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ABSTRACT

This paper describes an algorithm to detect user's mental chunks by analysis of pause
lengths in goal-directed human-computer interaction. Identifying and characterizing users'
chunks can help in gauging the users' level of expertise. The algorithm described in this
paper works with information collected by an automatic logging mechanism. Therefore, it
is applicable to situations in which no human intervention is required to perform the
analysis, such as adaptive interfaces. An empirical study was conducted to validate the
algorithm, showing that mental chunks and their characteristics can indeed be inferred from
an analysis of human-computer interaction logs. Users performing a variety of goal-
directed tasks were monitored. Using an automated logging tool, every command invoked,
every operation performed with the input devices, as well as all system responses were
recorded. Analysis of the interaction logs was performed by a program that implements a
chunk detection algorithm that looks at command sequences and timings. The results
support the hypothesis that a significant number of user mental chunks can be detected by
our algorithm.

KEYWORDS: human-computer interaction, novice/expert differences, chunking, chunk
detection, models of the user, event logging, user study.

INTRODUCTION

Users of computers vary widely in knowledge, skill, and abilities. Additionally, any
individual user's skill and abilities vary over time, as users learn through practice and
experience. User diversity and variability have been the object of many studies, classifying
users into categories corresponding to levels of expertise. Through our work, we show
how an automatic identification of computer user skill can be achieved through chunk
identification.

In the human-computer interaction literature, users are typically classified as novices or
experts. We prefer not to stereotype users into two hermetic categories, but to classify
them based on their abilities to perform specific tasks. A user may be an expert at some
task, yet be a novice at another task, even if the two are closely related. More important
than labelling users as “novices” or “experts” is to determine what users know about an



interface, the tasks they perform, and how they combine their knowledge whren interacting
with the computer system.

User behaviors are intimately related with their cognitive skills. According to Anderson's
ACT* theory [1, 2], humans involved in goal-directed problem solving situations typically
perform according to one of three skill levels: interpretive, knowledge compilation, or
procedural. In the interpretive stage, people apply domain-independent knowledge to
domain-specific declarative information to derive a procedure that will be suitable to solve a
problem, using weak methods of problem solving. The knowledge about the skill is used
interpretatively using only declarative information. This interpretative problem solving
mechanism is often effective in solving problems, but requires a significant amount of
resources, both in terms of time and working memory demands. Through repetition of-the
interpretative procedure, knowledge compilation occurs, effecting the transition to the
procedural stage. In the procedural stage, specialized production rules enable the
performance of the skill faster (due to faster access time for retrieval and to the tight
bindings of actions) and with lower demands on working memory (by retrieving just one
procedure without declarative details, which were lost through proceduralization). As an
example, a positive effect of compilation that leads to improvement in skill performance can
be found in a famous Shiffrin and Schneider experiment [22], where set size effects are
seen to disappear in the scan task. After compilation, people start performing the task
according to the procedural stage. Task execution is faster, as retrieval time is shorter and
the entire sequence of steps has been precompiled. During the procedural stage, execution
time and error rate may continue to decrease wiith practice [19, 3].

Of the three cognitive stages considered in ACT* [1, 2], knowledge compilation is one of
short duration that simply enables the transition from the declarative to the procedural stage.
The declarative and procedural stages have a permanent character, and their performance
can be observed repeatedly.

A body of literature, generally referred to as the chunking literature, establishes
relationships between cognitive stages and observable behavior. A chunk is a coherent
cognitive unit that the user holds in short term memory while performing a cognitive
operation, and would roughly correspond to one production in ACT*. Results such as
those found in [12, 23, 5, 4, 7] show that experts organize the components of their mental
process in larger chunks than novices. The chunk boundaries can be identified by pauses
in the observed behavior. The feasibility of chunk identification by pauses has been
demonstrated in several domains, including games [12, 21] and tactical decision scenarios

[5].

In our work, we apply chunk detection techniques to human-computer interaction. We
establish a relationship between the observable user behavior and the assessment of the
user's chunks by recording interaction, analyzing event contents and pauses between
events, then inferring user chunks.

DETECTING CHUNKS IN INTERACTION

When interacting with a computer, users typically behave according to the
acquisition/execution cycle [111. During the acquisition phase, users think of a goal,
formulate a strategy to reach their goal, and plan the execution of the strategy on the
computer. Then they proceed to the execution phase, in which they carry out the plan by
interacting with the computer. Once they have reached their goal, the cycle repeats itself
with a new acquisition phase. During execution, the execution plan is stored in the user's

short term memory, and is referred to as a chunk.



In the acquisition phase, people are immersed in a problem solving situation, and there is
typically no physical interaction with the computer. Significant research efforts have been
devoted to studying how people solve problems, and how they learn problem solving. In
fact, Anderson asserts that the study of problem solving and learning have occupied
American psychology for much of this century [3]. In our work, we do not attempt to
analyze problem solving and learning. We rely on the fact that people plan an execution
strategy during acquisition, and that such planning takes time. During that time, they are
generally not physically interacting with the computer.

During execution, a burst of activity occurs. If one looks at the distribution of the activity
in an interaction log, one will find that generally pauses correspond to the user's acquisition
phases and activity corresponds to the execution phases. The contents of the bursts of
interaction delimited by pauses are chunks.

Some models have been proposed for the estimation of the execution time of tasks by
experts, e.g. [10, 16]. These predictive models are useful for predicting expert
performance because expert chunks are large. They are less powerful in modeling novices
because the chunks formed by novices are much smaller, typically resulting in trivial
execution plans that even the simplest model could predict.

In order to identify user chunks, we will use the results of predictive models for execution
time. In particular, we start by using a variation of the Keystroke-Level Model [11] as a
first approximation. Other models may be added later using a similar approach.

The general principle of the chunk detection algorithm is as follows:
+ Assume expert behavior.

« For each sequence of events in the interaction log, apply the predictive model to predict
execution time.

« If a pause in the interaction log cannot be justified by the predictive model, assume that
the pause was caused by a shift of the user to the acquisition phase, and assess a chunk
boundary at that point.

We realize that there may be overlapping between processes. Users often engage in
multiple concurrent processes, spending some of their time in each process [13]. One
consequence of the coexistence of multiple processes is that the user may not need to wait
for the conclusion of a process to start thinking about the next one. in such a situation, the
tail end of an execution may overlap with the beginning of the next acquisition phase. This
overlap may reduce the length of the pauses delimiting the chunks. We hypothize that the
overlap is small compared to the typical length of the acquisition phase. Furthermore, it
seems reasonable to assume that the time spend switching between activities should be
much shorter that the time spend in each activity. If our assumptions hold, we will still be
able to identify chunks based on the pauses that surround them. The importance of our
algorithm for chunk detection derives from the fact that it works based exclusively on
information that is available to the computer. It does not require external human analysis.

To limit the scope of our work, we consider only interaction with a classical computer,
with a keyboard and a mouse as input devices, and a raster monitor as the output device.
This limitation is not severe, as it considers a most computers in use for information
processing today.

For such a system, the time for task execution will be based on a variation of the
Keystroke-Level Model. The predicted expert performance is given by



t=tk+tp+tH+ IR+ 1S )

The term tx represents the time to press a key or mouse button. That time depends, among
other factors, on the users typing skills, familiarity with the keyboard, and physical
characteristics of devices. Physical characteristics of the keyboard and mouse can be
obtained as part of the system information. User typing skills vary slowly over time
according to the power law of practice [19] with a low value of o, the learning rate. The
flat slope of the practice curve affords the estimation of the user's typing speed by analyz-
ing recent samples of typing by that user on the system. x is inversely proportional to the
estimated user typing speed.

The term #» represents the time to move the pointer from the current position to the target
position. This time is approximated by Fitts's law [15], which states that the time, in
seconds, to move the hand a distance d to a target of size s is given by: ’

tr=0.8 +0.1 log, (d/s + 1/2) 2)

Given that the values 0.8 and 0.1 in equation 2 are approximations found by Fitts in his
experiments, and that these values vary with system characteristics and user skills, we
prefer to use a parametrized variation of Fitts's law.

te = fo+ f1log, (dls + 1/2) 3)

The parameters fo and f1, as with the typing speed parameter, vary slowly over time. Like
the typing speed, they can also be estimated. We use logarithmic regression analysis to
estimate the values for fo and f7 based on recent interaction by the user.

The term t» in equation 1 accounts for time to switch devices. In typical desktop systems
of today, this will be the time to move the hand from mouse to keyboard or vice-versa.
Therefore, tx is a function of source and target devices, expressed as tu(ds,dr). Although
this seems to contradict Fitts's law, experiments have obtained values in the order of 400
milliseconds to move the hand from keyboard to mouse [9]. This value may be a good
approximation for x(x,n) and tu(m,x) for experienced users.

The term 7z represents system response time. On the assumption that all the activity in the
system is controlled by the user, all the output by the computer is as a response to a
previous user action. However, there is no guarantee that a system output is a response to
the last user action, as the user may be “typing ahead” or performing operations
disregarding system output. In any case, we can say that when system output occurs, the
system response time is at least the difference between the time that the output occurred and
the time of the last user input event.

The term #s represents time for the user to locate information on the screen. All the
information presented has to be expected, yet the user may still need to find its location.
An example is a confirmation dialog box. Let's suppose that a user wants to delete a file,
and that the system requires confirmation of the file deletion. The user may be expecting
the confirmation dialog box to appear after the delete command, yet he or she may not
know exactly where the box will appear, or where the OK button will be located inside that
box. However, the user had already formulated the plan to press the OK button and is
fully expecting it. s accounts for the scan time for the user to find the OK button. Scan
time depends on essentially three factors: the amount of information presented to the user,
its dispersion on the screen [20], and its visual properties. Scan time should increase with
the amount of information and with dispersion. Visual properties, such as size and color of
the objects, also affect scan time.



A direct way to measure scan time is through the use of eye-tracking devices. With these
devices, the system could measure scan time, and account for s in equation 1. However,
eye-tracking devices are still not easily accessible to most interface developers, let alone end
users. In anticipation of a probable wider availability of eye-tracking devices, we have
included scan time in our chunking model.

Our chunk detection algorithm takes an interaction log and produces a set of chunks based
on the events. A chunk is completely defined by a pair of event timestamps corresponding
to the beginning and end events of the execution phase of the chunk. With the event log
and the pair of timestamps, one can obtain the contents of the chunk.

The chunking algorithm works as follows. For each contiguous pair of events Ei and Eix
with timestamps 7: and Ti«.. evaluate the following logical expression:

Tiv1 — Ti > t(Ei,Eiv1) + A “)

A is a positive number representing a tolerance factor of the chunking algorithm, which
accounts for imprecision in the timing and small fluctuations in the parameters. Basically, it
indicates how long a user is allowed to pause beyond the normal execution time and still
have the two events be considered part of the same chunk. It can be a constant, or a
function of previous chunk behavior. For example, if, by chunk analysis of previous
interaction, the chunking system had detected that the user had consistently mastered a
certain operation and usually processes it as one chunk, then it could increase the value of A
to allow for some additional tolerance. The value #(Ei,Ei:1) + A become a threshold against
which inter-event pauses are evaluated.

Let us illustrate the calculation of #(Ei,Eiss). Consider the following two consecutive events
in the interaction log:

Time EventType Key Button PointerlLoc Object

22800 KeyRelease P 311,208 Window:Untitled
22850 ScreenChange

24460 MousePress 1 203,40 Button:Center

This example shows two user events (key release and mouse press), with timestamps of
22800 and 24460 respectively. Between the two events there is a screen change, which is
probably a system response to the user's pressing of a key.

t(E:,Ei1) is given by the sum of the terms shown in equation 1: tx + tp + tu + IR + Is. K18
estimated by the average time to press the mouse button (let's say, 400 milliseconds). tris
the time to move the pointer from its previous position to its current position. Considering
that the size of the target (the button “Center”) is 16 pixels, and that fo and fs have the
standard values of Fitts' law (800 and 100 ms respectively), equation 3 yields a value of
1170 ms for #r. tu takes of the value of tu(k,n), which is 400 ms. &, the system's response
time to the previous user action, is the time it takes for the system to provide feedback to
the user's pressing of P. In this case, the value of ris the difference in the timestamps of
the key press event and the screen change, or 50 ms. Finally, we consider a scan time ts of
zero. Adding the terms together, we obtain a value for #(Ei,Ei+1) of 400+1170+400+50+0,
or 2020 ms.

In this case, since Ti+1 — Ti (1660 ms) is less than #(Ei,Eis1), the algorithm will keep the
two event in the same chunk, regardless of the value chosen for A.

In the current version of the algorithm, we are using a constant for A. Although its value is
modifiable, we have been using the value of 400 ms. As we gather information about the
user's knowledge, as well as experience with the algorithm, that information may be used



to determine the probability of a chunk boundary. The chunking algorithm would then
become a probabilistic one, providing answers to “given the time between events, the task
at hand, and the user's previous performance and this task, how likely is it to have a chunk
boundary between E: and E:1?” In the probabilistic algorithm, A may not be a constant but
a function of context and user knowledge.

EMPIRICAL VALIDATION

We designed an experiment to verify the validity of our chunk detection algorithm. The
purpose of this experiment was to show that mental chunks can indeed be inferred from an
analysis of human-computer interaction logs. -

This study is necessary because we have not found empirical evidence to the detectability of
inter-chunk pauses in goal-directed human-computer interaction. It is possible that
extraneous effects such as those introduced by characteristics of physical devices (such as a
specific keyboard design) or of the tasks themselves (such as interruption in multitasking)
outweigh the inter-chunk pauses. In that case, the inter-chunk pauses would be buried in
“noise”, and would be difficult to detect. Thus, in this experiment we test whether chunks
can be detected by an analysis of interaction, in particular by an analysis of pauses.

Method

In this experiment, we monitored users performing a variety of ill-defined goal-oriented
tasks using several computer applications and interaction devices. We record their actions
using CHIME [6], logging every command invoked and every operation performed with
the input devices, as well as system responses. We also record the entire interactive
session on video for independent analysis.

From a pool of sixty undergraduate students in the Georgia Institute of Technology,
twenty-eight were used as subjects for this experiment, receiving class credit. They
performed a task for a maximum of 15 minutes on an Apple Macintosh computer.

Subjects were divided into three groups, based on task. Group T1 composed a text using
Microsoft Word; group T2 used Microsoft Word to format an existing unformatted text;
and group T3 used MacDraw to decorate the interior of an apartment. All three tasks were
ill-defined and open-ended. Subjects were not given detailed specifications of the tasks,
and were asked to perform them until they felt they were satisfied with the results (with a
15-minute maximum time limit). Task T1 essentially explored use of the keyboard in a
text-processing environment, allowing for a comparison to independent research results,
including work by Card, Moran, and Newell [10] and Bovair, Kieras, and Polson [8].
Task T2 explored use of both keyboard and mouse, with emphasis on direct manipulation
of interface objects, such as selection of text, and use of menus, dialog boxes and icons.
Finally, task T3 explored the use of a direct manipulation graphic package, with high
emphasis on mouse operations. The design of the experiment considers a between-subject
distribution of the tasks, avoiding effects of learning and transfer.

The tasks were chosen as three simple tasks that exercise a significant portion of the
operations performed in typical interactive environments. Task T1 explores basically the
the use of the keyboard for typing. Task T2 is rich in the use of traditional interactors such
as pull-down menus, scroll bars, dialog boxes, buttons, and selection of objects by
pointing and draging. Finally, task T3 is rich in direct manipulation of graphical objects,
including operations of creation, positioning, and resizing of graphical objects. Our intent

.

in choosing these tasks was to provide a rich coverage of typical interactive operations.



Our goal is to show that our chunking algorithm performs well in all situations, for all three
tasks.

In addition to the interaction, we attempt to know why subjects do the actions they do and
how they form their chunks. We used verbal protocols to gather that information. Verbal
protocols were collected both during the interaction (“think aloud®) and immediately after
(“retrospective”) the interactive session.

Verbal protocols do not tell us what users think, they just tell us what users say [14]. A
good match between what users think and what they say is obtained if we ask them to
“think out loud”. Therefore, in this experiment we record think aloud protocols.
However, there are two potential problems with “think aloud” protocols: first, the
verbalization may change the way in which people think, as it may help or hinder in their
organization of ideas; and second, the time required for the verbalization may have an
impact on the pauses, creating an undesired source of noise in our data about inter-chunk
pauses. Considering that timestamps are accurate to within 17 milliseconds, it is unclear to
what extent verbalization may affect the accuracy of the results derived from the
timestamped data. In this experiment, we measure the effects of “think aloud” protocols in
the data collected by monitoring human-computer interaction. Verbalization is a carefully
controlled variable in this experiment.

In this experiment, we control for effects of verbal protocol with a two-level between-
subjects design. One group, VDA, verbalized during and after the interactive session. The
other group, VA, verbalizes only after the session. The interactive session data of the VA
group in uncorrupted by the verbalization, but the quality of the verbalization may not be as
good as that of the VDA group.

To summarize, the experiment considers two independent variables: verbalization phase
and task. Figure 1 illustrates the experiment design.

Verbalization

During

After & after

Task 1: text entry

Task 2: text formatting

Task

Task 3: drawing

Figure 1 — Experiment design

Procedure

After the introductions and consent form, subjects were given instructions about the
experimental session, which were read to the subject by the experimenter. Subjects were
asked brief questions to assess their familiarity with the equipment and the software.
Those with no previous experience using the Macintosh or the mouse were given a brief
explanation of its operation; those with no previous experience using the application were
also given brief instructions about its operation.

Subjects were then told about the task they were expected to perform. The scope of the
task was ill-defined in order to allow them to form their own goals and strategies. One of
our goals was to try to simulate realistic work conditions, and user-defined goals are
predominant in human-computer interaction. The task domains of all the three tasks were



such that all subjects were familiar with them, although not necessarily experts. T1
involved writing about their experiences as students in one typical academic quarter at
Georgia Tech; in T2, they were asked to beautify the formatting of a one-page class

syllabus, by formatting it; and task T3 required them to decorate a small apartment, given

its floor plan, by drawing representations of pieces of furniture or other decorative items on
top of the floor plan.

Subjects were then given opportunity to ask questions. Clarification questions about the
experiment or the task objectives were answered. Questions about the operation of the
equipment or the software were not answered, other then repeating what was in the
instructions.

They were told that they could do as little or as much as they wanted, but that they should
plan to finish within fifteen minutes. Those who did not finished by the 15-minute
deadline were interrupted. Subjects in group VDA were told to think out loud, as if trying
to explain what they were doing to a work companion.

During their interaction with the computer, CHIME [6] recorded all their operations with
the interaction devices, as well as all the command invocations and operations on objects.
Every operation was time stamped with the maximum clock resolution of the Macintosh
(approximately 17 milliseconds). Audio and video recordings of the sessions were also
obtained, with the camera focusing on the screen. The experimenter stayed in the room
during the interactive session, but did not interfere with the subject's operation except to
remind subjects to think out loud when they seemed to forget.

Immediately following the interactive session with the computer, the subjects were shown
the video playback of what they had done. Subjects sat approximately 10 feet away from a
27-inch screen. Sound was muted, so that subjects in the VDA group could not hear what
they had said. Subjects were asked to comment what they were thinking about as they
were interacting. Their comments were recorded synchronously with the video playback.

Results

In encoding the verbal protocols, goals expressed by the subjects were related to their
corresponding begin and end events in the interaction log. This encoding was done based
on the events and not on their timestamps. For example, the subject might have said “Now
I am going to draw a table,” and then proceeded to select the rectangle tool, and draw a
rectangle. In this case, we would have encoded the event corresponding to the mouse
press on the rectangle tool area as the beginning of the chunk, and the event corresponding
to the release after the rectangle drag as the end of the chunk.

In the analysis of this experiment, we seek to find answers to two questions:
« are mental chunks detectable exclusively by analysis of the recorded interaction log?

« how does “think aloud” verbalization affect performance in human-computer interaction,
and particularly the formation of chunks and the duration of inter-chunk pauses?

The answer to the last question can be found by comparing the interaction of VDA and VA
subjects. Differences between VDA and VA data provide information about how the
verbalization during the session affects their task performance and mental processes.

We tested the effect of the verbalization phase on a number of dependent variables: number
of user-generated events, number and size of chunks in protocol, and length and duration



of chunks. The number of user-generated events ins the total count of key and mouse
presses and releases in session. The number of chunks in the protocol is the count of the
chunks that were identified fro the subjects' utterances. The size of the chunks in the
protocol is the number of user-generated events that correspond to the execution of the
chunks describe by the subjects' utterances. We could not find significant effect of
verbalization on any of these dependent variables, except in the total number of events. As
expected, there were fewer events in think aloud than in retrospective conditions (average
530 versus 883, F,,=36.83, p<0.01).

The fact that there was no significant effect of verbalization in the characteristics of the
chunks between the two verbalization conditions is important. It tells us that we can
proceed with the analysis of both VD and VDA conditions in the same manner, and thatwe
do not have to analyze different in “during” and “after” protocol in the VDA condition.

The answer to the first question, “Are mental chunks detectable exclusively by analysis of
the monitoring log?”, is the fulcrum of this experiment. The analysis of the data was done
by comparing the chunks identified in two ways, from two sets of data: by analysis of
command sequences and their timings in the interaction log, and by analysis of the verbal
protocols.

Analysis of the interaction logs is performed by a program that implements the chunk
detection algorithm presented earlier. The algorithm looks at command sequences and
timings. When a pause between two operations is greater than can be accounted for by
model, it assumes that the user is engaged in a cognitive operation that has not been
previously compiled, and assesses a chunk boundary.

The algorithm uses a parameter for the typical time between keystrokes (&) and two
parameters (fo and f1) for pointer movement estimation. These parameters were estimated
for all subjects. Considering the data for the 15 subjects that typed any significant amount,
1k averaged 339 ms, with a standard deviation of 105 ms. The values correspond to typing
speeds between 23 and 55 words per minute, which are reasonable numbers for our
population. The estimated values of fo for the 21 subjects that use the mouse significantly
varied between 507 and 1039 ms, with a mean of 765 ms and a standard deviation of 143
ms. For those subjects, f1 varied between 134 and 325 ms, with mean 229 ms and
standard deviation of 46 ms. fo is very much in line with the value of 800 in Fitts' law
[15]. However, f1 is significantly higher than Fitts' value of 100 ms. This difference may
be due to physical properties of the mouse or the surface on which it moved.

Along with the parameters #, fo and f1, which were estimated for each user as explained
above, we set the constants z# (homing time) to 400 ms [9], s (scan time) to zero, and A
(tolerance) to 400 ms. The chunk detection algorithm was then applied to the logs of every
session, and the resulting chunks were recorded.

In parallel, we encoded the verbal protocols, and map the tasks that the subjects verbalized
to chunks. Many significant research results on chunking and skill acquisition are based on
experiments that rely on results of verbal protocols, including [12, 21]. Lacking a better
approach to extract images of the knowledge from the subject's mind, we analyzed the
verbal protocols and relied on them for chunk identification.

In encoding the subjects' utterances into chunks, the encoder had to make inferences when
interpreting of the utterances. Occasionally, the utterances led to two or more possible
interpretations. In those cases, to avoid results that would biased by the subjective
interpretation, the chunk was discarded (see the end of the next paragraph for a discussion
of discarded chunks.) It may further be argued that, even when only one interpretation of
an utterance is reasonable, the utterance may correspond to one explicit and one or more



implicit chunks. Often, the implicit chunks would probably correspond to a decomposition
of the overall chunk that the subject was describing in the explicit chunk. We assume that,
if subjects had been able to reason far enough to combine the various implicit chunks into
one larger explicit chunk, then they could just as well have formulated the execution plan
for the larger explicit chunk. Therefore, we encoded the utterances only into their explicit
chunks.

To compare the chunks identified from the protocol with the chunks detected by the
program, we devised a scoring system, which is illustrated in Figure 2. The horizontal
bars represent chunks. Case a) illustrates a full match: the algorithm detected exactly the
chunk that was identified in the protocol. We assign a score of 1 to this match. Cases ¢)
through f) represent partial matches: the algorithm detected either the beginning or the end
of the chunk. Since a chunk consists of two boundaries, it seems reasonable to assign half
of the full score to each end. Therefore, we assign a score of 0.5 to these matches. Case
b) is intermediate between a full match and a partial match. In this case, the algorithm
matches both beginning and end of a chunk, but introduces one or more additional breaks.
Given that this situation is better than ¢) through f) but worse than a), we assign it a score
of 0.75. Cases g) and h) correspond to mismatches. In case g), neither the beginning nor
end of a chunk are identified by the algorithm, and so a score of 0 is appropriate. Finally,
case h) corresponds to interaction that was recorded but for which there is no protocol
chunk. This case occurred about 75% of the time, because users do not verbalize every
action that they do. Since there is no way to know whether the algorithm is right or wrong,
we discarded all instances of case h). Discarding such a large percentage of the data is not
a problem, in our case. This is because we verified that there was no significant difference
in the subjects' behavior between the VD and VDA conditions. Therefore, as far as the
ability to detect chunks is concerned, there is no effect of verbalizaton. If this is the case,
discarding data that depends on the verbalization does not affect the analysis of the overall
resuts. In this case, the only potential problem with discarding data is a larger experimental
error (due to fewer data points), but this problem can be overcome simply by running more
replicates of the experiment.

protoco|] mu— A

a) ) 1 e) 0.5
algorithm me—— —

prot.oco] —— 075 f I— 05
algorithm me— s— ——
I ——

prot.ocol 0.5 9) 0

algorithm me—

d) prot?col 0.5 h) discard

algorithin e—— ——

Figure 2 — Scoring the matching between the chunks identified in the protocol and
detected by the algorithm

In the combined 28 experimental sessions, 507 chunks were identified from the protocol.
Of those 507 chunks, 201 were full matches (case a), 126 were full matches with breaks
(case b), 146 were partial matches (cases ¢ through f) and 34 were not matched at all (case
g). The overall score was 0.74.

Although we can not find statistical significance of any effects of verbal protocol in the
chunking performance, we detect some trends. As expected, the chunk detection algorithm



performed better with think aloud protocol (average 0.76) than with retrospective protocol
(average 0.71). Note that the difference is not significant.

There was a significant effect of task (F,2=4.37, p<0.05) on the score of the matches.
The algorithm performed significantly better on the typing task (average score 0.84) than
on the formatting (0.74) or drawing tasks (0.66). However, if we consider only the
completely matched chunks, we can not detect any significant effect of task (F,2,=1.10).

DISCUSSION

The results of this experiment are encouraging, and the overall 73% score supports our
hypothesis that a significant number of user mental chunks can be detected by our
algorithm. It is especially significant that, of the 73% total score, over 54% corresponds to
chunks fully matched by the algorithm. The use of a variable pause duration threshold
given by equation 4 was powerful. For comparison purposes, using a separate simple
algorithm, we tested several fixed duration times and used those as threshold for assessing
chunk boundaries. For the data we collected, we found that the best value for a fixed
threshold was at 2.15 seconds. In that best case, the fixed threshold algorithm was able to
identify correctly only 96 (19%) of the chunks. That is less than half the performance of
our algorithm with a variable threshold.

The fact that there were few differences due to protocol was surprising. We expected
additional or longer pauses in the think aloud condition, which would contribute to a better
chunk detection. Fortunately, the data does not confirm this hypothesis, as there is no
significant difference in the pause duration distributions of the two conditions. We still
believe that the information about user goals is more truthful in think aloud protocols than
in retrospective, because subjects giving retrospective protocols may have forgotten what
their exact goals had been during interaction.

The significant effect of task on chunk detection performance can be explained by several
factors. In the drawing case (task T3) it was often hard to exactly determine the beginning
and end event. When the subject says “I am going to draw a table," he or she may consider
the task completed when the table is placed, or maybe only after the handles have been
dismissed by clicking outside any object. We do not know exactly what the subject means
by “drawing a table,” and we may make assumptions that do not match those of the
subject. In task T1 there were fewer such cases of possible ambiguities in interpretation,
because most of their protocol was sentence oriented, and corresponded to sentences in
their text. Tasks T2 and T3 suffer from yet another problem: the tasks to be performed are
not language related, as in task T1. Therefore, it is reasonable to expect a greater
separation between the protocols and the actual intentions of the subjects. Finally, there is
task size. In task T1, subjects typically built chunks of one of more independent clauses at
a time. Typing independent clauses takes some time, and that time is sufficient for them to
express their verbalization. However, in tasks T2 and T3 some actions were very fast:
selecting a piece of text, a graphical object, or pulling down a menu. Subjects may have
been tempted to summarize their thoughts in order to make the verbalization fit into the
execution time. For example, a user may structure the activity of drawing a table as three
separate chunks: selecting the rectangle tool, determining a location to place the table, and
finally placing it. However, they will often just say that they are drawing the table. This
results in a full match with breaks (score 0.75), although the algorithm was probably right
and the verbalization was probably wrong.



CONCLUSIONS

The automatic detection of the user's mental chunks can be used for several types of
applications. The first obvious application is in adaptive interfaces. In most cases, the goal
of interface adaptation is to better match the user's knowledge or the tasks to be performed.
The first step in any system-initiated form of adaptation, including total self-adaptation, is
system initiative [17]. The system has to perceive a need for adaptation in order to initiate
it. The next two states of interface adaptation considered by Kiihme et al [17] are proposal
and decision. In the decision stage, alternatives for adaptation developed in the proposal
stage are evaluated against an adaptation strategy and knowledge about the user, the
application, and the constraints. In all three stages, knowledge about the user is essential
for adaptation. i

It is possible, although this would need to be tested, that pause durations are an indicator of
the user's next activity. The different complexities of the different cognitive processes
leading to the execution of a task require different acquisition times by the user. If the
number of possible tasks is limited, the acquisition times for each can be predicted (with
models based on such theories of cognition as Soar [18]). Once a chunk boundary has
been assessed by a chunk detection algorithm, the system could anticipate the next action
based on the time that the user is taking to perform it.

Chunk detection technique is also useful for long-term studies of learnability. As users
become more experts, their chunks become larger, longer, and more regular [5]. A study
of user chunk evolution using an application over an extended period of time should be a
good indicator of the ease of learning of its interface. Such studies are not typically
performed today due to the high costs and manpower requirements associated with them.
Using automated interaction logging, such as provided by CHIME, and automatic chunk
detection, the entire process is automated, and becomes affordable.
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