
Database Schema Evolution using EVER Diagrams

Chien-Tsai Liu Shi-Kuo Chang Panos K. Chrysanthid

Department of Computer Science
University of Pittsburgh, Pittsburgh, PA 15260

Abstract

We present an approach to schema evolution

through changes to the ER diagram represent-

ing the schema of a database. In order to

facilitate changes to the ER schema we en-

hance the graphical constructs used in ER di-

agrams, and develop EVER, an EVolutionary

ER diagram for specifying the derivation re-

lationships between schema versions, relation-

ships among attributes, and the conditions for

maintaining consistent views of programs. In

this paper, we demonstrate the mapping of the

EVER diagram into an underlying database

and the construction of database views for

schema versions. Through the reconstruction

of views after database reorganization, changes

to an ER diagram can be made transparent to

the application programs while all objects in

the database remain accessible to the applica-

tion programs. The EVER system can serve

as a front-end for object-oriented databases.

1 Introduction

In this paper we present an approach to schema evo-

lution through changes to the ER diagram represent-

ing the schema of a database [5]. In order to facilitate

*This material is partially supported by the National
Science Foundation under grant IRI-9210588.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
AVI 94- 6194 Bari Italy
0 1994 ACM O-89791 -733~2/94/0010..$3.50

changes to the ER schema we enhance the graphical

constructs used in ER diagrams, and develop EVER,

an Evolutionary ER diagram, for specifying the deriva-

tion relationships between schema versions, relation-

ships among attributes, and the conditions for main-

taining consistent views of programs. We also describe

the mapping of the EVER diagram into an underly-

ing database and the construction of database views for

schema versions. Through the reconstruction of views

after database reorganization, changes to an ER dia-

gram can be made transparent to the application pro-

grams while all objects in the database remain accessi-

ble to the application programs.

Our approach is illustrated in Figure 1. The user

interface of the EVER system allows the application

programmer to create and modify the EVER diagram.

The EVER diagram serves as the visualization aid that

graphically conveys changes to a database schema. The

diagram is then transformed to an intermediate rep-

resentation called version derivation graphs (VDGS)

which are subsequently mapped into the structures of

an underlying database. A powerful visual interface is

thus provided for database schema evolution.

Various approaches to database schema evolution

have been proposed, particularly in the context of

object-oriented databases [3, 4, 7, 2, 13, 15, 161. Theses

approaches can be divided into three categories based

on the external representation of the structure of the

objects in the database (object schema) to application

programs and interactive users, and the internal rep-

resentation of the objects in the underlying database:

(1) Schema modification approaches [2, 161 always sup-

port one single schema and a single internal represen-

tation for each object. Hence, all objects must be con-

123

http://crossmark.crossref.org/dialog/?doi=10.1145%2F192309.192338&domain=pdf&date_stamp=1994-06-01

verted to conform to the new schema. Because of this,

the schema modification approach does not support

the transparency of change for the existing application

programs. The application programs that use the old

schema may need to be modified. (2) Schema version-

ing approaches [l, 131 support multiple schemas and

multiple internal object representations for an object.

The instantiation of objects to a schema version is per-

formed at the time of the creation of the objects. In

this approach, the objects belonging to a version of a

schema must always stay in that version. Therefore, if

the schema of the objects is subsequently augmented,

it would not be possible for the objects to, be updated

by the programs associated with a later version without

loss of information. (3) Schema derivation approaches

[3, 4, 7, 151 support multiple schemas for an object and

a common internal object representation. Irrespective

of whether objects are created under different schema

versions, they are converted to the common representa-

tion. The instantiation of objects to a schema version

is performed at run-time. Although existing derivation

approaches allow any schema version of an object to

evolve, it ,is not clear how object consistency can be

specified and maintained across schema versions derived

from different paths.

Our approach belongs to the family of schema deriva-

tion and, as such, supports multiple schema versions

and a common internal object representation, referred

to as the complete object. However, in our approach

a designer can only make changes to th.e up-to-date

schema. Therefore, conflicts with previous schema ver-

sions are avoided. Although EVER is designed mainly

to support an approach for schema derivation, it can

also be extended to support other two schema evolution

approaches. It should be pointed out that the ER dia-

grams have been extended in the past as we do here with

EVER diagrams in order to incorporated new concepts.

Examples include the E&ended ER (EER) model that

incorporates the class hierarchy [9, 141 and the Con-

cept D, a graphical language that suppo:rts multilevel

concept structures [lo].

The rest of the paper is organized as follows. In Sec-

tion 2, we will analyze the attribute relationships among

schema versions and discuss the issues in maintaining a

consistent database which motivate the need for EVER

User Interface: EVER diagrams

VDG constructor

Database schema translator

7 Databases

Figure 1: The overview of the EVER System for schema
evolution

diagra:ms. Section 3 introduces the extended graphical

constructs for expressing changes to ER diagrams, and

then present several examples of EVER diagrams. In

Section 4 we describe a methodology for the transforma-

tion of EVER diagrams into the underlying databases

which are assumed to be relational [8]. In the conclud-

ing section, we argue that the EVER system can be

used as a front-end for object-oriented databases, and

outline the future work.

2 Schema Evolution through Changes
to ER Diagrams

The approach proposed in this paper sup:ports the

transparency of changes to a schema for the existing

application programs while facilitates the requirements

of new applications. When an entity or rel.ationship

type (or schema for short) is changed, a new version of

the schema is then created. Each schema version is the

interface for programs to access the database.

124

A. Analysis of Attributes in Different
Schema-Versions

When a schema evolves, the most important relation-

ship between the old and the new schemas is the rela-

tionships of their attributes. These relationships pro-

vide the crucial information for reorganization of the

objects in the underlying database and maintaining ob-

ject consistency. We classify the attributes between two

schemas based on the relationships of their values, their

domains and their names along similar lines as in [7].

l Common attributes: An attribute is said to be

common to the two schemas, if the name and do-

main of the attribute in the two schemas is identi-

cal.

l Domain-changed attributes: An attribute is said to

be domain-changed if the name of the attribute in

the two schemas is exactly the same but its domain

is different.

w Renamed attributes: An attribute is said to be re-

named if the attribute in the two schemas has dif-

ferent names but exactly same domains.

l Resumed attributes: An attribute is said to be re-

sumed if the attribute was deleted from an early

schema version but it is added back to a latter

schema version. A resumed attribute can be han-

dled in the same way as a common attribute.

l Derived attributes: An attribute is said to be de-

rived if the value of the attribute can be derived

from the values of other attributes not necessarily

of the same schema-version.

l Dependent attributes: An attribute, let say B, is

said to be dependent if the value of the attribute

is affected by changes to the values of other at-

tributes, let say {Al, AZ,. . . , Ak}, but the value of

the dependent attribute cannot be derived from

the values of the same attributes {Al, AZ,. . . , Ak}.

l Independent attributes: An attribute is said to be

independent if its value neither affects, nor is af-

fected by the values of other attributes. If the

attribute is an attribute of the new schema, it is

called new attribute. On the other hand, if the at-

tribute is an attribute of the old schema, it is called

an eliminated attribute.

Derived and dependent attributes are further distin-

guished into four groups depending on where they are

defined. If (Al, Aa,. . . , Ak} are attributes of the old

schema, and B is the attribute of the new schema, then

attribute B is classified into the forward group. If

{AI, A2r . . . , AL} are attributes of the new schema, and

B is the attribute of the old schema, then attribute B

is in the reverse group. If (Al, AZ,. . . , Ak} can be at-

tributes in the new schema or old schemas, and B is an

attribute of the new schema, then B is classified into

forward complementary group. However, if B is an

attribute of the old schema, then B is in reverse com-

plementary group.

B. Explicit Specification of Attribute
Relationships

The attribute relationships can be expressed by using

the following four general functions.

Identity function. If attributes a and b are common,

their relationship can be represented by using an

identity function (1) such that a = I(b), or a E b.

Derivation function. If attribute a can be derived

from only attributes bl, b2, . . . bk, the relationship

of a to attributes bl, b2, . . . bk can be represented

using a derivation function (F) such that

a = F(bl, b2,. . . bk).

Prompt function. If attribute a depends on at-

tributes bl, b2, . . . bk but it cannot be derived solely

from bl, b2,. . . bk (e.g., it may need additional

information), the relationship of a to attributes

h, bz, . . - bk can be represented by using a prompt

finction (VF) such that a = Q(bl, b2, “.bk, a),

where @ represents the additional information. 9

is possibly an interactive query against the rest of

the database that is not involved in the particular

schema changes.

Default function. If the attribute value of a of an ob-

ject is unspecified but the value is required by a

program, then the default value can be acquired by

125

using a default function (de fault). By assigning a

default value to a unspecified attribute value, the

need of the application programs associated with

di.fferent schema versions can be resolved.

In order to indicate the mapping direction of a func-

tion, \ve can prefix the forward or reverse to the func-

tion. Forward indicates the mapping is from the old

to new schema version, and reverse indicates the map-

ping is from the new to old schema version. Except

for resumed attributes, attribute relationships can only

explicitly exist in two consecutive schema versions. An

attribute of a schema version V; can only be resumed

in another Vl, i < I, if there is no such attribute in

any schema version Vj in between V; and Vi. Thus, at-

tribute relationships may exist between Vi and V, which

are not necessarily consecutive. The resumed attribute

allows for capturing these types of relationships.

C. ‘I’he Maintenance of Database
Consistency Across Schema-‘Versions

A d.ata.base is said to be consistent if and only if for

each state of an object in the database, two observers

view the same state through different schema versions

at any time, the result must agree on each other. In

our framework based on ER schema evolution, we com-

pletely avoid the modification of application programs,

by ensuring a consistent database along three dimen-

sions: object consistency, key consistency, and invariant

program views.

Object Consistency. The maintenance of object con-

siste:ncy can be accomplished through the functions

discussed in the previous section. Whenever the

value of an attribute of an object is updated, those

attributes depending on the updated attribute are

also updated based on the specified fimctions. An

update of an attribute and the propagation of the

update to the affected attributes are executed as a

transaction.

Key Consistency. The key consistency specifies the

uniqueness of the objects across the old and new

schemas. That is, each object, irrespective of

whether it is created by the old or new schema,

must be uniquely identified by using the values

of the key attributes defined in the old a:nd new

schema. The maintenance of key consistency can-

not be performed by the integrity constraints alone

bec.ause the key attribute may be different in the

different schema versions. Therefore, in our ap-

proach, we enforce the following condition when a

designer changes the key attribute: the mapping of

the key attributes between the new and old schema3

must be one-to-one.

Invaria.nt Program Views. The invariant program

views specify the semantics of a database for the

programs associated with a schema version. How-

ever, the evolved database may not preserve the

interpretations made by the programs asisociated

with the previous schema versions. In ou:r frame-

work of schema evolution, we provide facilities to

allow the designer to specify the conditions under

which the programs can maintain their consistent

views to the evolved database.

3 EVER Diagrams for Specifying
Schema Evolution

In order to support the specification of changes to ER

diagrams, we extend the basic graphical constructs of

ER diagrams to present the relationships of schemas

before and after a change. We call this diagram EVER

diagram. In an EVER diagram, a designer can. express

the following relationships:

l the evolution relationship of the new schema,

l the relationships of attributes between the new

schema and the old schema,

l the relationship of a new schema (i.e., e:dges) to

the other schemas, and

l the invariant views of programs to the database.

The evolution relationship indicates from where the

new schema evolves. The attribute relationships spec-

ify the effect of changes to an attribute on the others,

and can be represented by functions. The change to an

edge between an entity and a relationship type implies

that the participation of the entity type in the relation-

ship type needs to be established or dropped. .And con-

sequently, the relationship type needs to be evolved by

126

version deriv;ition

Figure 2: The icons for EVER diagrams

adding to or deleting from the relationship type the key

attribute of the affected entity type. The conditions for

maintenance of invariant program views ensure that the

programs can access the evolved database consistently.

The conditions for maintenance of invariant program

views ensure that the programs can access the evolved

database consistently.

The extended graphical constructs (icons) are shown

in Figure 2. We will use examples to illustrate the uses

of the icons. Let us begin with the one shown in Fig-

ure 3(a). The new schema, New(Schema), is derived

from the old schema, Old(Schema). The derivation of

the new schema is represented using icon Gs (a parallel

directed line). Since the old schema cannot be seen by

the new programs, we consider it as a defunct schema.

Thus, Old(Schema) is represented by a dotted rectan-

gle. Similar to the defunct schema, the resumed schema

version which consists of the resumed attributes and all

attributes of the old schema version can be represented

using icon G14.

The icons, from Glo to Gm, are used for representa-

tion of the attribute relationships. Gro indicates that

I
I Old(Schema) 1
----- -I

(4

Al -----J

B2

g1

-----_

RI

Al ------I

(4

Figure 3: The derivation of a schema the EVER dia-
gram

the relationship of the two attributes at the two ends

of the icon are common or one is renamed as the other.

For example, in Figure 3(b), attribute Al in the new

schema and attribute Al in the old schema are common.

However, attribute B1 in the old schema is renamed as

Bz in the new schema. G11 is used for representation

of a domain changed attribute. The forward function

is associated with the end close to the attribute in the

new schema version, and the reverse function is asso-

ciated with the end close to the attribute in the old

schema version. As shown in Figure 3(c), the domain

of attribute B1 in the new schema is different from that

of attribute B1 in the old schema. Therefore, the for-

ward function (f,,s) is associated with the end close to

attribute B1 in the new schema. Similarly, the reverse

function (jvI) is associated with the end close to the

attribute in the old schema.

Grz and Gls are used for representation of a derived

and dependent attribute, respectively. The attribute at

the pointed end is derived from or dependent on the at-

tributes in the other end. The derivation or prompt

function for the attribute is associated with the at-

127

Figure 4: An example of EVER diagrams for the spec-
ification of domain change

tribute close to the pointed end. Let us refer to Figure

3(d). Attribute AZ in the new schema is derived from

attribute Al in the old schema. The forward derivation

function fi is associated with the pointed end of the

icon close to attribute AZ. On the other hand, Attribute

& is dependent on Bi. Thus, the prompt function (gi)

is associated with the pointed end of the ic:on close to

the attribute Bz.

Thus far, we have discussed how the icons used in

EVER. diagrams can capture all the aspects involved

in the evolution of a database schema. In the follow-

ing two examples, we will illustrate the diagrammatical

representation of a specification of changes to an ER

diagram. We assume that all the changes must satisfy

the constraints in maintaining the structurally consis-

tent ER diagrams and the consistent database.

The first example, as shown in Figure 4, illustrates

a change to the domain of attribute, MPG, mileage

per gallon, of schema Car. The domain of attribute

MPG is changed from MPG: integer[O . . 99991 to MPG:

string[lO]. All other attributes in the new and old

schema versions remain unchanged. The mapping be-

tween the new and old domains can be supported by

functions, itoa() and atoi(), which are supported by the

system. Functions atoi() and itoa() are used to convert

a string into an integer and an integer to a string, re-

spectively. Therefore, the attribute relationships can be

represented by derived functions. The reverse deriva-

tion function (fvi) maps the domain of attribute MPG

in the ne’w schema (New(MPG)) to that of the attribute

in the old schema (Old(MPG)), and the forward deriva-

tion func.tion, (fvl), maps the domain of Old(MPG) to

that of New(MPG).

In this EVER diagram, attributes Regld, Color are

common to both schema versions. Their relationships

are represented by using icon Gio. Attribute MPG are

domain changed attribute. Thus, the relationship be-

tween New(MPG) and Old(MPG) is represented using

icon Gri. The forward and reverse derivation functions

(fv2 and fvr, respectively) are associated with t.he ends

close to attributes New(MPG) and Old(MPG) , respec-

tively. Functions fuz and fvi can be specified as follows.

FUNCTIONS {
(New(MPG) = f.z(Old(MPG);

WITH IMPLEMENTATION
New(MPG) = itoa(Old(MPG)));

(Old(MPG) = f.l(New(MPG))
WITH IMPLEMENTATION

OId(MPG) = itoa(New(MPG)))};

The new schema, New(Car), and edge that connects to

it can be created and represented using a solid rectangle

(Gl) and edge (G), respectively. The derivation of the

new schema from the old one can be depicted by using

a directed parallel line (Gs) which goes from the old

schema to the new one. The old schema, Old(Car), and

the edge connecting to it are defunct, and can be rep-

resented by the dotted rectangle (Gc) and edge (Gs),

respectively, and they are not visible to the p:rograms

associated with the new schema any more.

In the second example, let us demonstrate an EVER

diagram (as shown in Figure 5) in which two schemas

are merged together resulting in a new single schema.

As indicated in the diagram, Company is derived from

schemas Maker and Dealer. Since Maker and Dealer have

the common key attribute Regld, the new entity type,

Company, inherits the key attribute, and gains an addi-

tional attribute CompanyType to distinguish the type of

a company. Attribute CompanyType is new because it

is independent with respect to the schemas Maker and

Dealer. The default value of the attribute can be de-

fined as:

CompanyType

dealer if Schema type(~) = Dealer
=

maker if Schema &x) = Maker

Function schema type() takes an object as its input,

and returns the name of the schema to which the ob-

128

\ Year CarId C&r
\

\

CLU

/
/

/
/

KegId
I-----d

Figure 5: An example of EVER diagrams for merging
two schemas

ject belongs. The programs that use the old schema

may need to access a part of the evolved database. For

example, the programs that refer to entity type Maker

may just need to access the objects whose value of Com-

panyType is equal to maker. The default values and the

conditions used for maintaining the invariant views of

the programs associated with a schema version are spec-

ified as follows.

FUNCTIONS {
((companyType = default)
WITH IMPLEMENTATION

(ij Schematype = Dealer
then companyType = dealer
else companyType = makes)) };

INVARIANT VIEWS {
(Maker ACCESS WITH CONDITIONS

(acl : CompanyType = maker));
Dealer ACCESS WITH CONDITIONS

(UC2 : CompanyType = dealer))};

In the EVER diagram, the default functions for an

attribute are associated with the attribute, and the view

conditions for a schema version are associated with that

schema version. The resultant EVER diagram shown

in Figure 5.

4 Transformation of EVER Diagrams
into Databases

In order to support different implementation database

models, instead of directly translating an EVER dia-

gram into the underlying database model, our approach

transforms the EVER diagram into a conceptual repre-

sentation called the version derivaiion graphs (VDGs),

and then maps the VDGs into the underlying database

model.

A VDG captures the evolution of a particular schema.

It consists of a set of nodes and directed edges. Each

node corresponds to a schema version recording the at-

tribute relationships to the previous and the following

schema versions and the conditions for maintaining ob-

ject consistency. When a new schema version is spec-

ified in an EVER diagram, a new node representing

the new schema version in added in the correspond-

ing VDG. A directed edge represents the derivation re-

lationship among schema versions. Since, a VDG is

currently designed to support schema derivation, it is

geared toward a single internal object representation.

The schema of an object is conceptually represented in

the VDG as the union of attributes of all the versions

of the schema (or the complete schema).

In considering the efficient maintenance of object con-

sistency and use of storage among schema versions,

when the underlying database is reorganized after a

new schema version is created, objects are allocated ad-

ditional storage for only those attributes (the base at-

tributes) that cannot share the storage with attributes

of the old schema version. Let E,, be a schema version

which is derived from schema versions El, Ea,. . . , E,,,,

where n Q {l..m). Attribute ai E E,, is said to be a

base attribute of E,, if and only if one of the following

conditions are satisfied.

l group(ai) E (new, forward-dependent,

forward-complementary-dependent }

l 3ak E Ej A j E {l,...,m), such that

a; = domain-changed(ak) A (dom-size(ak) c

dom-size(a;)).

where dam-size(a) is a function used to compute the

storage for an attribute a; domain-changed(a) returns

the attributes that is derived from attribute a, but

whose domain has been changed. Let B; be a set of

base attributes of schema versions Ei, i E {l..n}. The

complete schema of schemas (El, Ez, . . . , En} (SC) can

be expressed as: S, = Uy=‘=, B;. Let us refer to the ob-

jects correspond to the complete schema as the complete

o bjecta.

In order to indicate whether the objects created un-

129

der a schema version need additional stora.ge, we define

two kinds of nodes: virtual and non-virtual nodes.

A non-virtual node corresponds to an schema version

whic:h is either the initial one or is augmented with

the attributes that cannot be derived from the old

schema. That is, a non-virtual node contains base

attributes.

A vir;lual node corresponds to a schema which does not

contain any base attribute.

Objects created under a schema that maps onto a

non-virtual node cannot be stored in the databases de-

scribed by the old schema versions. Thus., the under-

lying database need to be re-organized. On the other

hand, the objects created from a schema that map onto

virtual nodes can be completely stored in the underly-

ing databases.

The representation of changes to an ER diagram us-

ing VDGs provides the independence from the underly-

ing database model. We will demonstrate the transfor-

mation of VDGs to an implementation database schema

which, we assume to be relational. Th.e relational

database is “objectified” so that it can effectively sup-

port ,this, mapping as well as the construction and use

of database views representing the different schema ver-

sions. That is, we assume that each object, i.e. instance

of entity or relationship type, is associated. with a sys-

temwide unique and immutable identifier (Oid) not vis-

ible to application programs.

To illustrate the mapping from an EVER diagram

into the relational database, let us use the example

shown in Figure 5. As indicated in the diagram, Com-

pany is derived from schemas Maker and Dealer. Since

Maker and Dealer are initial schemas. They contain base

attributes, and thus are mapped into two VDGs. Each

consists of a single non-virtual node, N1 and Nz, respec-

tively. Eleing a non-virtual node, N1 is mapped into a

relation r1 whose schema Tl contains all attributes of

Maker plus one extra attribute, the object identifier Oid:

Tl(Reglcl, Address, Oid). Similarly, Dealer maps to VDG

node Nz, and then maps to a relation r2 with schema

Tz(Regld, Name, Oid).

Schema Company has three attributes: CompanyType

which is a new attribute to Company, Regld which

shares with both Maker and Dealer, Address which

shares with Maker, and Name with Dealer. Since

CompanyType is a base attribute, schema Company is

mapped1 into a non-virtual node, N3. The complete

schema (SC) of the VDG with nodes N1, NZ and N3

is the union of base attributes of Maker, Dealer and

Company: S, = (Regld, Name, Address, CompanyType}.

As in the case of VDG nodes N1 and Nz, being a non-

virtual node, N3 requires a new relation ~3 with schema

Ts(ComlpanyType, Oid) to store the base attribute Com-

panytype. Thus, Company is represented as a view on

~1, r2 and rg.

In order to uniformly define a view for each schema

version,, we construct each view in terms of the complete

schema. That is, objects associated with each schema

version are expanded first to complete objects. In this

example, the set of complete objects is the union of the

set of the expanded objects associated with schemas

Maker, Dealer and Company. Each object schelma, irre-

spective of whether it maps onto a virtual or non-virtual

VDG node, is expressed as a view on the com:plete ob-

jects stored in the relations. Thus, the view of a schema

version (S;) is defined as a selection on the complete

objects based on the access conditions associated with

Si, and then a projection on the attributes of S;. Let

JQTW) b e a P rocedure that converts an object asso-

ciated with a particular schema version to a complete

object. The conversion of the base attributes and the

attributes viewed through the schema version make use

of the functions specified in the EVER diagram. Let us

illustrate step by step the construction of the ,views for

schemas Maker, Dealer and Company in Figure 5.

Step 1: Determine the complete schema of the VDG.

As indicated above, the complete schema (SC) of schema

Car is {Regld, Name, Address, CompanyType}.

Step 2: Determine the relations used to store the com-

plete objects created by each schema version. In this

example, schema Maker is mapped into the schema of

relation rl. Thus, the objects created under Maker are

stored into rl. Similarly, the objects created under

Dealer are stored into rz. However, the objects created

under Company must be stored into all three relations

rl, r2 and rg.

Step 3: Identify the objects created under a specific

schema version, and expand them into the complete

objects. The objects created under a schema version

130

may be stored in different relations. They can be iden-

tified by joining relations based on Oid. For example, as

shown in the following table, the objects created under

schema version Company (03) are selected by joining ~1,

rr and 73 on Oid. Since the objects created under both

Dealer and Company are stored in ~2, we must separate

them to apply the corresponding Ezpand() procedure.

The objects created under version Dealer (02) are se-

lected by discarding the objects created under Company

from relation ~2. Similarly, the objects created under

Maker are selected by removing the objects created un-

der Company from relation rl.

schema the created objects

Company 03 = rg wO;d r2 wO;d r1

Dealer O2 = cOidE(IIoi..+(r.)-noi4Os))(r2)
Maker O1 = ~OidE(~o;d(rl)-noid(OS))(T1)

Step 4: Construct a view for a schema version. Con-

vert the complete objects created under a schema ver-

sion to the objects viewed through the schema ver-

sion, and then screen the objects that cannot satisfy

the specified condi&ns out from the view of the pro-

grams. Let View; represent the view for schema Si.

If there are n schema versions, then, the view of a

schema version can be defined uniformly as belows:

Viewi = IIs;(CT Conditionss,(u~~~ Ezpand(0;)))’

where II stands for projection, u for selection and

Conditionss, for the conditions specified against Si.

Therefore, in the example, the view of each schema ver-

sion can be expressed as:

ViewMaker = n(Regld,Addreas) (

~(cmpany~ype=mnker) CUZ Eapand(Oi)))
ViewDenfer = n(Regld,Name) (

ff(C mpanyType=dea~ar) CUiZf -f%and(Q)))
Viewc cnnnpany = n(Reyld,Addzess,Nome) (

U:zT Ezpnd(Oi))

Each view is stored in the corresponding VDG node

and it may need to be reconstructed after each database

re-organization.

In our approach, we can guarantee that the update

against a view can be correctly translated into the se-

quence of updates on the complete objects in the un-

derlying database based on the following reasons.

l The key attributes of different schema versions

0

.

5

must be same or the mapping among them must

be one-to-one. Therefore, the objects viewed from

a schema version (view objects) can always be

mapped into the unique complete objects in the

underlying database.

The objects viewed from a schema version (view

objects) are always a subset of the complete ob-

jects, and can be mapped into the unique complete

objects in the underlying database.

The functions used for representation of attribute

relationships indicate a unique way to translate the

view update into the updates against the underly-

ing database.

Conclusion

This paper presented a graphic specification language

to support schema evolution based on the Entity-

Relationship (ER) app roach for data modeling. We

chose to examine the semantics of changes in the con-

text of the ER model for the following reasons. Firstly,

this approach has the advantages of being graphic ori-

ented and of being closer to the designer’s perception of

data, rather than to the logical database schema which

describes how data are stored in the database. Sec-

ondly, the ER model supports many types of relation-

ships whereas Object-Oriented models primarily sup-

port one type of relationship, which is similar to the

“ISA” relationship in the ER model [6]. Thirdly, we

want to avoid to define yet another Object-Oriented

model that would support more types of relationships

[4]. Instead, we are more interested in making the ER

approach Object-Oriented [12] and hence, effectively

supporting the mapping of ER schema into any Object-

Oriented one [ll]. At th e same time, our approach sup-

ports evolution of the current-state-of-the-commercial-

art of database systems, that is, relational database sys-

tems.

The follow up of this work is to build a prototype for

the exploration of schema evolution in multiparadig-

matic access of databases. As presented in the begin-

ning of the paper and illustrated by Figure 1, through

the graphic user interface and mapping schemes for

EVER diagrams, changes to an ER diagram can be

made transparent to application programs and inter-

active users. In other words, the application programs

131

and users can access all objects in the database using

their schemas.

References

[1] M. Ahlscn and et. al. Making Type Changes Transpar-
ent. In Proceedinga of IEEE Workshop on .Language for
Automation, 1983.

[2], J. Banerjee, W. Kim, H. Kim, and H.F. Korth. Se-
mantics and Implementation of Schema :Evolution in
Object-Oriented Databases. In Proc. of ACM SIG-
MOD, 1987.

[3] E. Bertino. A View Mechanism for Object-Oriented
Databases. In Proc. of 3rd international Conference on
Extending Database Technology, Mar., 1992.

[4] S. E. Bratsberg. Unified Class Evolution by Object-
Oriented Views. In Proceedings of the 1 .I th Internal-
tional Conference on Entity-Relationship Approach,
1992.

[5] P. Chen. The Entity Relationship Model - Toward a
Unified View of Data. ACM Transactions on Database
Systems, l(l), March 1976.

[6] P. Chen. ER vs. 00. In Proceedings of the 11th
Internaltional Conference on Entity-Relationship Ap-
proach, 1992.

[i’] S. M. Clamen. Schema Evolution and Integration.
Distributed and Parallel Databases: An International
Journal, 2(l):lOl-126, January 1994.

[8] E. F. Codd. A Relational Model of Data for Large
Shared Data Banks. CACM, 13(6), 1970.

[9] R. Elmasri and S. B. Navathe. Fundamentaia
of Database Syatems, 2nd edition. The Ben-
jamin./Cummings Publishing Company, Inc., Redwood
City, California, 1992.

[lo] H. Kangassaio. Concept D: A Graphical Language for
Conceptual Modeling and Data Base use. In Proceed-
ings of the IEEE Workshop on Visual Languages, Oc-
tober 1988.

[ll] C. T. Liu, P. K. Chrysanthis, and S. K. Chang.
Database Schema Evolution through the !Specification
and Maintenance of Changes on Entities and Rclation-
sh.ips. Technical report, TR-94-14, Department of Com-
puter Science, University of Pittsburgh, January 1994.

[12] S. B. Navathe and M. K. Pillalamarri. OOER: Toward
Making the E-R Approach Object-Oriented. In Pro-
ceedings of the 8th Internaltional Conference on Entity-
Relationahip Approach, 1989.

[13] H. A. Skarra and S. B. Zdonik. Type Evolution in
an O’bject-Oriented Database. In Researc:h in Object-
Oriented Databasea. Addison-Wesley, 1987.

[14] T.J. Teorey, D. Yang, and J.P Fry. A Logical Design
Methodology for Relational Databases Using the Ex-
tended Entity-Relationship Model. ACM Computing
Survey, 18(2), June. 1986.

[15] S. B. Zdonik. Object-Oriented Type Evolution . In Ad-
vances in Database Programming Languages. Addison-
Wesley, 1990.

[16] R. Zicari. A Framework for Schema Updates In an
Object-Oriented Database System. In Proc. of Confer-
ence on Data Engineering, 1991.

132

