
Style-Based Cut-and-Paste in Graphical Editors

Wayne Citrin
Daniel Brodsky

Department of Electrical and Computer Engineering
University of Colorado

Boulder, Colorado, USA

Jefsrey McWhirter
Department of Computer Science

University of Colorado
Boulder, Colorado, USA

ABSTRACT

Although great strides have been made in the last IO-15 years
in the dcvclopment of systems that use graphical
representations. very little work has been done in developing
systems that help users edit diagrams efficiently. This paper
addresses the design of one such feature of a graphical editor,
namely cut and paste. We show how knowledge of the syntax
and semantics of the language being edited allows us to design
a more intelligent cut-and-paste facility.

1 .O INTRODUCTION

Over the past IO-15 years, great advances have been made in
the design of hardware that handles graphical images and in
the software designed to exploit this capability. As
understanding of the power of graphical notations and the
sophistication of the hardware and software have increased, so
have the complexities of the notations used. However, at the
same time, there have been few advances in the technology
used to erztrr diagrams into the computer, and to mar~ipulafe
them once they arc there. This issue has important implications
for user acceptance of visual languages, since humans tend to
adopt solutions to problems that require minimal effort [121,
and when provided with a choice between a familiar keyboard-
based text editor and textual language, and an unfamiliar and
difficult-to-use graphical editor and visual language, users will
probably choose the textual solution regardless of the merits of
the graphical representation.

The issue of diagram entry has been dealt with elsewhere [4].
The other problem of graphical editors is related to the issue of
diagram manipulation as exemplified by the cutting and
pasting of diagrams in graphical editors. The conventional
graphical editor. typified by MacDraw, provides a very simple
and unsophisticated cut-and-paste facility. When a group of
selected objects are cut from a diagram, MacDraw simply
removes them from the diagram. The unselected elements are
unaffected, and none of the damaged connections are repaired
or otherwise altered. Similarly, when a group of objects are
pasted from the clipboard back into the diagram, they are
simply inserted into the diagram area and perhaps simply

Permission to copy without fee all or part of this mi+ial is
granted provided that the copies are not made or d+buted for
direct commercial advantage, the ACM copyright n$ce a?d the
title of the publication and its date appear,, ayd notlce is given
that copying is by permission of the Assoc+on of Computing
Machinery. To copy otherwise, or to repubbsh, requires a fee
and/or specific permission.
AVI 94- 6194 Bari Italy
0 1994 ACM O-69791 -733~2/94/0010..$3.50

overlaid on already-existing elements. No extra elements arc
inserted to maintain the consistency of the diagram, and the
pasted elements are not reconnected to the main body of the
diagram. Thus. cutting and pasting on a graphical editor
requires a substantial number of additional insertions and
deletions of edges to bring a diagram to the desired, or most
reasonable, shape. This makes diagram manipulation extremely
cumbersome. and graphical cut-and-paste only marginally
usable. This situation contrasts with that of text editors. In a
text editor. the hole created when text is cut is instantly and
transparently closed up. When text is pasted in a textual editor,
the new text is similarly not overlaid on the old text, but rather
a hole of the appropriate size is automatically opened in the
old text, and the new text is inserted in it. Cut-and-paste in a
text editor is useful and appropriate for the medium in
question.

Figure I gives a motivating example of how conventional
graphical editor cut-and-paste behavior hinders editor
usability. In figure I, we see a possible desired transformation
of a sequence of three statements in a flow chart to a construct
where the last two statements become alternatives chosen after a
test. On a system like MacDraw, the transformation requires
approximately ten editing operations. Note that we generalize
a move operation to bc a cut operation followed by a paste
operation. Disconnected edges must be selected and cut, a
decision node must be inserted, and the appropriate edges must
be reinserted. (Please note that we are not using flowcharts in
our examples because we think that they are a particularly
interesting or useful visual notation, but rather because they
have a fairly rich semantics, and because their semantics is well
understood by readers. The principles described in this paper
are applicable to other, more interesting, languages.)

The editing actions required to transform figure l(a) to I(b)
seem needlessly complicated. In particular, with knowledge of
the syntax, semantics, and drawing style of decision nodes in
flowcharts, it should be possible to automate the steps in which
edges are removed and connections reestablished. However,
while it might be relatively simple to design and implement
optimal drawing strategies for any particular transformation, it
is far more difficult to design a general framework to provide
reasonable actions for a large variety of cut-and-paste
situations in an editor for a given language.

We are currently investigating a number of cut and paste
schemes. We give a general overview of the investigated
schemes below, and we discuss one particular technique in
detail. The scheme that we spend most time on is based on both
diagram syntax and semantics, along with a set of style rules
that need not be strictly adhered to, but which allow the editor
to make certain assumptions about what a damaged diagram
represents, and what repairs are necessary to restore its integrity.
Our systems have been implemented on a graphical editor

105

http://crossmark.crossref.org/dialog/?doi=10.1145%2F192309.192331&domain=pdf&date_stamp=1994-06-01

specification and construction system called Escalante [9],
which is described in some detail later in the paper. Although
we concentrate on the flowchart example already presented, we
have also implemented editors implementing cut and paste on
trees and Verdi [5] programs. These will be presented in a
forthcoming long paper. The flowchart example, however, will
serve to illustrate our principles.

I

(a) (b)

Figure 1: Example transformation

2.0 ALTERNATIVE APPROACHES

In addition to the style-based scheme presented below, we
have considered three other cut-and-paste schemes. We do not
assert that these are worse than the one we present, and we plan
to perform further research on these, but the style-based scheme
is simple and easy to describe, and exhibits a reasonable
behavior on a number of tests. A forthcoming paper will
discuss each of the other approaches in detail, and will include
example:;.

2.1 PROXIMITY/GRAVITY FIELDS

Gravity fields, or snap-dragging [Z] is a method for
ensuring that diagram nodes and edges become connected
without requiring a great precision on the part of the user, who
would otherwise have to make sure that the mouse cursor is
precisely positioned over a node before choosing an action
that causes an edge to be drawn. Instead, nodes are considered
to emit gravity fields, which attract ends of edges that come
within a certain distance. When the end of an edge comes
within a node’s gravity field, the edge snaps into place on the
node. To further increase the usefulness of this approach,
Hudson [6] proposed semantics-based gravity fields, in which
the attraction is selective, so that only certain types of nodes
and edges are attracted to each other, and directional, so that
the attraction only emanates from a node in certain directions.
Although the method was proposed for diagram entry, the same
principles can be used to support diagram editing and
manipulation.

Use of gravity fields for diagram editing has the advantage
of being simple, since the cut-and-paste properties of all the
nodes can be simply and concisely described with a few rules.
However, performing transformations using this technique
may require a few operations that may not seem natural. In

particular, transformations may require creation of
intermediate configurations that arc more “damaged”; that is.
that contain unconnected components or otherwise represent
configurations that do not constitute a portion of a
syntactically legal graph, at least in the way a user would
ordinarily draw it.

2.2 SEMANTIC NETS

Von KInel [1 I] has proposed a scheme for implementing
graphical cut-and-paste in which diagrams are interpreted as
semantic nets. Some objects in the diagram represent entities,
and some represent semantic relationships between them. In
addition, spatial relations may represent semantic
relationships. The corresponding semantic net is a graph in
which entities are nodes, and relationships arc edges. Von
KInel proposed that cut and paste operations should not
damage the semantic net corresponding to the graph being
manipulated any more than necessary. Unfortunately, he did
not propose a metric for damage. and the rep.airs that he
envisioned are fairly simple and are not of much use.

In general, what Von KIncl proposed was that when a group
of graphical objects is cut, it should be replaced by instances of
the most generic graphical object at all connection points at
which the original group of objects was connected.
Unfortunately, Von Ktinel did not propose an accompanying
paste behavior, but we may imagine one where groups of
objects are pasted in place of generic symbols, and are
connected where possible in order to preserve the semantic
qualities (again. using an undefinecl metric). For example, we
may have the editor attempt to preserve (or reduce) the number
of unconnected edges in the graph before and after the paste.

The behavior of semantic-net-based cut-and-pas,te resembles
in many ways the behavior of structure (that is. syntactically-
based) editors for graphical languages in that elements may
only be added to the graph in limited ways, and in limited
places. This provides the advantage of allowing the editor to
employ syntactic and semantic information in the language
but not in the graph itself in reconstructing the gra,ph after cuts
and pastes. However, it also contains many of the
disadvantages found in structure editors - namely, the fact that
elements may only be introduced into the graph in a very
restricted way. A semantic-net-based approach is a bit more
flexible than the syntax-based structure editor approach in that
we arc not restricted to entering elements in the order of a
syntactic derivation, but even restricting the intermediate
graphs to ones that arc semantically valid (or whose degree of
invalidity is preserved) is more restrictive than typical human
drawing patterns appear to be.

2.3 A SYNTAX BASED ON EDITING OPERATIONS

Arefi et al [1] proposed to simplify graphical parsing by
defining diagram syntax not in terms of spatial relationships
among elements, but rather in terms of the allowable sequences
of editing operations that may be used to create the graph.
Since editing operations are a stream, conventional one-
dimensional, or textual, parsing techniques may be applied to
determine syntactic validity. Also, because the grammar is
based on ways in which the diagram is drawn, rather than on
the hierarchical structure of the diagram, WC may base this
diagram on ways in which people actually draw diagrams. For
example, experiments suggest that people generally do not
draw directed edges whose source is not anchored in an
already-existing node [IO]. Thus. to draw two nodes connected
by a directed edge, users may draw the two nodes and then draw
the edge connecting them; or they may draw one node, then
the edge with the source end anchored at that node, then the
other node placed at the sink end. What they will almost never
draw is the edge followed by the two nodes, or one node

106

followed by the edge with the sink end anchored to it,
followed by the node placed on the source end. These
characteristics may be captured in a grammar of allowable
editing operations. This grammar may be ambiguous, since
thcrc are still numerous correct ways to draw a diagram. but for
our purposes. this ambiguity is unimportant.

Editing operation-based syntax may bc employed in a
graphical cut-and-paste scheme. If we assume that we have a
graphical editor that only allows syntactically legal sequcnccs
of editing operations, then WC may assume that any
intermediate diagram must be syntactically correct up to the
point at which drawing stopped. In other words, the editing
operations required to produce a valid intermediate diagram
constitute a legal prefi.~ of a sequence of editing operations
that will product a syntactically correct diagram. It is possible,
however, that a cut operation will produce an illegal
intcrmcdiate graph (i.e.. one that rcquircs an illegal sequence
of editing operations for its production). In this cast, it should
be possible to repair the resulting intermediate graph and
restore its validity through the use of syntactic error rccovcry
techniques. In this case, the invalid intermediate graph would
be converted to a (syntactically incorrect) sequence of editing
operations that would product it, syntactic error recovery
would be applied to that sequence to produce a valid sequence
of editing operations, and a new, presumably valid,
intcrmcdiate graph would bc redrawn from this sequence.

A cut-and-paste scheme based on syntactically correct
scqucnccs of editing operations shows great promise. but more
work needs to bc done. Further investigations must be made in
both the specification of graphs through syntactically valid
sequences of editing operations, and in the application of
syntactic error recovery techniques to incorrect editing
sequences. Finally, it is possible that a system using this schcmc
will produce unanticipated results; this should be investigated.
We plan to pursue these investigations, but in the meantime, we
have implcmcntcd a simplified version of this scheme. called
“style-based cut-and-paste”, which exhibits many of its
properties. We discuss this scheme below.

3.0 STYLE-BASED CUT-AND-PASTE

Semantic and syntactic rules are not the only criteria upon
which one can base cut and paste rules. Although it is often
useful and even necessary to use these criteria, often times it is
not desirable or possible. On these occasions. thcrc is a more
gcncric approach to determining cut and paste rules. By using
rules based on stylistic or aesthetic characteristics of a visual
language. an editor that makes more intuitive sense can be
generated than one using semantic or syntactic rules, for
certain languages. Such a scheme not only makes intuitive
sense, but allows a simpler implementation than syntax-based
cut-and-paste schcmcs.

Often these style rules are based on conventions. If the
convention for some language specifics that some node that
appears below another node follows the latter node, a useful
rule can be inferred. Using this cxamplc. if three nodes appear’
in a column, and the middle node is cut, the top node is still
above the bottom node. and thus precedes it. indicating an
cdgc should bc inserted from the top to the bottom. Also, if a
node is pasted between two others, it is obvious that since the
new node is below the top node. that new node should follow
it, and since it is above the bottom node. the new node should
precede it. The complete list of style rules for flowcharts will bc
explained in full later in the paper.

4.0 ESCALANTE

We have used the Escafanre system [9] to construct the
prototype environment described in this paper. Escalante
supports the rapid construction of highly functional visual
language environments with a minimal amount of manual
programming. The target domain of Escalante is graph-modcl-
based visual languages. This characterization of the domain
refers to the underlying language constructs, not any particular
graphical representation (e.g., nodes and edges).

Escalante is an object-oriented system composed of three
components: a base language module, a base editor module,
and the GrandView language specification environment.
Figure 2 shows the development process and a conceptual view
of the target application architecture. Applications built using
Escalante are composed of a language (or data) module and an
editor (or control) module. The language module encapsulates
most of the language-specific functionality required within an
application, including the application data model and its
rcprcscntation. The editor tnodule consists of a built-in editor
model that offers a rich set of interaction mechanisms and can
be adapted by the language designer to support language- or
application-specific interaction techniques. We have taken a
language-centered approach for the principles underlying
Escalante, meaning that visual applications are defined around
the underlying specification of the visual language; as a
consequence, the system tends to focus on the language
module rather than on the editor module (or other application-
specific modules that might be added manually).

Escalantc has been used to construct a wide variety of visual
language applications including the system discussed in this
paper. Systems built with Escalante typically require very
little manual programming to realize the desired language and
editor behaviors.

The editor module of Escalante encapsulates a wide range of
visual program editing capabilities including: the creation,
deletion. and copying of language elements; graphical editing
capabilities such as moving, resizing, scaling, alignment and
simple layout; and grouping and manipulating groups of
elements. There is a framework provided for creating on-line
help. N-lcvcl undo/redo of clement creation, deletion and
movement is supported. One can copy/paste and export/import
components of a graph. Very flexible mechanisms also exist for
multiple views, viewing subgraphs, and filtering out the
display and selection of elements. The generated editor module
is composed of a set of template classes derived from the base
editor classes. These template classes can be tailored to fit the
particular needs of an application.

4.1 ESCALANTE SUPPORT FOR CUT-AND-PASTE

Beyond the ability to rapidly construct visual language
environments. Escalante aided this research effort in two ways.

The first involves event propcrgnrion, a mechanism
encapsulated in the language module. A relation (e.g., edge)
can define the propagation of certain prcdefined editor events
between its tail, itself and its head. These events include the
moving, picking, and dclcting of elements. The event
propagation mechanism causes the particular event to be
propagated to other elements. For example, one can define that
when the tail of some relation is copied, the relation and its
head are also copied. The event propagation mechanism
enables the semantics the language to affect the
interface/editing behavior.

107

-
-

L Predefined

; Genemted
I
~---------

i Prograrnmed :._______.......____..........

I

-.

_:

Language Module

,:: ;.
,. .._....... ‘.,

:. ,..___..____._.._, ,:’
‘.._: ::

; Generated ;
I I r---------’
j Programmed i :......________.................:

Editor Module

GrandView ADDkttiOD Architecture

Figure 2: Escalante architecture

q Flowchart View 7

Figure 3: Flowchart editor

The second aspect of Escalante that facilitated this work is
the ability to declaratively define the default addition of
relations between elements based on element type and spatial
positioning. This specification is accomphshed in the
GrandView environment.

We have developed a prototype editor for creating
flowcharts. In this editor, we have explored the role of style-
based rules for driving the cut/paste behavior of the: interface.

108

* Structural Relation IS

Figure 4: Flowchart specification

Figure 3 shows the Flowchart editor. This system allows the
user to create and edit simple flowcharts. A flowchart is made
up of Begin, End, Statement, and Decision nodes. These nodes
are linked together with relations of type Edge. A Decision
node may only have at most two outgoing edges. A Statement
node may have at most one outgoing edge. Each node shows a
small black dot at its top and bottom when there are an
incorrect number of input or output edges. For example, in
Figure 3 the Statement node labeled “G” has an incorrect
number of incoming edges and the Statement node labeled
“H” has an incorrect number of outgoing edges.

5.1 FLOWCHART EDITOR IMPLEMENTATION

The Escalante system was used to construct the Flowchart
editor. Figure 4 shows the Class View of the specification for
the Flowchart editor. Escalante supported some aspects of
defining the cut/copy/paste behavior of the Flowchart editor.
However, approximately 200 lines of code had to bc written to
implement the application-specific interface behavior required
of the Flowchart editor.

5.2 FLOWCHART CUT-AND-PASTE RULES

Rules concerning the appearance of flowcharts fall into two
categories: primary visual rules, which directly reflect
semantics of the underlying programs. and which must hold;
and secondary visual rules (also called style rules) which
should hold if possible, in order to improve readability of the
diagrams, but which arc not necessary to produce a
semantically correct flowchart. In addition, style rules may be
ordered by priority, so that, in cast of conflict, certain rules

should be accommodated before others. An example of a
primary visual rule is that if a statement A immediately
precedes another statement B, there must be an edge in the
flowchart from A’s node to B’s node. An example of a
secondary visual rule is that if A precedes B, then A’s node
should be placed above B’s node in the flowchart, unless other
style rules, or other edge connections (such as those in a loop
or conditional) make this impossible. Style rules may also be
applied backwards, in the sense that if the semantic relation
between two objects is otherwise unknown, style rules may be
used to help determine the semantic relationships. For
example, if a node A is located above a node B after a diagram
manipulation (i.e., a cut or a paste), and the semantic relation
between the two nodes has not been specified, consultation of
the style rules may indicate that A should precede B, and
causing an intelligent editor to draw an edge from A to B (thus
enforcing the primary visual rule). This reverse application is
how the style rules are used by our editor.

Our flowchart style rules fall into three classes: vertical
ordering (including the rule described above), endpoint
holding, and proximity. The vertical ordering rule described
above is actually more specific. Namely, it states that if A is
above B, there are no other nodes between A and B, and A and
B are within a certain number of units of each other, A should
be interpreted as immediately preceding B. unless the contrary
is specifically known.

Another style rule describes the joining of branches of
conditionals. If a node B is located below a decision node, and
another node A is located to its right (again. with no
intervening nodes, and if A and B are within a certain
threshold distance), then A is assumed to be a branch of the
conditional, and it rejoins the main execution stream at B. In

109

other words, A precedes B. Figure 5a shows a diagram
configuration that satisfies the style rule’s condition, and
figure 5b shows the result of applying the style rule. Note that
the determination that node A is part of a branch is done
locally, I:hrough its position relative to B, and not through
tracing execution paths back to the decision node. A similar
rule applies when A is to the left of B.

(4

El

(b)

Figure 5: Rejoining a branch.
(&be,$e

a

Other style rules concern the interpretation c,f the relations
between decision nodes and other nodes. If A is a decision
node, and B is immediately to its right (with no other
intervening nodes and within a certain threshold proximity), A
is consiclered to precede B, assuming that nothing to the
contrary holds. In particular, B is considered to be the first
node on A’s “Yes” branch, but we are hot considering that level
of semantics here. A similar rule holds when B is to the left of A
(except that it concerns the “No” branch). A lower priority
style rule indicates than when B is located immediately below
the decision node A (with no intervening node.s and within a
certain proximity), A precedes B, and B is on A’s “No” branch.

This rule may be overridden by the prcccding rule. as tigurc 6
shows.

(4

lb)

Figure 6: One style rule overriding another

There are a number of other style rules conccrni,ng start and
end nodes, but they are similar to the rules already discussed,
and ~111 not be discussed here.

Finally, we provide a rule that suggests that endpoints of
edges cut as part of a selection and copied to the clipboard be
preserved. unless other rules are violated. This rule, which is
not an interpretive rule like the others discussed above, allows
us to move elements while maintaining their connections. This
is often what users require, and yields expected editing
behavior in the vast majority of cases..

Figure 7 gives an example of some of these rules in action.
Let us assume that WC wish to transform the flowchart in figure
7a so that the decision node comes after the node E. not
before. WC cut the decision node, resulting in the flowchart of
figure 7b. The decision node has been copied to th.2 clipboard,
but the clipboard also preserves the connections that possessed
by the decision node before it was cut. Note that the style rules
force the connection between A and E.

110

(a) initial (b) cut B

Figure 7: Style-based cut and paste example

(c) paste B

When we paste the decision node back into the flowchart
(figure 7~). the connection between the node and statement C
is restored, and an edge from E to the decision node is
automatically constructed, as is a connection from the decision
to node F. In addition, the style rules force the connection
from node D to node F, since the node below the decision node
is assumed to be a join node.

6.0 CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced the issue of graphical cut-
and-paste. which has generally been neglected by
investigators. We have considered four approaches and
discussed their relative advantages and disadvantages. One
approach, style-based graphical cut-and-paste, seems to strike a
balance between simplicity of specification and
implcmcntation and sophistication of effect. However, a cut-
and-paste scheme based on a syntax of editing operations
merits further study, and we plan to investigate this approach
as well as the style-based approach.

In addition to further investigation of the two above
mentioned approaches, the work presented here suggests a
number of other directions of research. A number of
methodology issues present themselves, particularly in the case
of the style-based approach. At the moment, derivation of style
is in most cases a rather ad hoc enterprise. although it is
sometimes helped along by the presence of style books such as
those available for flow charts [3,7,8]. Further work should
investigate the automation of style rules, either through

questionnaires presented by an editor generation system, or
through the use of examples.

In the technological area, we plan to investigate
enhancements to Escalante that will support the specification
and implementation of graphical cut-and-paste behavior. We
note that although the specification of cut-and-paste behavior
for a tree editor and for Verdi (not discussed in this paper) were
fairly straightforward, specification of the behavior of the flow
chart editor required over 200 lines of new code. This pushed
the limits of the behavior of Escalante and was of an order of
difficulty not envisioned when Escalante was designed.
Further enhancements should make Escalante more usable as an
environment for generating editors for visual programming
languages.

REFERENCES

[l] Arefi, F., C. E. Hughes, and D. A. Workman,
“Automatically Generating Visual Syntax-Directed
Editors,” Communications of the ACM, 33:3, March
1990, pp. 349-360.

[2] Bier, E.., and C. Stone, “Snap-Dragging,” Computer
Graphics, 20~4, August 1986, pp. 233-240.

[3] Bohl, M., Flowcharting Techniques, Science Research
Associates, Chicago, 1978.

[4] Citrin, W. V., “Requirements for Graphical Front Ends
for Visual Languages,” Proc. 1993 IEEE-CS

111

Symposium on Visrcal Languages, Bergen. Norway,
August 1993, pp. 142-150.

[5] Graf, M. L.. “A visual environment for the design of
distributed systems,” in Proc. I987 IEEE-CS Workshop
on Visuul Languages, Linkoping, Sweden, August
1987. pp. 330-343.

[6] Hudson. S., “Adaptive Semantic Snapping - A
Technique for Semantic Feedback at the Lexical Level,”
Proc. CHI ‘90,, Seattle, April 1990, pp. 6570.

[7] Lehner, J. K., Flowcharting: An Introduc:ory Text and
Workbook, Auerbach Publishers, Princeton, NJ, 1972.

[8] Mclnerney. T. F., and A. J. Vallee. A Student’s Guide to
Flowcharting, Prentice-Hall, Englewood Cliffs, NJ,
1973.

[9] McWhirter, J. D., and G. J. Nutt, “Generation of visual
language environments,” in IuterCHI ‘93: Conference
1ou Human Factors in Computing Systems, - Short
pper session , Amsterdam, May 1993.

[IO] ‘Van Sommers. P., Drawing and Cognition: Descriptive
iand Experimental Studies of Graphic Production
!Processes, Cambridge University Press, Cambridge, UK.
1984.

[1 I] ‘Von Klnel. J., Cut and Paste of Complex, Interrelated
Objects, Vcrlag der Fachvereine Zurich. Zurich. 1992.

[121 Zipf. G. K.. Human Behavior and the Principle of Least
Effort: An Introduction to Human Ecology. Hafner
Publishing, New York. 1972.

112

