
updateAverage (temperature)

}

/7 ...

0O U WN -

Fig. 26. Fragment of the imperative code for the Cluster-Head tasks of Figure 24.

Y

o, Programming
Support

—»{ Building block

¥

Application
Layer Focus [—

]

Vertical

E Architecture

Low-level
Configuration

y Y Y ¥

Interface

Hardware

Execution
Environment

Y
[

Fig. 27. A taxonomy of architectural aspects in WSN programming abstractions.

by programmers to process temperature readings arriving through one of the input
channels.

Implementation Highlights. The ATaG compiler takes as input the description of
tasks and channels, examines the corresponding flow of data, and decides on the allo-
cation of tasks to nodes depending on information on the target environment, (e.g., the
location of nodes). The output of the compiler targets a dedicated node-level runtime
layer designed to be highly modular [Bakshi et al. 2005]. Some of the mechanisms
are, however, not provided beforehand. For instance, the programmer must provide the
most appropriate routing scheme, depending on the specific application and target en-
vironment. Logical Neighborhoods, described in Section 5.1.3, is used as an underlying
communication layer when task allocation is determined based on the application-level
properties of the nodes.

6. PROGRAMMING WIRELESS SENSOR NETWORKS: ARCHITECTURAL ASPECTS

The objective of this section is to understand the impact of a given programming
approach on the design and development of WSN applications. Specifically, we study the
relationships among the various programming solutions in the context of the reference
architecture we identified in Section 3. Figure 27 provides a bird’s eye view on our
taxonomy of architectural aspects.

6.1. Programming Support

The first dimension we investigate deals with the extent to which a given programming
abstraction provides support to the programmer. Some of the existing approaches are
meant to be the only tool that programmers use in developing applications. However,
recently it has been observed that smaller, composable building-blocks could be a way
to tackle the complexity of WSN applications [Embedded WiSeNts Project 1.

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:31

Application Application Application
GRA |
o8
22

TinyDB S| 2| Hood | nesC

nesC Qg
=

TinyOS TinyOS TinyOS

Hardware Hardware Hardware

(a) TinyDB: Holistic program- (b) GRA: Building block pro- (c) Hood: Vertical layer focus.
ming support, Application- gramming support.
layer focus.

Fig. 28. Architectural issues: Programming Support vs. Layer Focus.

Classification. Based on the preceding observations, we make a distinction along the
following lines.

—Holistic solutions are intended to be used as the only programming support, and are
unable to work in combination with other approaches.

—Building blocks are conceived to be used in conjunction with other solutions, each
targeting independent issues.

The preceding distinction is further illustrated in Figure 28(a) and 28(b). The major-
ity of existing WSN programming approaches falls in the former class. For instance,
TinyDB [Madden et al. 2005], illustrated in Section 5.1.4, addresses the needs of most
data collection applications by itself, without leaving room for integration with other
programming solutions, as shown in Figure 28(a). In contrast, as an example of a
building-block solution, here we describe Generic Role Assignment (GRA) [Frank and
Romer 2005, 2006]. As shown in Figure 28(b), GRA is not meant to provide complete
support for application development, rather it is designed to focus on a specific facet of
WSN programming and to work in conjunction with other approaches.

6.1.1. Building-Block: Generic Role Assignment (GRA). Overview. GRA tackles the problem
of dynamically self-configuring WSN nodes according to programmer-specified require-
ments, whereas it leaves concerns such as data collection and dissemination to other,
complementary, solutions. To address the configuration issue, GRA provides a declar-
ative role-specification language and distributed algorithms for dynamic role assign-
ment. A role specification is a list of role-rule pairs. For each role, the corresponding
rule describes the conditions for the role to be assigned to the local node. Rules are
expressed as Boolean predicates referring to the properties of the node considered (e.g.,
remaining energy or geographical location), or to the properties of other nodes within a
given number of hops (e.g., how many temperature sensors are reachable within three
hops). Using the constructs provided, a wide range of role assignment problems can be
expressed, from cluster-head election to coverage, as described next.

Example. Consider the classic coverage problem. A certain geographical area is said

to be covered if every physical point in the area lies within the observation range of at
least one sensor node. If nodes are densely deployed, redundant nodes can be turned

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:32 L. Mottola and G. P. Picco

ON :: {
temp-sensor == true &&
battery >= threshold &&
count (2 hops) {
role == ON &&
dist (super.pos, pos) <= sensing-range
} <=1}
OFF :: else

0O U WN -

Fig. 29. A GRA role specification for the coverage problem.

off to save energy. However, when active nodes run out of power, the redundant nodes
must be switched back on.

The above application essentially requires a proper assignment of the roles ON and
OFF to nodes, and an update of the assignment when nodes join or fail. Figure 29,
adapted from Frank and Rémer [2005], shows the corresponding role specification. For
a given node to take the ON role, it must have a temperature sensor, a minimum battery
level, and at most another node with role ON within the node’s sensing range (lines 1-7).
The latter condition is specified using the count operator. This takes as input a number
of hops and returns the number of nodes within a range matching the specification in
curly braces. If a node does not match the conditions for the ON role, it defaults to OFF
(line 8).

Implementation Highlights. All nodes in the network are provided with the complete
role specifications. Based on these rules, the nodes evaluate how many hops they need
to push their local information to let other nodes evaluate their rules. To account for
changing node properties and network dynamics, the role specifications are periodi-
cally re-evaluated. In the former case, a node re-evaluates the specification only if the
property change may affect its own role or the one of some other node. As each node
is aware of the complete role specification, this decision can be taken locally. As for
topology changes, distributed protocols are provided to recognize when nodes join or
fail and to trigger a re-evaluation of the current role assignment.

6.2. Layer Focus

In contrast to the previous dimension, here we look at which architectural layers are
the main focus of the approach under consideration. Essentially, we are considering
whether a programming approach provides support only for the application level or
spans other levels of the reference architecture in Figure 4.

Classification. The preceding considerations suggest the following classification.

—Application-level solutions are intended to only support development of end-user
applications, that is, the topmost layer in Figure 4.

—Vertical solutions, instead, potentially provide support throughout all layers. These
approaches can be used, for instance, to implement localization or routing mecha-
nisms.

The distinction can be understood by again relying on Figure 28. TinyDB is an exam-
ple of a system that focuses entirely and solely on the application layer. In contrast,
Figure 28(c) shows that the Hood system [Whitehouse et al. 2004], described next, can
be used to implement any of the software layers on top of the operating system.
Interestingly, Figure 28 also clarifies the relation between the two dimensions of
classification just introduced, that is, Programming Support and Layer Focus. Loosely
speaking, the former focuses on whether multiple approaches can coexist horizontally,

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:33

generate attribute LightAttribute from int;

generate neighborhood LightHood {

wire filter LightThrehshold;

set max_neighbors to 5;

reflection LightRefl from LightAttribute;
}

N O U R WN

Fig. 30. Reading light values using Hood.

below the application layer, whereas the latter focuses on whether a single approach is
able to extend vertically throughout the reference architecture.

6.2.1. Vertical: Hood. Overview. Hood provides a notion of neighborhood as a program-
ming primitive in nesC. Constructs are provided to identify a subset of a node’s physical
1-hop neighbors based on application criteria and to share state with them. A node ex-
ports information in the form of attributes, defined by the programmer at compile-time.
Membership in a Hood neighborhood is specified by filters, Boolean functions determin-
ing whether a node is part of a neighborhood based on the value of its attributes. If so,
a mirror for that particular neighbor is created on the local node. The mirror contains
both reflections, that is, local copies of the neighbor’s attributes used to access the shared
data, and scribbles, which are local annotations about that neighbor. The complexity
of node discovery and data sharing is dealt with by the underlying Hood runtime. Ac-
cording to Whitehouse et al. [2004], Hood can provide support in developing a wide
range of functionality, including applications, time synchronization and other system
services, and MAC protocols. This naturally fosters cross-layer interactions. Indeed,
Whitehouse et al. [2004] describe an object-tracking application that exploits differ-
ent neighborhoods for routing, localization, and application-level processing of track-
ing information, where information is shared across different functionalities through
scribbles.

Example. Consider an application to monitor the light intensity. Figure 30 depicts a
fragment of Hood code, adapted from Whitehouse et al. [2004], that defines a neigh-
borhood containing light sensors whose current reading is above a threshold.

The generate construct is used to define an attribute or to declare a new neighbor-
hood. As for the former, programmers create a LightAttribute out of an integer value
(line 1), while the LightHood neighborhood is created (lines 3-7) by specifying the fil-
ter for establishing membership in this neighborhood (LightThreshold), the maximum
number of members of this neighborhood (5), and the specific attribute mirrored on the
local node. The actual processing to implement the filter is supposed to be provided as
a nesC module implementing a standard interface.

A simple API is provided to interact with the neighborhood in the application code.
nesC commands can be used to iterate through the current members of a neighborhood
and access their local mirrors, while nesC events are defined that fire when the value
of a locally mirrored attribute changes.

Implementation Highlights. The Hood constructs to define attributes and neighbor-
hoods are given as input to a dedicated preprocessor that outputs plain nesC code.
The underlying distributed implementation is based on a periodic 1-hop broadcasting,
along with filtering on the receiver side. This mechanism is also employed for neighbor
discovery and maintenance. In case the application wishes to control the dissemination
of local information directly (e.g., because of a sudden increase in a sensed value or
to adhere to specific timing constraints), it can also force a broadcasting of the local
attributes on demand.

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:34 L. Mottola and G. P. Picco

6.3. Low-Level Configuration

Some of the existing solutions provide interfaces to the lower layers to give applications
the ability to adapt the system behavior to changes in the application goals or in the
network conditions. This feature is essential to enable cross-layer interactions and
reduce resource consumption.

Classification. We can therefore distinguish between systems, where:

—the configuration parameters are fixed at compile-time. Programmers are relieved
from the burden of handling details deep down in the stack. However, this prevents
adaptation strategies to percolate down the architecture.

—dedicated interfaces are provided to access the lowest layers. Programmers can fine-
tune various system aspects and explore tradeoffs between performance and resource
consumption. However, the responsibility of ensuring that this tuning preserves an
acceptable system behavior lies on the programmer’s shoulders.

A relevant fraction of the available approaches falls in the former category. For instance,
in Pleiades, the communication layer is essentially a black box that cannot be tuned at
runtime. To exemplify the latter category, we next illustrate the MiLAN middleware
[Heinzelman et al. 2004].

6.3.1. Interface to Lower-Levels: MiLAN. Overview. MiLAN focuses on applications where
programmers are to trade off system lifetime for data quality (e.g., health monitoring
applications). MiLAN allows applications to specify their requirements using a notion
of quality of service (QoS) for different variables of interest, where the QoS of a vari-
able is a function of the specific sensors used to compute the variable’s value. As these
requirements may change over time, the application is described using a state machine
with different QoS requirements associated to different states. Programmers also spec-
ify the quality of data provided by physical sensors to the evaluation of every variable
of interest. Based on this information, MiLAN computes the application, feasible set,
that is, the subset of nodes that collectively provide a QoS greater than or equal to
the minimum acceptable by the application. In the presence of multiple feasible sets,
MiLAN chooses the order in which they should be applied to minimize energy costs and
maximize the system lifetime. As the application state changes, MiLAN recomputes
the feasible sets and possibly performs the reconfiguration needed to gather data from
a different subset of physical sensors.

Example. Consider an application to implement a personal health monitor using
various WSN devices. Depending on the current patient status, a different QoS is
required.

Figure 31(a) describes the QoS requirements that depend on the patient’s respiratory
status, adapted from Heinzelman et al. [2004]. In normal situations, it is sufficient to
monitor the respiratory rate with 30% quality. When the patient has some respira-
tory problem—and the application state changes accordingly—it becomes necessary to
gather more information to explain the cause of the problem. Thus, the application re-
quires us to obtain the respiratory rate with a minimum of 80% quality, and to measure
the percentage of blood oxygen with at least 30% quality. Figure 31(b) shows how the
respiratory rate can be obtained from the physical sensors. A respiratory sensor can
provide such a reading with 90% quality (in the aforementioned QoS sense), whereas
an ECG device can provide the same information with 70% quality. Based on this in-
formation, MiLAN determines that under normal conditions the respiratory rate can
be obtained with either the respiratory sensor or the ECG. The one maximizing the
system lifetime is configured to provide the actual reading. On the contrary, when the

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:35

P - Respiratory rate ~<
/ N \
/ \
| \ -
Respirator
\ R Normal High/Low Y piratory
-
9,)
30% 80% 30% 90%, 70%
Respiratory Blood Respiratory
sensor
Rate Oxygen

(a) Variables and required QoS based on the (b) QoS provided by different sensors
application state. to different variables of interest.

Fig. 31. Specifying QoS with MiLAN in a health-care application.

patient is experiencing some respiratory problem, MiLAN recognizes that the only de-
vice providing a sufficient QoS is the respiratory sensor and reconfigures the network
accordingly.

Implementation Highlights. MiLAN is implemented in C. The internal architecture
is designed to use different network plug-ins for interoperating sensors of a different
nature, ranging from 802.11-based devices to Bluetooth nodes. The specific network
plug-in is aware of all the network-specific features (e.g., routing) and tuning parame-
ters that can be exploited to prolong the lifetime of a feasible set. A service discovery
protocol such as SDP [Avancha et al. 2002] is used to find new nodes and to trigger a
reconfiguration in case of failing devices.

6.4. Execution Environment

WSN implementations are generally difficult to port. Therefore, when it comes to
applying a given programming approach in a real application, programmers must
consider the specific hardware platforms that are explicitly supported. Nevertheless,
despite the plethora of available approaches, the range of officially supported platforms,
as reported in the current literature, is surprisingly narrow.

Classification. Existing systems can typically be executed in two different ways.

—On real hardware. with the exception of Logical Neighborhoods, which also runs on
Contiki, all systems surveyed rely on TinyOS as an operating system, and should
in principle support any TinyOS-compliant WSN platform. However, efficiently sup-
porting a given hardware platform often requires a considerable effort in custom
optimizations.

—Through simulation. typically used to assess the performance of a given solution,
rather than providing direct support to the programmer. TOSSIM [Levis et al. 2002],
the TinyOS simulator or custom-made simulators are common choices. A few works
(e.g., Li et al. [2004]) relied on simulators borrowed from research on mobile ad hoc
networks such as GlomoSim [Zeng et al. 1998].

7. COMPLETING THE PICTURE

In this section we complete our survey of the state of the art in WSN programming
approaches by describing systems other than those we used as examples thus far.

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:36 L. Mottola and G. P. Picco

However, due to space constraints, we cannot provide complete descriptions, including
code fragments, here.

Cougar [Yao and Gehrke 2002]. Similarly to TinyDB, Cougar provides programmers
with a SQL-like interface to query the WSN, yet it lacks constructs to express fine-
grained control flows. Thus, it is geared towards pure data collection applications. At
the system level, Cougar is also based on a routing tree rooted at the user base station,
like TinyDB. The techniques used to achieve energy efficiency are, however, different.
For instance, Cougar tries to push selection operators down the routing tree to reduce
the amount of data flowing up, yet it does not consider acquisitional issues, as TinyDB
does.

FACTS [Terfloth et al. 2006]. The FACTS middleware provides a rule-based pro-
gramming model inspired by logical reasoning in expert systems. Data is represented
as facts in a dedicated repository. The appearance of new facts triggers the executions
of one or more rules, which may generate new facts or remove existing ones. Pure C
functions can be used to interact with sensing devices and provide inputs to the cre-
ation of new facts. Facts can be shared among different nodes. The basic communication
primitives provide 1-hop data sharing, although multihop protocols can be employed
in collaboration with the basic rule engine.

Flask [Mainland et al. 2008]. A data-flow language is at the core of Flask’s program-
ming model. The flow is specified by wiring data operators in an acyclic graph. Each
operator is a computational unit taking multiple inputs and producing a single out-
put value. The control flow migrates across operators in a depth-first manner. Different
operators can be located on different nodes, and are interconnected using a publish/sub-
scribe infrastructure. The underlying routing scheme can be changed by programmers
on a per-application basis. Flask programs are translated into executable nesC code by
a dedicated preprocessor. Flask is also designed for building higher-level abstractions
in terms of data-flow operators. As an example, Mainland et al. [2008] show how to map
SQL constructs to Flask primitives, building a database abstraction based on Flask.

Kairos [Gummadi et al. 2005]. The Kairos programming model adopts a central-
ized perspective similar to Pleiades. Three fundamental programming constructs are
provided as extensions to the Python language. Programmers use these constructs to
read/write variables at nodes, to address specific nodes, and to iterate through the
1-hop neighbors of a node. This enables expressing the required functionality in a
way that resembles the high-level descriptions of algorithms used in textbooks. Unlike
Pleiades, Kairos only provides an eventual consistency model for data shared among
nodes. As a result, most of the complexity required to implement the Kairos program-
ming model can be dealt with by a dedicated preprocessor, while only a minimalistic
runtime support is required on the WSN nodes.

MacroLab [Hnat et al. 2008]. MacroLab is a programming model based on vector
operations, similar to MatLab programs. The authors introduce a notion of macrovector,
where one dimension in the vector is indexed by node identifiers. For instance, light
readings in the system may be stored in a macrovector, and a node identifier may
be used to access the reading at a specific device. In addition, a neighborhood-based
extension of macrovectors may be used to slice a large macrovector to include only data
at neighboring nodes. The system allows programmers to use operators for standard
vector arithmetic and a “dot-product” operator useful to select different elements of a
vector at different nodes. MacroLab programs are fed as input to a “decomposer” that
outputs executable code operating in a distributed fashion at a central base station or
halfway between the two extremes. The decision on which implementation to use is

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:37

taken by a dedicated cost analyzer. This examines the expected system performance
based on a cost profile associated to the target deployment, which includes information
such as the characteristics of the topology or the power profile of the hardware.

Market-Based Programming [Mainland et al. 2004]. In this programming frame-
work, the objective is to obtain globally efficient behavior under dynamic conditions.
Every node is characterized by the actions it can take, the corresponding cost, and a
possible reward the node receives in exchange for performing a given action. To max-
imize its own profit, nodes autonomously decide which actions to take based on the
current rewards, the actions’ cost, and the surrounding context. The user induces the
desired behavior by dynamically changing the rewards given to nodes for each type of
action. Communication is delegated to a specific routing scheme chosen by program-
mers, depending on the application’s requirements.

Pieces [Liu et al. 2003]. The focus of Pieces is on collaborative applications where
multiple, geographically-related data must be processed, supported by a programming
abstraction based on a notion of group. Similarly to Abstract Regions, system support
must be provided on a per-group basis. Constructs are provided to determine the role
of nodes in a group (e.g., to determine when a node is to be elected as the leader)
and to share information. The application processing is expressed in discrete steps as
input/output operations on state variables. The inputs are governed by sensed data,
whereas the outputs are the result of some processing based on the previous values of
state variables and the current inputs.

RuleCaster [Bischoff and Kortuem 2007]. The programming model of RuleCaster
is centered on a logical partitioning of the network in several spatial regions. Each
region is in one discrete state. Rules specify state transitions in each region based on
sensed data. Similarly to to Datalog-like languages, each rule consists of a body part
specifying the conditions for the rule to fire, and a head part specifying the actions to
perform. The RuleCaster compiler takes as input the application rules and a network
model describing node locations and capabilities, and decides how to split the actual
processing among the nodes. The compiler also determines whether to use a centralized
distribution scheme where a single node is in charge of the entire processing or a
distributed strategy with one node per region managing the corresponding processing.

SensorWare [Boulis et al. 2003; Boulis et al. 2007]. Similarly to Agilla, SensorWare
allows moving TCL-based scripts from node to node, providing support for multiple
applications running concurrently on the same network. Nonetheless, unlike Agilla, it
only provides weak mobility (i.e., the state does not move with code), which results in
the program execution always restarting from the beginning on arrival on a new node.
Coordination is accomplished by using direct communication instead of shared memory
spaces. When migrating code, policies regarding the energy required by a given script
can be specified to determine its acceptance on a node. The current implementation
targets fairly powerful devices, for example, PDAs like Compaq iPAQs or embedded
devices with XScale processors.

SINA [Shen et al. 2001]. The SQL dialects used in TinyDB and Cougar do not al-
low easy integration of custom data operators in addition to the built-in ones. SINA
overcomes this limitation by complementing SQL-like declarative constructs with an
imperative language called SQTL. This enables the injection of arbitrary code into the
network. Support is provided to export the outcome of SQTL-based processing as query
results. For instance, an additional aggregation function can be injected in the network
at runtime, and made available to programmers for use in later SQL queries. Thus,
programmers can dynamically enrich the set of SQL primitives, depending on changing

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:38 L. Mottola and G. P. Picco

requirements. This enables the description of more sophisticated coordination patterns
w.r.t. pure SQL. For instance, cluster-based data collection can be implemented using
SQTL, and the results gathered using an enhanced SQL query.

snBench [Ocean et al. 2006]. This programming framework targets shared, mul-
tiuser sensor networks and provides a strongly-typed, functional language to express
the application processing. However, loops and assignments to local variables are also
allowed, hence partially deviating from a purely functional paradigm. In the imple-
mentation, a central entity keeps track of the current status of every node in the
system and injects processing units in the network. In doing so, the processing units
are optimized to take advantage of the programs’ shared dependencies, with the goal of
making more efficient use of computation, network, and storage resources. Processing
occurs on fairly powerful nodes controlling several sensors, as opposed to mote-class
nodes usually equipped with a few sensing devices.

Spatial Programming [Borcea et al. 2004]. The system is based upon a logical ad-
dressing scheme coupled with a lightweight form of mobile code. In Spatial Program-
ming, the environment is viewed as a single address space, and nodes are accessed
using spatial references. These references refer to the expected physical location of a
node (e.g., hill:camera[0]), and may optionally point to some property of the node
itself, for example, whether the node is currently active. A dedicated runtime system
maintains the mapping from spatial references to the physical nodes. Smart Messages,
a lightweight scripting language, is used to migrate code and data across nodes. A
shared memory space is provided for coordination among Smart Messages, and also
used to determine how to route a smart message at each hop. This allows changing the
routing policy dynamically.

Virtual Nodes [Ciciriello et al. 2006]. As an extension of Logical Neighborhoods, de-
scribed in Section 5.1.3, Virtual Nodes abstract programmer-specified subsets of nodes
into a single, logical one, which takes the form of a virtual sensor or a virtual actuator.
The former abstracts the data sensed by real sensors into the reading of single, fictitious
node, whereas the latter provides a single handle to control a distributed set of actua-
tors. Virtual nodes are specified using the Spidey language of Logical Neighborhoods
by binding some node attributes to previously defined neighborhoods. Communication
support for virtual actuators is provided by the Logical Neighborhood routing layer.
The routing scheme in Ciciriello et al. [2007] is used to support virtual sensors, with fur-
ther automatic customizations performed by the Spidey compiler to enable in-network
aggregation.

8. APPLYING THE TAXONOMY: A VIEW OF THE STATE
OF THE ART & RESEARCH DIRECTIONS

In this section we take a snapshot of the current state of the art in WSN programming
approaches by classifying the systems we described thus far along the dimensions we
identified in our taxonomy. The systems and corresponding references in the literature
are summarized in Figure 32. Figure 33 and 34 map the systems on the taxonomy of
language issues presented in Section 5. Figure 35 maps the systems on the architectural
issues discussed in Section 6. Finally, Figure 36 concludes by mapping the systems
back to the application requirements distilled in the taxonomy of WSN applications we
presented in Section 2. In discussing these mappings, we take the opportunity to draw
some general considerations.
Figures 33 and 34 suggest the following considerations about language aspects:

—Making communication implicit is a common design choice to raise the level of
abstraction. Relieving programmers from the burden of dealing with message

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks

Programming
Abstraction

References

Abstract Regions

[Welsh and Mainland 2004]

Abstract Task Graph

[Bakshi et al. 2005; Mottola et al. 2007]

Active Messages/nesC

[Culler et al. 2001; Gay et al. 2003]

Agilla [Fok et al. 2005]

Cougar [Yao and Gehrke 2002]

DSWare [Li et al. 2004]

EnviroSuite/ Enviro Track [Abdelzaher et al. 2004; Luo et al. 2006]
FACTS [Terfloth et al. 2006]

Flask [Mainland et al. 2008]

Generic Role Assignment

[Frank and Romer 2005; 2006]

Hood

[Whitehouse et al. 2004]

Kairos

[Gummadi et al. 2005]

Logical Neighborhoods

[Mottola and Picco 2006a; 2006b]

MacroLab

[Hnat et al. 2008]

Market-based programming

[Mainland et al. 2004]

MiLAN [Heinzelman et al. 2004]

Pieces [Liu et al. 2003]

Pleiades [Kothari et al. 2007]

Regiment [Newton and Welsh 2004; Newton et al. 2007]
RuleCaster [Bischoff and Kortuem 2007]
SensorWare [Boulis et al. 2003; Boulis et al. 2007]

Spatial Programming

[Borcea et al. 2004]

SINA [Shen et al. 2001]
snBench [Ocean et al. 2006]
Snlog [Chu et al. 2007]
TeenyLIME [Costa et al. 2006; 2007]
TinyDB [Madden et al. 2005]

Virtual Nodes

[Ciciriello et al. 2006]

Fig. 32. Literature references related to the programming approaches surveyed.
Programming [Communication |
Abstraction | Scope | Addressing | Awareness |
Abstract Regions Multi-hop group, Non-connected Logical Implicit
Abstract Task Graph Multi-hop group, Non-connected Logical Implicit
Active Messages/nesC Physical neighborhood Physical Explicit
Agilla Routing dependent Physical Implicit
Cougar System-wide Logical Implicit
DSWare System-wide Physical Implicit
EnviroSuite/ EnviroTrack Multi-hop group, Connected Logical Implicit
FACTS Physical neighborhood Physical Implicit
Flask Routing dependent Routing Implicit
Generic Role Assignment Multi-hop group, Connected Logical Implicit
Hood Physical neighborhood Logical Implicit
Kairos Physical neighborhood Physical Implicit
Logical Neighborhoods Multi-hop group, Non-connected Logical Explicit
MacroLab System-wide Physical Implicit
Market-based programming System-wide Logical Implicit
MiLAN Routing dependent Physical Explicit
Pieces Multi-hop group, Connected Logical Implicit
Pletades Physical neighborhood Physical Implicit
Regiment Multi-hop group, Connected Logical Implicit
RuleCaster Multi-hop group, Connected Logical Implicit
SensorWare Physical neighborhood Physical Implicit
Spatial Programming Multi-hop group Non-connected Logical Implicit
SINA System-wide Logical Implicit
snBench Multi-hop group, Non-connected Logical Implicit
Snlog Physical neighborhood Physical Implicit
TeenyLIME Physical neighborhood Physical Implicit
TinyDB System-wide Physical Implicit
Virtual Nodes Multi-hop group, Non-connected Logical Implicit

Fig. 33.

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:39

Mapping WSN programming abstractions to the taxonomy in Figure 6; language aspects dealing
with communication.

19:40

L. Mottola and G. P. Picco

Programming Computation Data Access Programming
Abstraction Scope Model Paradigm
Abstract Regions Group Data sharing Imperative, Sequential
Abstract Task Graph Local Data sharing Hybrid

Active Messages/nesC Local Message passing Imperative, Event-driven
Agilla Local Mobile code Imperative, Sequential
Cougar Global Database Declarative, SQL-like
DSWare Global Message passing Declarative, SQL-like
EnviroSuite/ Group Data sharing Imperative, Event-driven
EnviroTrack

FACTS Local Data sharing Declarative, Rule-based
Flask Local Message passing Declarative, Functional
Generic Role Local Data sharing Declarative, Special-purpose
Assignment

Hood Local Data sharing Imperative, Event-driven
Kairos Local Data sharing Imperative, Sequential
Logical Neighborhoods Local Message passing Declarative, Special-purpose
MacroLab Global Data sharing Imperative, Sequential
Market-based Global Data sharing Declarative, Special-purpose
programming

MiLAN Local Message passing Imperative, Event-driven
Pieces Group Data sharing Imperative, Event-driven
Pleiades Local Data sharing Imperative, Sequential
Regiment Group Data sharing Declarative, Functional
RuleCaster Group Data sharing Declarative, Rule-based
SensorWare Local Mobile code Imperative, Sequential
Spatial Programming Group Mobile code Imperative, Sequential
SINA Global Database/Mobile code Hybrid
snBench Group Data sharing Declarative, Functional
Snlog Local Data sharing Declarative, Rule-based
TeenyLIME Local Data sharing Imperative, Event-driven
TinyDB Global Database Declarative, SQL-like
Virtual Nodes Group Data sharing Imperative, Event-driven

Fig. 34. Mapping WSN programming abstractions to the taxonomy in Figure 6; language aspects dealing
with computation scope, data access model, and programming paradigm.

parsing and serialization is indeed fundamental to making application develop-
ment more rapid and less error-prone. Not surprisingly, the few proposals forcing
programmers to deal directly with communication rely on message-passing prim-
itives, and are therefore closer to the communication pattern made available by
the operating system. On the other hand, the use of messages in the program-
ming model does not necessarily entail explicit communication. Systems such as
Flask and DSWare do embody some notion of message to provide access to data,
yet they hide communication from programmers to a great extent. In these sys-
tems, messages are used at a higher-level of abstraction, essentially as containers of
information.

—There appears to be a relationship between the communication scope (Figure 33) and
the data access model (Figure 34) provided by a given programming approach. Es-
sentially all systems providing a system-wide communication scope adopt a database
access model. Similarly, systems supporting multihop groups usually export a data
sharing model, with the only exception of Logical Neighborhoods. Behind the re-
lationship between communication scope and data access model is the objective of
providing the programmer with higher levels of abstraction as the communication
span approaches the entire system. At an extreme, when the entire system is ab-
stracted away, it can be regarded just like any other data source, and therefore
accessed like a database. The singularity of Logical Neighborhoods is motivated by
its role as a building-block for higher-level functionality. In this respect, it is the op-
erating system interface (i.e., the message-passing facility) whose abstraction level
is raised, instead of the application programming interface.

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:41
Programming Programming Layer Low-level Execution
Abstraction Support Focus Configuration Environment
Abstract Regions Holistic Application Interface TOSSIM
Abstract Task Graph Holistic Application Fixed JiST SWANS,

SunSPOT
Active Messages/nesC Holistic Vertical Interface All TinyOS

platforms
Agilla Holistic Application Fixed Mica2
Cougar Holistic Application Fixed NS-2
DSWare Holistic Application Fixed GlomoSim
EnviroSuite/ Holistic Application Fixed Mica2, XSM
EnwviroTrack
FACTS Holistic Vertical Fixed ESB, ScatterWeb
Flask Holistic Vertical Fixed TMote Sky
Generic Role Building block Vertical Fixed JSIM
Assignment
Hood Building block Vertical Interface Mica2
Kairos Holistic Application Fixed Mica2, Mica2Dot
Logical Neighborhoods Building block Vertical Interface TMote Sky, Mica2
MacroLab Holistic Application Fixed TMote Sky
Market-based Holistic Application Fixed TOSSIM
programming
MiLAN Holistic Application Interface N/A
Pieces Holistic Application Fixed Custom simulator
Pleiades Holistic Application Fixed TelosB
Regiment Holistic Application Fixed Custom simulator
RuleCaster Holistic Application Fixed N/A
SensorWare Holistic Application Fixed iPAQ, XScale
Spatial Programming Holistic Application Interface iPAQ
SINA Holistic Application Fixed Custom simulator
snBench Holistic Application Fixed Custom simulator
Snlog Holistic Vertical Fixed TMote Sky
TeenyLIME Holistic Vertical Fixed TMote Sky

Chess MyriaNed

TinyDB Holistic Application Fixed Mica2
Virtual Nodes Holistic Application Fixed Mica?2

Fig. 35. Mapping WSN programming abstractions to the taxonomy in Figure 27; architectural aspects.

Although we noted that the communication scope implies the data access model,
the vice versa does not hold. Indeed, the data sharing model (unlike the database
one) can also be useful when the communication scope is limited to the physical
neighborhood, as witnessed by FACTS, Hood, Kairos, Pleiades, Snlog, and TeenyLiIME.

—Interestingly, another relationship exists between the communication scope and the
computation scope. Looking at the corresponding columns in Figures 33 and 34, a
global computation scope always implies a system-wide communication scope and,
similarly, a group computation scope always implies a multihop group communica-
tion scope. This is natural, as the ability to affect nodes through computation implies
the ability to restrict communication to such nodes. However, again, the reverse
does not necessarily hold. While all systems supporting system-wide communication
naturally support a global computation scope, there are systems (i.e., ATaG, GRA,
and Logical Neighborhoods) that support a group communication scope but resort
to local computation.

It is interesting to note that these aspects are not captured by alternative
classifications based on the notion of macroprogramming and/or a simple distinction
among node-, group-, and network-level approaches [Sugihara and Gupta 2008]. In
this case, the two aspects of communication and computation are fused together,
resulting in the inability to sharply distinguish between these orthogonal aspects.
Therefore, systems with rather distinct characteristics (e.g., Kairos and Regiment,
or Abstract Regions and Hood) are classified under the same umbrella.

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:42

L. Mottola and G. P. Picco

Programming Goal Interaction Mobility Space Time
Abstraction Pattern ‘ ‘ ‘
Abstract Regions Sense-only Depending Static Regional Periodic/
on region Event-triggered
Abstract Task Sense-and-react | Many-to-many Static Regional Periodic
Graph
Active Messages, Sense-only Many-to-many Static Regional Periodic/
nesC Event-triggered
Agilla Sense-only Many-to-many Static Regional | Event-triggered
Cougar Sense-only Many-to-one Static Global Periodic
DSWare Sense-only Many-to-one Static Regional | Event-triggered
EnviroSuite/ Sense-only Many-to-one Static Regional | Event-triggered
EnviroTrack
FACTS Sense-only Many-to-many Static Regional | Event-triggered
Flask Sense-only Many-to-many Static Global Periodic/
Event-triggered
Generic Role Sense-only Many-to-many Static Global Periodic/
Assignment Event-triggered
Hood Sense-only Many-to-many Static Regional Periodic
Kairos Sense-only Many-to-many Static Global Periodic/
Event-triggered
Logical Sense-and-react One-to-many Static Regional Periodic/
Neighborhoods Event-triggered
MacroLab Sense-only Many-to-one Static Global Periodic/
Event-triggered
Market-based Sense-only Many-to-one Static Global/ Periodic
programming Regional
MiLAN Sense-only Many-to-one Static Global Periodic
Pieces Sense-only Many-to-one Static Regional | Event-triggered
Pleiades Sense-only Many-to-many Static Global Periodic/
Event-triggered
Regiment Sense-only Many-to-one Static Regional | Event-triggered
RuleCaster Sense-and-react | Many-to-many Static Regional | Event-triggered
SensorWare Sense-only Many-to-one Static Global Periodic
Spatial Sense-only Many-to-one Static Regional | Event-triggered
Programming
SINA Sense-only Many-to-one Static Global Periodic
snBench Sense-only Many-to-one Static Regional | Event-triggered
Snlog Sense-only Many-to-many Static Global Periodic/
Event-triggered
TeenyLIME Sense-only/ Many-to-many Static Regional Periodic/
Sense-and-react Event-triggered
TinyDB Sense-only Many-to-one Static Global Periodic
Virtual Nodes Sense-and-react | Many-to-many Static Regional Periodic/
Event-triggered

Fig. 36. Mapping WSN programming abstractions to the application taxonomy in Figure 1.

—Finally, the computation scope also bears some influence on the programming
paradigm adopted. All the systems with a global computational scope adopt a
declarative approach. Indeed, this choice provides a great expressive power and
enables very concise descriptions of the application behavior. At the other extreme,
imperative approaches are common when the computation is local, and therefore
affects only individual nodes, a choice that mirrors the mainstream approach to
developing distributed applications. However, declarative approaches (e.g., FACTS,
GRA, and Snlog) targeting local computations also exist.

As for architectural aspects, Figure 35 prompts the following remarks.

—The diversity of WSN applications we pointed out in Section 2 is likely to require an
overarching approach where different programming abstractions collaborate into a
single, coherent framework [Embedded WiSeNts Project]. Unfortunately, very few
programming solutions (i.e., GRA, Hood, and Logical Neighborhoods) are designed as
building blocks, meant to work in collaboration with others. Although most existing
approaches are well-suited to particular application domains, they lack the ability

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:43

to be extended by or composed with others. The modularization of functionality into
building blocks that provide generic, reusable support for higher-level functionality
appears to be an open research issue, and possibly, an enabling factor for a wider
adoption of WSN technology.

—1It is often said that WSNs greatly benefit from cross-layer solutions or, more gener-
ally, from the ability to manipulate low-level aspects in order to optimize resource
consumption [Akyildiz et al. 2002]. Unfortunately, this trend is not reflected in the
current state of the art, where only a handful of systems provides some form of access
to the layers underlying the programming one. The reason probably lies in the dif-
ficulty faced by programmers in understanding how fine-grained tuning of low-level
parameters can affect the overall system performance, and by the absence of a gen-
eral, agreed-upon interface to low-level layers. However, the absence of such “hooks”
is likely to yield systems that are too rigid, and that may render the programming
solutions unable to adapt to different needs.

Architectural issues, however, are not entirely separated from language ones.

—All systems meant to support “vertical” development across all layers feature a local
computation scope. Indeed, developing low-level mechanisms demands control over
the behavior of individual nodes (e.g., as in the case of routing), therefore inherently
clashing with the perspective adopted by group and global computation, where nodes
tend to disappear into higher-level aggregates.

—Dually, none of the approaches characterized by a global computation scope feature
hooks into the lower levels of the stack. The level of abstraction provided in these
cases is usually too high to accommodate a similar functionality without affecting
the overall programming framework.

An important question is to what extent the current state of the art in programming
covers the needs of WSN applications. As we pointed out in the Introduction, as of
today only few real-world deployments leverage high-level programming abstractions
[Whitehouse et al. 2004; Buonadonna et al. 2005], and among these, only the deploy-
ment by Ceriotti et al. [2009] has been running continuously for months. However, the
mapping of programming abstraction onto applications that we provide in Figure 36
helps in understanding what kinds of applications have been targeted so far. Albeit
somewhat academic in nature, this helps in identifying areas not fully covered by the
current state of the art. Indeed, the mapping highlights how current approaches are
definitely skewed in the applications they target.

—Only a small fraction of existing solutions appears to be appropriate for sense-and-
react applications. As we already pointed out, the latter usually require many-to-
many interactions, as well as continuous monitoring limited to specific portions of
the system. The current state of the art appears, in general, ill-suited to these require-
ments, in that most systems privilege many-to-one interactions and/or a rather rigid
definition of communication scope, appropriate for applications revolving around
pure data collection. Interestingly, the systems surveyed appear to support regional
interactions to a greater extent in applications with event-triggered processing.

—A large body of research on communication issues in mobile sensor networks has
been carried out [Wang et al. 2007; Al-Karaki and Kamal 2004]. Nonetheless, none
of the programming solutions considered in our survey specifically addresses appli-
cations with mobile nodes or sinks. The requirements to meet in these scenarios
are, however, quite different from the challenges in static applications. Location is
usually of paramount importance, the network topology is even more dynamic, and
delay-tolerant interactions are often the only way to achieve communication. There-
fore, programmers must implement, on a per-application basis, mechanisms such as

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:44 L. Mottola and G. P. Picco

neighbor discovery as well as store-and-forward mechanisms. Ideally, higher-level
programming abstractions should be developed to shield programmers from these
aspects.

9. CONCLUSIONS AND OUTLOOK

Wireless sensor networks are a powerful technology with the potential to make the
vision of a truly pervasive computing environment a reality. However, despite the ad-
vancements in bringing smaller devices, more computation and communication power,
and an ever-increasing range of sensors and actuators, programming such a myriad of
devices remains the weakest link in the chain that leads to rapid and reliable WSN de-
ployments. This situation, currently hampering a wider acceptance of this technology,
will be overcome only when programming platforms will be simple enough to be used
by a domain expert and yet provide acceptable and predictable levels of performance
and reliability.

The research is still relatively far from this goal, although a number of approaches
have already been proposed. In this article we provide a systematic treatment of the
topic, proposing a taxonomy that identifies the fundamental dimensions characterizing
and distinguishing the various approaches. We extensively survey the state of the art
in programming WSNs, by classifying existing solutions against our taxonomy as well
as the application requirements typically posed by WSNs. This comprehensive view of
current efforts in simplifying the programming of WSNs was also the opportunity to
identify at a glance areas that require more research effort.

We conclude this article by pointing out a few additional open research issues which,
albeit not germane to our taxonomy, are however strongly related to programming
WSNs and for which solutions are sorely missing. Here we briefly comment on those
we believe to be most significant.

—Tolerance to failures. Various types of hardware faults are often observed in real de-
ployments [Werner-Allen et al. 2006]. However, most of the programming approaches
we examined provide only limited guarantees in these exceptional circumstances.
Nodes running out of battery power, for instance, are eventually recognized and
excluded from processing, although no time bounds are provided w.r.t. when this
happens. Transient faults, for example, those arising from sensors temporarily pro-
viding erroneous readings [Sharma et al. 2007], are usually not considered. Little or
no support is offered to programmers for dealing with these situations. As a result,
they are frequently forced to implement dedicated mechanisms on a per-application
basis. High-level programming frameworks where faults are a first-class notion are
necessary to ease development of WSN applications targeted to harsh environments.
For instance, programming constructs to identify erroneous sensor readings and
temporarily exclude a node from the processing may help programmers in improving
the fidelity of data.

—Debugging and testing. A few works recently addressed the problem of debugging
WSN applications. However, these systems are usually tied to a specific operating
system [Krunic et al. 2007; Yang et al. 20071, or are independent of the programming
language [Ringwald et al. 2007]. Consequently, they may signal to programmers that
something is not working, but without any detailed clues regarding the cause of the
problem or what part of the application might be the culprit. On the other hand,
none of the programming systems we considered in this article provide dedicated
support for testing the behavior of applications built using them. Further research
is required to augment high-level programming abstractions with the mechanisms
necessary to validate the system.

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:45

—FEvaluation methodology. In the current state of the art, programming frameworks
are usually evaluated quantitatively w.r.t. system performance. Most often, this is
achieved using ad-hoc examples of application- or system-level functionality and
some form of simulation. This practice, however, is largely unsatisfactory, along two
complementary dimensions.

(1) The examples used to evaluate the system performance span drastically dif-
ferent functionalities, and are implemented at considerably different levels of
detail. This may bear great impact on the outcome of the evaluation, ultimately
rendering the experiments unreproducible and the results uncomparable. To ad-
dress this issue, the WSN community may take inspiration from other fields
(e.g., databases) and conceive a set of clearly defined metrics and benchmark
functionality to be used in the evaluation of the system performance. These
may be based on staple WSN mechanisms, for example, data collection and time
synchronization, to widen the validity of the results.

(2) Although system performance is an important aspect, it is only half of what it
takes to assess the effectiveness of a programming approach. The gains brought
to the programmers’ productivity must also be evaluated. However, to investigate
this aspect, the only quantitative metric used in most of the existing approaches
is the number of lines of code. Among other things, this makes it almost impos-
sible to compare solutions based on different programming paradigms. This is a
problem by itself, and the software engineering community has long been work-
ing on code metrics [Fenton and Pfleeger 1998]. Due to the specific characteristics
of WSN programming, however, dedicated metrics are likely to be required.

—Real-world use. As already pointed out, real-world deployments based on high-level
programming frameworks are rarely reported in the literature. When it comes to
developing real-life WSN applications, programmers—often computer science or net-
working researchers themselves—prefer to spend the additional effort required to
use low-level abstractions and keep every single bit under control, rather than en-
deavor to use programming frameworks they cannot fully trust. However, this is not
a sustainable strategy, especially if application development is to be placed directly
into the hands of domain experts. Therefore, more effort is required to move WSN
programming abstractions from the labs to real deployments, not only to evaluate
their effectiveness concretely, but also by gathering fundamental feedback in steering
the design of the next generation of programming solutions.

References

ABDELZAHER, T., BLum, B., Cao, Q., CHEN, Y., Evans, D., GEORGE, J., GEORGE, S., Gu, L., HE, T., KRISHNAMURTHY, S.,
Luo, L., Son, S., STANKoVIC, J., STOLERU, R., AND WooD, A. 2004. EnviroTrack: Towards an environmental
computing paradigm for distributed sensor networks. In Proceedings of the 24th International Conference
on Distributed Computing Systems (ICDCS).

ABracH, H., BratTI, S., CARLSON, J., Da1, H., RosE, J., SHETH, A., SHUCKER, B., DENg, J., AND HaN, R. 2003.
MANTIS: System support for MultimodAl NeTworks of In-situ sensors. In Proceedings of the 2nd Inter-
national Conference on Wireless Sensor Networks and Applications (WSNA).

AbpuiNo SENSOR NODE PraTtrForM. www.arduino.cc.

AxviLDIZ, 1., SU, W., SANKARASUBRAMANIAM, Y., AND Cavircr, E. 2002. A survey on sensor networks. IEEE Comm.
Mag. 40, 8.

AxviLpiz, I. F. anp Kasmvmocry, 1. H. 2004. Wireless sensor and actor networks: Research challenges. Ad Hoc
Netw. J. 2, 4.

A1-Karagxi, J. aND Kamar, A. E. 2004. Routing techniques in wireless sensor networks: A survey. IEEE Wirel.
Comm. 11, 6.

ARORA, A., DuTTa, P., BaPAT, S., KUuLATHUMANTI, V., ZHANG, H., NAIK, V., MITTAL, V., CAO, H., DEMIRBAS, M., GOUDA,
M., CHor, Y., HErmaN, T., KUuLKARNI, S., ARUMUGAM, U., NESTERENKO, M., VORA, A., AND MivasHITA, M. 2004.
A line in the sand: A wireless sensor network for target detection, classification, and tracking. Comput.
Netw. 46, 5.

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:46 L. Mottola and G. P. Picco

AvaNcHa, S., JosHr, A., anp Finiy, T. 2002. Enhanced service discovery in bluetooth. IEEE Computer 35, 6.

BaxksHI, A., PATHAK, A., AND PrRasANNA, V. K. 2005. System-level support for macroprogramming of networked
sensing applications. In Proceedings of the International Conference on Pervasive Systems and Computing
(PSC).

BaksHi, A., Prasanna, V. K., ReicH, J., AND LarNER, D. 2005. The abstract task graph: A methodology for
architecture-independent programming of networked sensor systems. In Proceedings of the Workshop
on End-to-end Sense-and-Respond Systems (EESR).

Barpus, H., KLaBUNDE, K., AND MuscH, G. 2004. Reliable set-up of medical body-sensor networks. In Proceed-
ings of the European Workshop on Wireless Sensor Networks (EWSN).

BaronTi, P, Pinpai, P., CHook, V. W. C., CHESsA, S., GoTTa, A., aND Hu, Y. F. 2007. Wireless sensor networks: A
survey on the state of the art and the 802.15.4 and ZigBee standards. Comput. Comm. 30, 7.

Batanin, M. A., SUKHATME, G. S., AND HarTic, M. 2004. Mobile robot navigation using a sensor network. In
Proceedings of the International Conference on Robotics and Automation (ICRA).

BiscHorF, U. anD KorTUEM, G. 2007. A state-based programming model and system for wireless sensor net-
works. In Proceedings of the 3rd International Workshop on Sensor Networks and Systems for Pervasive
Computing (PerSens).

Brum, B., Nacarappi, P.,, Woop, A., ABDELZAHER, T., SoN, S., AND Stankovic, J. 2003. An entity maintenance
and connection service for sensor networks. In Proceedings of the 1st International Conference on Mobile
Systems, Applications and Services (MobiSys).

Bobpy SEnsor NETWORK NoDES. vip.doc.ic.ac.uk/bsn/index.php?article=926.

Borcea, C., INtTanacoNnwiwar, C., Kang, P., KREMER, U., AND IrTODE, L. 2004. Spatial programming using smart
messages: Design and implementation. In Proceedings of the 24th International Conference on Dis-
tributed Computing Systems (ICDCS).

Bouus, A., Han, C.-C., SHEA, R., AND Srivastava, M. B. 2007. SensorWare: Programming sensor networks
beyond code update and querying. Elsevier Pervasive Mobile Comput. oJ. 3, 4.

Bouus, A., Han, C.-C., AND SrivasTava, M. B. 2003. Design and implementation of a framework for efficient and
programmable sensor networks. In Proceedings of the 1st International Conference on Mobile Systems,
Applications and Services (MobiSys).

BTNope. www.btnode.ethz.ch.

BuoNADONNA, P., Gay, D., HELLERSTEIN, J., HonGg, W., AND MADDEN, S. 2005. TASK: Sensor network in a box. In
Proceedings of the 2nd European Conference on Wireless Sensor Networks (EWSN).

BuURRELL, J., BROOKE, T., AND BEckwiTH, R. 2004. Vineyard computing: Sensor networks in agricultural pro-
duction. IEEE Pervasive Computi. 3, 1.

Cao, Q., ABDELZAHER, T., StaNkovic, J., AND HE, T. 2008. The LiteOS operating system: Towards Unix-like
abstractions for wireless sensor networks. In Proceedings of the 7th ACM [IEEE International Conference
on Information Processing in Sensor Networks (IPSN).

CeriorTI, M., MoTTOLA, L., Picco, G. P., MURPHY, A. L., GUNA, S., CorrA, M., Pozzi, M., ZoNTa, D., AND ZANON, P.
2009. Monitoring heritage buildings with wireless sensor networks: The Torre Aquila deployment.
In Proceedings of the 8th ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN). (Best Paper Award.)

CHua, H., CHoi, S., Jung, 1., Kim, H., SHiN, H., Yoo, J., aND Yoon, C. 2007. RETOS: Resilient, expandable,
and threaded operating system for wireless sensor networks. In Proceedings of the 6th International
Conference on Information Processing in Sensor Networks (IPSN).

CHATZIGIANNAKIS, 1., MyLoNas, G., AND N1koLETSEAS, S. 2007. 50 ways to build your application: A survey of
middleware and systems for wireless sensor networks. In Proceedings of the International Conference
on Emerging Technologies and Factory Automation (ETFA).

Cuuy, D., Pora, L., TavakoL, A., HELLERSTEIN, J., LEViS, P., SHENKER, S., AND Stoica, I. 2007. The design and im-
plementation of a declarative sensor network system. In Proceedings of the 5th International Conference
on Embedded Networked Sensor Systems (SenSys).

CicriELLO, P., MoTTOLA, L., AND Picco, G. P. 2006. Building virtual sensors and actuator over Logical Neigh-
borhoods. In Proceedings of the 1st ACM International Workshop on Middleware for Sensor Networks
(MidSens).

CicirieLLo, P., MorToLa, L., aND Picco, G. P. 2007. Efficient routing from multiple sources to multiple sinks in
wireless sensor networks. In Proceedings of the 4th European Conference on Wireless Sensor Networks
(EWSN).

CONET. Research roadmap of the cooperating objects network of excellence. www.cooperating-objects .eu-
/roadmap/.

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:47

Cosrta, P., CouLsoN, G., GoLp, R., Lap, M., MascoLo, C., MoTToLA, L., Picco, G. P., SIVvAHARAN, T., WEERASINGHE, N.,
AND ZACHARIADIS, S. 2007. The RUNES middleware for networked embedded systems and its application
in a disaster management scenario. In Proceedings of the 5th International Conference on Pervasive
Communications (PerCom).

Cosrta, P., MotToLA, L., MURPHY, A. L., AND Picco, G. P. 2006. TeenyLime: Transiently shared tuple space mid-
dleware for wireless sensor networks. In Proceedings of the 1st International Workshop on Middleware
for Sensor Networks (MidSens).

Cosra, P, MorTora, L., MurpHy, A. L., anND Picco, G. P. 2007. Programming wireless sensor networks with the
TeenyLime middleware. In Proceedings of the 8th ACM | USENIX International Middleware Conference.

CrossBow TECH. www.xbow.com.
CULLER, D., HiLL, J., BuoNADONNA, P., SzEWCzYK, R., AND W00, A. 2001. A network-centric approach to embedded

software for tiny devices. In Proceedings of the 1st International Workshop on Embedded Software
(EMSOFT).

DemirkoL, 1., Ersoy, C., AND Aracoz, F. 2006. MAC protocols for wireless sensor networks: A survey. [EEE
Comm. Mag. 44, 4.

DErmMiBas, M. 2005. Wireless sensor networks for monitoring of large public buildings. Tech. rep., University
of Buffalo. www.cse.buffalo.edu/tech- reports/2005- 26.pdf.

DESHPANDE, A., GUESTRIN, C., AND MADDEN, S. 2005. Resource-aware wireless sensor-actuator networks. IEEE
Data Eng. 28, 1.

DuNkELS, A., GRONVALL, B., anD VoiaT, T. 2004. Contiki — A lightweight and flexible operating system for tiny
networked sensors. In Proceedings of the 1st Workshop on Embedded Networked Sensors.

DunkeLs, A., Scamipt, O., Voiar, T., aNp Ari, M. 2006. Protothreads: Simplifying event-driven programming of
memory-constrained embedded systems. In Proceedings of the 4th International Conference on Embedded
Networked Sensor Systems (SenSys).

ELsoN, J. AND RoEMER, K. 2003. Wireless sensor networks: A new regime for time synchronization. SIGCOMM
Comput. Comm. Rev. 33, 1.

EvBEDDED WISENTS ProjEcT. Embedded WiSeNts research roadmap. www.embedded-
wisents.org/dissemination/roadmap.html.

EswaraN, A., Rowg, A., AND RAJKUMAR, R. 2005. Nano-rk: An energy-aware resource-centric rtos for sensor
networks. In Proceedings of the 26th International Real-Time Systems Symposium (RTSS).

EucsTER, P., FELBER, P., GUERRAOUI, R., AND KERMARREC, A.-M. 2003. The many faces of Publish/Subscribe.
ACM Comput. Surv. 2, 35.

Eves WSN NobpEs. www.eyes.eu.org.

FEenToON, N. E. AND PFLEEGER, S. L. 1998. Software Metrics: A Rigorous and Practical Approach. PWS Publish-
ing, Boston, MA.

Fok, C.-L., Roman, G.-C., anp Ly, C. 2005. Rapid development and flexible deployment of adaptive wire-
less sensor network applications. In Proceedings of the 25th International Conference on Distributed
Computing Systems (ICDCS).

Frang, C. anp RoMER, K. 2005. Algorithms for generic role assignment in wireless sensor networks. In
Proceedings of the 3rd ACM Conference on Embedded Networked Sensor Systems (SenSys).

Frankg, C. AND ROMER, K. 2006. Solving generic role assignment exactly. In Proceedings of the14th International
Workshop on Parallel and Distributed Real-Time Systems (WPDRTS).

FucaeTTa, A., Picco, G. P., aND Viena, G. 1998. Understanding code mobility. IEEE Trans. Softw. Eng. 24, 5.

Gay, D., Levis, P, voN BEHREN, R., WELSH, M., BREWER, E., AND CULLER, D. 2003. The nesC language: A
holistic approach to networked embedded systems. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). ACM, New York.

GELERNTER, D. 1985. Generative communication in Linda. ACM Comput. Surv. 7, 1.

Gu, L. anp Stankovic, J. A. 2006. T-Kernel: Providing reliable OS support to wireless sensor networks. In
Proceedings of the 4th International Conference on Embedded Networked Sensor Systems (SenSys).
Gummapi, R., GNawaLl, O., aAND GoviNDaN, R. 2005. Macro-programming wireless sensor networks using
Kairos. In Proceedings of the 1st International Conference on Distributed Computing in Sensor Systems

(DCOSS).

Hapmv, S. anp MonawmeD, N. 2006. Middleware challenges and approaches for wireless sensor networks. I[EEE

Distrib. Syst. Online 7, 3.

Han, C.-C., Kumar, R., SHEA, R., KoHLER, E., AND SrivasTava, M. 2005. A dynamic operating system for sensor
nodes. In Proceedings of the 3rd International Conference on Mobile Systems, Applications, and Services
(MobiSys).

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:48 L. Mottola and G. P. Picco

Hartung, C., Han, R., SeELsTAD, C., AND HoLBROOK, S. 2006. FireWxNet: A multi-tiered portable wireless
system for monitoring weather conditions in wildland fire environments. In Proceedings of the 4th
International Conference on Mobile Systems, Applications and Services (MobiSys).

Heimnzerman, W. B., Murpny, A. L., CarvaLHo, H. S., aND PErILLO, M. A. 2004. Middleware linking applications
and networks. IEEE Network 18.

HenricksEN, K. AND RoBinsoN, R. 2006. A survey of middleware for sensor networks: State-of-the-art and
future directions. In Proceedings of the 1st ACM International Workshop on Middleware for Sensor
Networks (MidSens). ACM, New York.

Hr, J., Szewczyk, R., Woo, A., HOLLAR, S., CULLER, D., AND PisTER, K. 2000. System architecture directions
for networked sensors. In Proceedings of the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-IX).

Hnar, T., Sookoor, T., HoommewEr, P., WeEMER, W., AND WHITEHOUSE, K. 2008. Macrolab: A vector-based macro-
programming framework for cyber-physical systems. In Proceedings of the 6th International Conference
on Embedded Networked Sensor Systems (SenSys).

Hucses, D., GREENWOOD, P., BLAIR, G., CoUuLsON, G., GRACE, P., PAPPENBERGER, F., SmiTH, F., AND BEVEN, K. 2007.
An experiment with reflective middleware to support grid-based flood monitoring. Concurrency Comput.:
Pract. Exper. 23, 4.

INTANAGONWIWAT, C., GOVINDAN, R., ESTRIN, D., HEIDEMANN, dJ., AND Si1va, F. 2003. Directed diffusion for wireless
sensor networking. IEEE /ACM Trans. Netw. 11, 1.

IST CRUISE ProJect. Flood detection using sensor networks. www.ist- cruise.eu/cruise/business- deck/wsns-
applications/flood- detection- 1.

Juang, P, Oxi, H., Wang, Y., Martonosi, M., PeH, L. S., anp RuBensteIN, D. 2002. Energy-efficient computing
for wildlife tracking: Design tradeoffs and early experiences with ZebraNet. SIGPLAN Not. 37,10.

Ky, S., Son, S. H., Stankovic, J .A., L1, S., anp CHor, Y. 2003. Safe: A data dissemination protocol for periodic
updates in sensor networks. In Proceedings of the International Workshop on Data Distribution for
Real-Time Systems.

Kortnari, N., GumMapi, R., MiLLSTEIN, T., AND GoviNDAN, R. 2007. Reliable and efficient programming abstrac-
tions for wireless sensor networks. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). ACM, New York.

KRISHNAMURTHY, L., ADLER, R., BUONADONNA, P., CHHABRA, J., FLANIGAN, M., KUSHALNAGAR, N., NACHMAN, L., AND
Yarvis, M. 2005. Design and deployment of industrial sensor networks: Experiences from a semiconductor
plant and the North Sea. In Proceedings of the 3rd International Conference on Embedded Networked
Sensor Systems (SenSys).

Krunic, V., TRUMPLER, E., AND HaN, R. 2007. NodeMD: Diagnosing node-level faults in remote wireless sensor
systems. In Proceedings of the 5th International Conference on Mobile Systems, Applications and Services
(MobiSys).

Lampe, M. AND STRASSNER, M. 2003. The potential of RFID for moveable asset management. In Proceedings
of the Workshop on Ubiquitous Commerce at UbiComp.

LancenDOEN, K. anD REERS, N. 2003. Distributed localization in wireless sensor networks: A quantitative
comparison. Comput. Netw. 43, 4.

Levis, P. anD CULLER, D. 2002. Mate: A tiny virtual machine for sensor networks. In Proceedings of the 10th
International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-X).

Levis, P, Leg, N., WELsH, M., AND CULLER, D. 2002. TOSSIM: Accurate and scalable simulation of entire TinyOS
applications. In Proceedings of the 5th Symposium on Operating Systems Design and Implementation
(OSDI).

LEvis, P., MADDEN, S., Gay, D., PoLASTRE, J., SZEwczYK, R., Woo, A., BREWER, E., aAND CULLER, D. 2004. The
emergence of networking abstractions and techniques in TinyOS. In Proceedings of the 1st Symposium
on Networked System Design and Implementation (NSDI).

L1, S., Ly, Y., Son, S. H., Stankovic, J. A., anp WEL Y. 2004. Event detection services using data service
middleware in distributed sensor networks. Telecomm. Syst. 26, 2.

L1, X.-Y., Wan, P.-J., Wang, Y., anp FriEDER, O. 2002. Sparse power efficient topology for wireless networks. In
Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS).

Liu, J., CHEUNG, P., ZHAo, F., AND GuiBas, L. 2002. A dual-space approach to tracking and sensor management in
wireless sensor networks. In Proceedings of the 1st International Workshop on Wireless Sensor Networks
and Applications (WSNA).

Liu, J., Cau, M., REIcH, J., AND ZHAO, F. 2003. State-centric programming for sensor-actuator network systems.
IEEE Pervasive Comput. 2, 4.

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:49

Ly, T. anp Marronost, M. 2003. Impala: A middleware system for managing autonomic, parallel sensor
systems. In Proceedings of the 9th SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming.

Lorincz, K., MaLaN, D., FuLrorp-JonEs, T., NawoJ, A., CLAVEL, A., SHNAYDER, V., MAINLAND, G., WELSH, M.,
AND Mourron, S. 2004. Sensor networks for emergency response: Challenges and opportunities. IEEE
Pervasive Comput. 3, 4.

Luo, L., ABpELzAHER, T. F., HE, T., AND STaNKOVIC, J. A. 2006. EnviroSuite: An environmentally immersive
programming framework for sensor networks. IEEE Trans. Embed. Comput. Syst. 5, 3.

Luo, L., Huanp, C., ABDELZAHER, T., AND STANKOVIC, J. 2007. EnviroStore: A cooperative storage system for
disconnected operation in sensor networks. In Proceedings of the 26th International Conference on
Computer Communications (INFOCOM).

LymBEROPOULOS, D. AND SavviDEs, A. 2005. XYZ: A motion-enabled, power-aware sensor node platform for dis-
tributed sensor network applications. In Proceedings of the 4th International Symposium on Information
Processing in Sensor Networks (IPSN).

Lynch, J. P. anp Lon, K. J. 2006. A summary review of wireless sensors and sensor networks for structural
health monitoring. In Shock and Vibration Digest.

MabppEN, S., FRANKLIN, M. J., HELLERSTEIN, J. M., AND Hong, W. 2003. TAG: A tiny aggregation service for
ad-hoc sensor networks. In Proceedings of the 1st International Conference on Embedded Networked
Sensor Systems (SenSys).

MaDpDEN, S., FRANKLIN, M. J., HELLERSTEIN, J. M., AND Hong, W. 2005. TinyDB: An acquisitional query processing
system for sensor networks. ACM Trans. Datab. Syst. 30, 1.

Mameanp, G., Kang, L., Lanatg, S., Parkes, D. C., anp WELsH, M. 2004. Using virtual markets to program
global behavior in sensor networks. In Proceedings of thel1th ACM SIGOPS European Workshop. ACM,
New York.

MAINLAND, G., MORRISETT, G., AND WELSH, M. 2008. Flask: Staged functional programming for sensor networks.
In Proceedings of thel3th International Conference on Functional Programming.

MAINWARING, A., CULLER, D., POLASTRE, J., SZEWCZYK, R., AND ANDERSON, dJ. 2002. Wireless sensor networks for
habitat monitoring. In Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks
and Applications (WSNA).

Manzig, C., Watson, H. C., HaLcamuceg, S. K., anp Liv, K. 2005. On the potential for improving fuel economy
using a traffic flow sensor network. In Proceedings of the International Conference on Intelligent Sensing
and Information Processing.

MartiNEz, K., HART, J. K., AND ONG, R. 2004. Environmental sensor networks. Computer 37, 8.

MesuNETIcs TECH. www.meshnetics.com.

MicHAHELLES, F., MATTER, P., ScHMIDT, A., AND ScHIELE, B. 2003. Applying wearable sensors to avalanche rescue.
Comput. Graph. 27, 6.

MortelIV. www.moteiv.com.

Morrora, L., PATHAK, A., BaksHI, A., Picco, G. P., aND Prasanna, V. K. 2007. Enabling scope-based interactions
in sensor network macroprogramming. In Proceedings of the 4th International Conference on Mobile
Ad-Hoc and Sensor Systems (MASS).

MorttoLa, L. aND Picco, G. P. 2006a. Logical Neighborhoods: A programming abstraction for wireless sensor
networks. In Proceedings of the 2nd International Conference on Distributed Computing on Sensor
Systems (DCOSS).

Morrora, L. anDp Picco, G. P. 2006b. Programming wireless sensor networks with Logical Neighborhoods.
In Proceedings of the 1st International Conference on Integrated Internet Ad-Hoc and Sensor Networks
(InterSense).

Naik, P. aND Stvaringam, K. 2004. A survey of mac protocols for sensor networks. In Wireless Sensor Networks,
Kluwer, Amsterdam.

NEewTtoN, R., ArvIND, AND WELsSH, M. 2005. Building up to macroprogramming: An intermediate language
for sensor networks. In Proceedings of the 4th International Symposium on Information Processing in
Sensor Networks (IPSN).

NEewToN, R., MORRISETT, G., AND WELsSH, M. 2007. The Regiment macro-programming system. In Proceedings
of the 6th International Conference on Information Processing in Sensor Networks (IPSN).

NEewtoN, R. AND WELsSH, M. 2004. Region streams: Functional macro-programming for sensor networks. In
Proceedings of the 1st International Workshop on Data Management for Sensor Networks.

Nitta, C., PANDEY, R., AND RAMIN, Y. 2006. Y-threads: Supporting concurrency in wireless sensor networks. In
Proceedings of the 2nd International Conference on Distributed Computing on Sensor Systems (DCOSS).

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

19:50 L. Mottola and G. P. Picco

OcEaN, M. J., BEstavros, A., AND KFoURy, A. J. 2006. snBench: Programming and virtualization framework for
distributed multitasking sensor networks. In Proceedings of the 2nd International Conference on Virtual
Execution Environments (VEE).

ONWoRLD. Emerging wireless research. www.onworld.com.

Papny, P, Dasa, R. K., MarTiINEZ, K., AND JENNINGS, N. R. 2006. A utility-based sensing and communication
model for a glacial sensor network. In Proceedings of the 5th International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS).

PatHAR, A., MotTToLA, L., BaksHi, A., Prasanna, V. K., anp Picco, G. P. 2007. Expressing sensor network
interaction patterns using data-driven macroprogramming. In Proceedings of the 3rd International
Workshop on Sensor Networks and Systems for Pervasive Computing (PerSens).

PetrIy, E., GEORGANAS, N., PETRIU, D., MAKRAKIS, D., AND GROZA, V. 2000. Sensor-based information appliances.
IEEE Instrument. Measure. Mag. 3.

POLASTRE, J., HILL, J., AND CULLER, D. 2004. Versatile low power media access for wireless sensor networks. In
Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys).

Prosect SunSPOT. www.sunspotworld.com.

RAJENDRAN, V., OBRACZKA, K., AND GARCIA-LUNA-ACEVES, J. J. 2003. Energy-efficient collision-free medium access
control for wireless sensor networks. In Proceedings of the Ist International Conference on Embedded
Networked Sensor Systems (SenSys).

RaJENDRAN, V., OBRACZKA, K., AND GARCIA-LUNA-ACEVES, J. J. 2006. Energy-efficient, collision-free medium
access control for wireless sensor networks. Wirel. Netw. 12,1.

Ratnasamy, S., Karp, B, Yy, L., Yu, F., EstriN, D., GovinDaN, R., AND SHENKER, S. 2002. GHT: A geographic
hash table for data-centric storage. In Proceedings of the 1st International Workshop on Wireless Sensor
Networks and Applications (WSNA).

RinawaLD, M., ROMER, K., AND VITALETTI, A. 2007. Passive inspection of sensor networks. In Proceedings of the
3rd International Conference on Distributed Computing on Sensor Systems (DCOSS).

ROMER, K. 2004. Programming paradigms and middleware for sensor networks. In Proceedings of the GI /| ITG
Workshop on Sensor Networks.

Rusio, B., Diaz, M., anp Trova, J. M. 2007. Programming approaches and challenges for wireless sensor
networks. In Proceedings of the 2nd International Conference on Systems and Networks Communications
(ICSNC).

ScarTERWEB INc. www.scatterweb.com.

Suan, R., Roy, S., JaiN, S., anp BruneTTE, W. 2003. Data MULEs: Modeling and analysis of a three-tier
architecture for sparse sensor networks. Ad Hoc Netw. <J. 1, 2-3.

SHARMA, A., GOLUBCHIK, L., AND GovINDAN, R. 2007. On the prevalence of sensor faults in real-world deploy-
ments. In Proceedings of the 4th Sensor, Mesh and Ad-Hoc Communications and Networks Conference
(SECON).

SHEN, C.-C., SRISATHAPORNPHAT, C., AND JATKAEO, C. 2001. Sensor information networking architecture and
applications. IEEE Personal Comm. 8, 4.

SHETH, A., TEJaswi, K., MEHTA, P., PAREKH, C., BansAL, R., MERCHANT, S., SINGH, T., DEsar1, U. B., THEKKATH, C.
A., anD Tovama, K. 2005. Senslide: A sensor network based landslide prediction system. In Proceedings
of the 3rd International Conference on Embedded Networked Sensor Systems (SenSys).

Smvon, G., Marott, M., LEDEcz1, A., BavocH, G., Kusy, B.,Napas, A., Pap, G., SarLal, J., aND FrampTON, K. 2004.
Sensor network-based counter sniper system. In Proceedings of the 2nd International Conference on
Embedded Networked Sensor Systems (SenSys).

Stankovic, J. A., Cao, Q., Doan, T., Fang, L., Hg, Z., Kiran, R., LN, S., Son, S., StoLERU, R., AND WooD, A.
2005. Wireless sensor networks for in-home healthcare: Potential and challenges. In Proceedings of
High Confidence Medical Device Software and Systems Workshop (HCMDSS).

SuctHARA, R. AND GUPTa, R. K. 2008. Programming models for sensor networks: A survey. ACM Trans. Sensor
Netw. 4, 2.

SunpARARAMAN, B., Buy, U., anp KsHEMKALYANI, A. D. 2005. Clock synchronization for wireless sensor networks:
A survey. Ad Hoc Netw. 3, 3.

TerFLOTH, K., WITTENBURG, G., AND SCHILLER, J. 2006. FACTS - A rule-based middleware architecture for
wireless sensor networks. In Proceedings of the 1st International Conference on Communication System
Software and Middleware (COMSWARE).

THORSTENSEN, B., SYversgN, T., BjornvoLp, T., aAND WaLseTH, T. 2004. Electronic shepherd—A low-cost, low-
bandwidth wireless network system. In Proceedings of the 2nd International Conference on Mobile
Systems, Applications, and Services (MobiSys).

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

Programming Wireless Sensor Networks 19:51

TinyOS Community Forum. TinyOS TEP 109 - Sensors and Sensor Boards. www.tinyos.net/tinyos- 2.x/doc/tx-
t/tep109.html.

TinyOS Community Forum. TinyOS TEP 118 - Dissemination. www.tinyos.net/tinyos- 2.x/doc/txt/tep118.html.

TinyOS Community ForuM. TinyOS TEP 119 - Collection. www.tinyos.net/tinyos- 2.x/doc/txt/tep119.html.

TinyOS Community Forum. TinyOS TEP 126 - CC2420 radio stack. www.tinyos.net/tinyos- 2. x/doc/htm-
1/tep126.html.

VAN Dawm, T. AND LANGENDOEN, K. 2003. An adaptive energy-efficient MAC protocol for wireless sensor networks.
In Proceedings of the 1st Conference on Embedded Networked Sensor Systems (SenSys).

Wang, Q., Zuu, Y., AND CHENG, L. 2006. Reprogramming wireless sensor networks: Challenges and approaches.
IEEE Network 20, 3.

Wang, Y., Dang, H., anpD Wu, H. 2007. A survey on analytic studies of delay-tolerant mobile sensor networks.
Wirel. Comm. Mobile Comput. 7, 10.

WASP ProJecT. www.wasp- project.org.

WELsH, M. AND MAINLAND, G. 2004. Programming sensor networks using abstract regions. In Proceedings of
the 1st Symposium on Networked Systems Design and Implementation (NSDI).

WERNER-ALLEN, G., LoriNcz, K., JounsoN, dJ., Legs, J., anD WELsH, M. 2006. Fidelity and yield in a volcano
monitoring sensor network. In Proceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI).

WaiteHOUSE, K., SHARP, C., BREWER, E., AND CULLER, D. 2004. Hood: A neighborhood abstraction for sensor
networks. In Proceedings of the 2nd International Conference on Mobile Systems, Applications, and
Services (MobiSys).

WiLDSENSING ProJECT. www.dcs.bbk.ac.uk/~assent/ WILDSENSING/index.html.

WITTENBURG, G., TERFLOTH, K., VILLAFUERTE, F. L., Naumowicz, T., RITTER, H., AND SCHILLER, J. 2007. Fence
monitoring - Experimental evaluation of a use case for wireless sensor networks. In Proceedings of the
4th European Conference on Wireless Sensor Networks (EWSN).

Yang, J., Sorra, M. L., SErLavo, L., anp WHiTEHOUSE, K. 2007. Clairvoyant: A comprehensive source-level
debugger for wireless sensor networks. In Proceedings of the 5th International Conference on Embedded
Networked Sensor Systems (SenSys).

Yao, Y. AND GEHRKE, dJ. 2002. The Cougar approach to in-network query processing in sensor networks. ACM
SIGMOD Rec. 31, 3.

YE, W., HEIDEMANN, J., AND EsTrIN, D. 2002. An energy-efficient MAC protocol for wireless sensor networks.
In Proceedings of the 21st International Conference on Computer Communications (INFOCOM).

ZENG, X., BAGRODIA, R., AND GERLA, M. 1998. GloMoSim: A library for parallel simulation of large-scale wireless
networks. In Proceedings of the 12th Workshop on Parallel and Distributed Simulation (PADS).

Received September 2008; revised July 2009; accepted October 2009

ACM Computing Surveys, Vol. 43, No. 3, Article 19, Publication date: April 2011.

