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Abstract 

We present an approach to schema evolution 

through changes to the ER diagram represent- 

ing the schema of a database. In order to 

facilitate changes to the ER schema we en- 

hance the graphical constructs used in ER di- 

agrams, and develop EVER, an EVolutionary 

ER diagram for specifying the derivation re- 

lationships between schema versions, relation- 

ships among attributes, and the conditions for 

maintaining consistent views of programs. In 

this paper, we demonstrate the mapping of the 

EVER diagram into an underlying database 

and the construction of database views for 

schema versions. Through the reconstruction 

of views after database reorganization, changes 

to an ER diagram can be made transparent to 

the application programs while all objects in 

the database remain accessible to the applica- 

tion programs. The EVER system can serve 

as a front-end for object-oriented databases. 

1 Introduction 

In this paper we present an approach to schema evo- 

lution through changes to the ER diagram represent- 

ing the schema of a database [5]. In order to facilitate 
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changes to the ER schema we enhance the graphical 

constructs used in ER diagrams, and develop EVER, 

an Evolutionary ER diagram, for specifying the deriva- 

tion relationships between schema versions, relation- 

ships among attributes, and the conditions for main- 

taining consistent views of programs. We also describe 

the mapping of the EVER diagram into an underly- 

ing database and the construction of database views for 

schema versions. Through the reconstruction of views 

after database reorganization, changes to an ER dia- 

gram can be made transparent to the application pro- 

grams while all objects in the database remain accessi- 

ble to the application programs. 

Our approach is illustrated in Figure 1. The user 

interface of the EVER system allows the application 

programmer to create and modify the EVER diagram. 

The EVER diagram serves as the visualization aid that 

graphically conveys changes to a database schema. The 

diagram is then transformed to an intermediate rep- 

resentation called version derivation graphs (VDGS) 

which are subsequently mapped into the structures of 

an underlying database. A powerful visual interface is 

thus provided for database schema evolution. 

Various approaches to database schema evolution 

have been proposed, particularly in the context of 

object-oriented databases [3, 4, 7, 2, 13, 15, 161. Theses 

approaches can be divided into three categories based 

on the external representation of the structure of the 

objects in the database (object schema) to application 

programs and interactive users, and the internal rep- 

resentation of the objects in the underlying database: 

(1) Schema modification approaches [2, 161 always sup- 

port one single schema and a single internal represen- 

tation for each object. Hence, all objects must be con- 
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verted to conform to the new schema. Because of this, 

the schema modification approach does not support 

the transparency of change for the existing application 

programs. The application programs that use the old 

schema may need to be modified. (2) Schema version- 

ing approaches [l, 131 support multiple schemas and 

multiple internal object representations for an object. 

The instantiation of objects to a schema version is per- 

formed at the time of the creation of the objects. In 

this approach, the objects belonging to a version of a 

schema must always stay in that version. Therefore, if 

the schema of the objects is subsequently augmented, 

it would not be possible for the objects to, be updated 

by the programs associated with a later version without 

loss of information. (3) Schema derivation approaches 

[3, 4, 7, 151 support multiple schemas for an object and 

a common internal object representation. Irrespective 

of whether objects are created under different schema 

versions, they are converted to the common representa- 

tion. The instantiation of objects to a schema version 

is performed at run-time. Although existing derivation 

approaches allow any schema version of an object to 

evolve, it ,is not clear how object consistency can be 

specified and maintained across schema versions derived 

from different paths. 

Our approach belongs to the family of schema deriva- 

tion and, as such, supports multiple schema versions 

and a common internal object representation, referred 

to as the complete object. However, in our approach 

a designer can only make changes to th.e up-to-date 

schema. Therefore, conflicts with previous schema ver- 

sions are avoided. Although EVER is designed mainly 

to support an approach for schema derivation, it can 

also be extended to support other two schema evolution 

approaches. It should be pointed out that the ER dia- 

grams have been extended in the past as we do here with 

EVER diagrams in order to incorporated new concepts. 

Examples include the E&ended ER (EER) model that 

incorporates the class hierarchy [9, 141 and the Con- 

cept D, a graphical language that suppo:rts multilevel 

concept structures [lo]. 

The rest of the paper is organized as follows. In Sec- 

tion 2, we will analyze the attribute relationships among 

schema versions and discuss the issues in maintaining a 

consistent database which motivate the need for EVER 

User Interface: EVER diagrams 

VDG constructor 

Database schema translator 

7 Databases 

Figure 1: The overview of the EVER System for schema 
evolution 

diagra:ms. Section 3 introduces the extended graphical 

constructs for expressing changes to ER diagrams, and 

then present several examples of EVER diagrams. In 

Section 4 we describe a methodology for the transforma- 

tion of EVER diagrams into the underlying databases 

which are assumed to be relational [8]. In the conclud- 

ing section, we argue that the EVER system can be 

used as a front-end for object-oriented databases, and 

outline the future work. 

2 Schema Evolution through Changes 
to ER Diagrams 

The approach proposed in this paper sup:ports the 

transparency of changes to a schema for the existing 

application programs while facilitates the requirements 

of new applications. When an entity or rel.ationship 

type (or schema for short) is changed, a new version of 

the schema is then created. Each schema version is the 

interface for programs to access the database. 
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A. Analysis of Attributes in Different 
Schema-Versions 

When a schema evolves, the most important relation- 

ship between the old and the new schemas is the rela- 

tionships of their attributes. These relationships pro- 

vide the crucial information for reorganization of the 

objects in the underlying database and maintaining ob- 

ject consistency. We classify the attributes between two 

schemas based on the relationships of their values, their 

domains and their names along similar lines as in [7]. 

l Common attributes: An attribute is said to be 

common to the two schemas, if the name and do- 

main of the attribute in the two schemas is identi- 

cal. 

l Domain-changed attributes: An attribute is said to 

be domain-changed if the name of the attribute in 

the two schemas is exactly the same but its domain 

is different. 

w Renamed attributes: An attribute is said to be re- 

named if the attribute in the two schemas has dif- 

ferent names but exactly same domains. 

l Resumed attributes: An attribute is said to be re- 

sumed if the attribute was deleted from an early 

schema version but it is added back to a latter 

schema version. A resumed attribute can be han- 

dled in the same way as a common attribute. 

l Derived attributes: An attribute is said to be de- 

rived if the value of the attribute can be derived 

from the values of other attributes not necessarily 

of the same schema-version. 

l Dependent attributes: An attribute, let say B, is 

said to be dependent if the value of the attribute 

is affected by changes to the values of other at- 

tributes, let say {Al, AZ,. . . , Ak}, but the value of 

the dependent attribute cannot be derived from 

the values of the same attributes {Al, AZ,. . . , Ak}. 

l Independent attributes: An attribute is said to be 

independent if its value neither affects, nor is af- 

fected by the values of other attributes. If the 

attribute is an attribute of the new schema, it is 

called new attribute. On the other hand, if the at- 

tribute is an attribute of the old schema, it is called 

an eliminated attribute. 

Derived and dependent attributes are further distin- 

guished into four groups depending on where they are 

defined. If (Al, Aa,. . . , Ak} are attributes of the old 

schema, and B is the attribute of the new schema, then 

attribute B is classified into the forward group. If 

{AI, A2r . . . , AL} are attributes of the new schema, and 

B is the attribute of the old schema, then attribute B 

is in the reverse group. If (Al, AZ,. . . , Ak} can be at- 

tributes in the new schema or old schemas, and B is an 

attribute of the new schema, then B is classified into 

forward complementary group. However, if B is an 

attribute of the old schema, then B is in reverse com- 

plementary group. 

B. Explicit Specification of Attribute 
Relationships 

The attribute relationships can be expressed by using 

the following four general functions. 

Identity function. If attributes a and b are common, 

their relationship can be represented by using an 

identity function (1) such that a = I(b), or a E b. 

Derivation function. If attribute a can be derived 

from only attributes bl, b2, . . . bk, the relationship 

of a to attributes bl, b2, . . . bk can be represented 

using a derivation function (F) such that 

a = F(bl, b2,. . . bk). 

Prompt function. If attribute a depends on at- 

tributes bl, b2, . . . bk but it cannot be derived solely 

from bl, b2,. . . bk (e.g., it may need additional 

information), the relationship of a to attributes 

h, bz, . . - bk can be represented by using a prompt 

finction (VF) such that a = Q(bl, b2, “.bk, a), 

where @ represents the additional information. 9 

is possibly an interactive query against the rest of 

the database that is not involved in the particular 

schema changes. 

Default function. If the attribute value of a of an ob- 

ject is unspecified but the value is required by a 

program, then the default value can be acquired by 
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using a default function (de fault). By assigning a 

default value to a unspecified attribute value, the 

need of the application programs associated with 

di.fferent schema versions can be resolved. 

In order to indicate the mapping direction of a func- 

tion, \ve can prefix the forward or reverse to the func- 

tion. Forward indicates the mapping is from the old 

to new schema version, and reverse indicates the map- 

ping is from the new to old schema version. Except 

for resumed attributes, attribute relationships can only 

explicitly exist in two consecutive schema versions. An 

attribute of a schema version V; can only be resumed 

in another Vl, i < I, if there is no such attribute in 

any schema version Vj in between V; and Vi. Thus, at- 

tribute relationships may exist between Vi and V, which 

are not necessarily consecutive. The resumed attribute 

allows for capturing these types of relationships. 

C. ‘I’he Maintenance of Database 
Consistency Across Schema-‘Versions 

A d.ata.base is said to be consistent if and only if for 

each state of an object in the database, two observers 

view the same state through different schema versions 

at any time, the result must agree on each other. In 

our framework based on ER schema evolution, we com- 

pletely avoid the modification of application programs, 

by ensuring a consistent database along three dimen- 

sions: object consistency, key consistency, and invariant 

program views. 

Object Consistency. The maintenance of object con- 

siste:ncy can be accomplished through the functions 

discussed in the previous section. Whenever the 

value of an attribute of an object is updated, those 

attributes depending on the updated attribute are 

also updated based on the specified fimctions. An 

update of an attribute and the propagation of the 

update to the affected attributes are executed as a 

transaction. 

Key Consistency. The key consistency specifies the 

uniqueness of the objects across the old and new 

schemas. That is, each object, irrespective of 

whether it is created by the old or new schema, 

must be uniquely identified by using the values 

of the key attributes defined in the old a:nd new 

schema. The maintenance of key consistency can- 

not be performed by the integrity constraints alone 

bec.ause the key attribute may be different in the 

different schema versions. Therefore, in our ap- 

proach, we enforce the following condition when a 

designer changes the key attribute: the mapping of 

the key attributes between the new and old schema3 

must be one-to-one. 

Invaria.nt Program Views. The invariant program 

views specify the semantics of a database for the 

programs associated with a schema version. How- 

ever, the evolved database may not preserve the 

interpretations made by the programs asisociated 

with the previous schema versions. In ou:r frame- 

work of schema evolution, we provide facilities to 

allow the designer to specify the conditions under 

which the programs can maintain their consistent 

views to the evolved database. 

3 EVER Diagrams for Specifying 
Schema Evolution 

In order to support the specification of changes to ER 

diagrams, we extend the basic graphical constructs of 

ER diagrams to present the relationships of schemas 

before and after a change. We call this diagram EVER 

diagram. In an EVER diagram, a designer can. express 

the following relationships: 

l the evolution relationship of the new schema, 

l the relationships of attributes between the new 

schema and the old schema, 

l the relationship of a new schema (i.e., e:dges) to 

the other schemas, and 

l the invariant views of programs to the database. 

The evolution relationship indicates from where the 

new schema evolves. The attribute relationships spec- 

ify the effect of changes to an attribute on the others, 

and can be represented by functions. The change to an 

edge between an entity and a relationship type implies 

that the participation of the entity type in the relation- 

ship type needs to be established or dropped. .And con- 

sequently, the relationship type needs to be evolved by 
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version deriv;ition 

Figure 2: The icons for EVER diagrams 

adding to or deleting from the relationship type the key 

attribute of the affected entity type. The conditions for 

maintenance of invariant program views ensure that the 

programs can access the evolved database consistently. 

The conditions for maintenance of invariant program 

views ensure that the programs can access the evolved 

database consistently. 

The extended graphical constructs (icons) are shown 

in Figure 2. We will use examples to illustrate the uses 

of the icons. Let us begin with the one shown in Fig- 

ure 3(a). The new schema, New(Schema), is derived 

from the old schema, Old(Schema). The derivation of 

the new schema is represented using icon Gs (a parallel 

directed line). Since the old schema cannot be seen by 

the new programs, we consider it as a defunct schema. 

Thus, Old(Schema) is represented by a dotted rectan- 

gle. Similar to the defunct schema, the resumed schema 

version which consists of the resumed attributes and all 

attributes of the old schema version can be represented 

using icon G14. 

The icons, from Glo to Gm, are used for representa- 

tion of the attribute relationships. Gro indicates that 

I 
I Old(Schema) 1 
----- -I 

(4 

Al -----J 

B2 

g1 

-----_ 

RI 

Al ------I 

(4 

Figure 3: The derivation of a schema the EVER dia- 
gram 

the relationship of the two attributes at the two ends 

of the icon are common or one is renamed as the other. 

For example, in Figure 3(b), attribute Al in the new 

schema and attribute Al in the old schema are common. 

However, attribute B1 in the old schema is renamed as 

Bz in the new schema. G11 is used for representation 

of a domain changed attribute. The forward function 

is associated with the end close to the attribute in the 

new schema version, and the reverse function is asso- 

ciated with the end close to the attribute in the old 

schema version. As shown in Figure 3(c), the domain 

of attribute B1 in the new schema is different from that 

of attribute B1 in the old schema. Therefore, the for- 

ward function (f,,s) is associated with the end close to 

attribute B1 in the new schema. Similarly, the reverse 

function (jvI) is associated with the end close to the 

attribute in the old schema. 

Grz and Gls are used for representation of a derived 

and dependent attribute, respectively. The attribute at 

the pointed end is derived from or dependent on the at- 

tributes in the other end. The derivation or prompt 

function for the attribute is associated with the at- 
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Figure 4: An example of EVER diagrams for the spec- 
ification of domain change 

tribute close to the pointed end. Let us refer to Figure 

3(d). Attribute AZ in the new schema is derived from 

attribute Al in the old schema. The forward derivation 

function fi is associated with the pointed end of the 

icon close to attribute AZ. On the other hand, Attribute 

& is dependent on Bi. Thus, the prompt function (gi) 

is associated with the pointed end of the ic:on close to 

the attribute Bz. 

Thus far, we have discussed how the icons used in 

EVER. diagrams can capture all the aspects involved 

in the evolution of a database schema. In the follow- 

ing two examples, we will illustrate the diagrammatical 

representation of a specification of changes to an ER 

diagram. We assume that all the changes must satisfy 

the constraints in maintaining the structurally consis- 

tent ER diagrams and the consistent database. 

The first example, as shown in Figure 4, illustrates 

a change to the domain of attribute, MPG, mileage 

per gallon, of schema Car. The domain of attribute 

MPG is changed from MPG: integer[O . . 99991 to MPG: 

string[lO]. All other attributes in the new and old 

schema versions remain unchanged. The mapping be- 

tween the new and old domains can be supported by 

functions, itoa() and atoi(), which are supported by the 

system. Functions atoi() and itoa() are used to convert 

a string into an integer and an integer to a string, re- 

spectively. Therefore, the attribute relationships can be 

represented by derived functions. The reverse deriva- 

tion function (fvi) maps the domain of attribute MPG 

in the ne’w schema (New(MPG)) to that of the attribute 

in the old schema (Old(MPG)), and the forward deriva- 

tion func.tion, (fvl), maps the domain of Old(MPG) to 

that of New(MPG). 

In this EVER diagram, attributes Regld, Color are 

common to both schema versions. Their relationships 

are represented by using icon Gio. Attribute MPG are 

domain changed attribute. Thus, the relationship be- 

tween New( MPG) and Old(MPG) is represented using 

icon Gri. The forward and reverse derivation functions 

(fv2 and fvr, respectively) are associated with t.he ends 

close to attributes New(MPG) and Old(MPG) , respec- 

tively. Functions fuz and fvi can be specified as follows. 

FUNCTIONS { 
(New(MPG) = f.z(Old(MPG); 

WITH IMPLEMENTATION 
New(MPG) = itoa(Old(MPG))); 

(Old(MPG) = f.l(New(MPG)) 
WITH IMPLEMENTATION 

OId(MPG) = itoa(New(MPG)))}; 

The new schema, New(Car), and edge that connects to 

it can be created and represented using a solid rectangle 

(Gl) and edge (G), respectively. The derivation of the 

new schema from the old one can be depicted by using 

a directed parallel line (Gs) which goes from the old 

schema to the new one. The old schema, Old(Car), and 

the edge connecting to it are defunct, and can be rep- 

resented by the dotted rectangle (Gc) and edge (Gs), 

respectively, and they are not visible to the p:rograms 

associated with the new schema any more. 

In the second example, let us demonstrate an EVER 

diagram (as shown in Figure 5) in which two schemas 

are merged together resulting in a new single schema. 

As indicated in the diagram, Company is derived from 

schemas Maker and Dealer. Since Maker and Dealer have 

the common key attribute Regld, the new entity type, 

Company, inherits the key attribute, and gains an addi- 

tional attribute CompanyType to distinguish the type of 

a company. Attribute CompanyType is new because it 

is independent with respect to the schemas Maker and 

Dealer. The default value of the attribute can be de- 

fined as: 

CompanyType 

dealer if Schema type(~) = Dealer 
= 

maker if Schema &x) = Maker 

Function schema type() takes an object as its input, 

and returns the name of the schema to which the ob- 
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Figure 5: An example of EVER diagrams for merging 
two schemas 

ject belongs. The programs that use the old schema 

may need to access a part of the evolved database. For 

example, the programs that refer to entity type Maker 

may just need to access the objects whose value of Com- 

panyType is equal to maker. The default values and the 

conditions used for maintaining the invariant views of 

the programs associated with a schema version are spec- 

ified as follows. 

FUNCTIONS { 
((companyType = default) 
WITH IMPLEMENTATION 

(ij Schematype = Dealer 
then companyType = dealer 
else companyType = makes)) }; 

INVARIANT VIEWS { 
(Maker ACCESS WITH CONDITIONS 

(acl : CompanyType = maker)); 
Dealer ACCESS WITH CONDITIONS 

(UC2 : CompanyType = dealer))}; 

In the EVER diagram, the default functions for an 

attribute are associated with the attribute, and the view 

conditions for a schema version are associated with that 

schema version. The resultant EVER diagram shown 

in Figure 5. 

4 Transformation of EVER Diagrams 
into Databases 

In order to support different implementation database 

models, instead of directly translating an EVER dia- 

gram into the underlying database model, our approach 

transforms the EVER diagram into a conceptual repre- 

sentation called the version derivaiion graphs (VDGs), 

and then maps the VDGs into the underlying database 

model. 

A VDG captures the evolution of a particular schema. 

It consists of a set of nodes and directed edges. Each 

node corresponds to a schema version recording the at- 

tribute relationships to the previous and the following 

schema versions and the conditions for maintaining ob- 

ject consistency. When a new schema version is spec- 

ified in an EVER diagram, a new node representing 

the new schema version in added in the correspond- 

ing VDG. A directed edge represents the derivation re- 

lationship among schema versions. Since, a VDG is 

currently designed to support schema derivation, it is 

geared toward a single internal object representation. 

The schema of an object is conceptually represented in 

the VDG as the union of attributes of all the versions 

of the schema (or the complete schema). 

In considering the efficient maintenance of object con- 

sistency and use of storage among schema versions, 

when the underlying database is reorganized after a 

new schema version is created, objects are allocated ad- 

ditional storage for only those attributes (the base at- 

tributes) that cannot share the storage with attributes 

of the old schema version. Let E,, be a schema version 

which is derived from schema versions El, Ea,. . . , E,,,, 

where n Q {l..m). Attribute ai E E,, is said to be a 

base attribute of E,, if and only if one of the following 

conditions are satisfied. 

l group(ai) E ( new, forward-dependent, 

forward-complementary-dependent } 

l 3ak E Ej A j E {l,...,m), such that 

a; = domain-changed(ak) A (dom-size(ak) c 

dom-size(a;)). 

where dam-size(a) is a function used to compute the 

storage for an attribute a; domain-changed(a) returns 

the attributes that is derived from attribute a, but 

whose domain has been changed. Let B; be a set of 

base attributes of schema versions Ei, i E {l..n}. The 

complete schema of schemas (El, Ez, . . . , En} (SC) can 

be expressed as: S, = Uy=‘=, B;. Let us refer to the ob- 

jects correspond to the complete schema as the complete 

o bjecta. 

In order to indicate whether the objects created un- 
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der a schema version need additional stora.ge, we define 

two kinds of nodes: virtual and non-virtual nodes. 

A non-virtual node corresponds to an schema version 

whic:h is either the initial one or is augmented with 

the attributes that cannot be derived from the old 

schema. That is, a non-virtual node contains base 

attributes. 

A vir;lual node corresponds to a schema which does not 

contain any base attribute. 

Objects created under a schema that maps onto a 

non-virtual node cannot be stored in the databases de- 

scribed by the old schema versions. Thus., the under- 

lying database need to be re-organized. On the other 

hand, the objects created from a schema that map onto 

virtual nodes can be completely stored in the underly- 

ing databases. 

The representation of changes to an ER diagram us- 

ing VDGs provides the independence from the underly- 

ing database model. We will demonstrate the transfor- 

mation of VDGs to an implementation database schema 

which, we assume to be relational. Th.e relational 

database is “objectified” so that it can effectively sup- 

port ,this, mapping as well as the construction and use 

of database views representing the different schema ver- 

sions. That is, we assume that each object, i.e. instance 

of entity or relationship type, is associated. with a sys- 

temwide unique and immutable identifier (Oid) not vis- 

ible to application programs. 

To illustrate the mapping from an EVER diagram 

into the relational database, let us use the example 

shown in Figure 5. As indicated in the diagram, Com- 

pany is derived from schemas Maker and Dealer. Since 

Maker and Dealer are initial schemas. They contain base 

attributes, and thus are mapped into two VDGs. Each 

consists of a single non-virtual node, N1 and Nz, respec- 

tively. Eleing a non-virtual node, N1 is mapped into a 

relation r1 whose schema Tl contains all attributes of 

Maker plus one extra attribute, the object identifier Oid: 

Tl(Reglcl, Address, Oid). Similarly, Dealer maps to VDG 

node Nz, and then maps to a relation r2 with schema 

Tz(Regld, Name, Oid). 

Schema Company has three attributes: CompanyType 

which is a new attribute to Company, Regld which 

shares with both Maker and Dealer, Address which 

shares with Maker, and Name with Dealer. Since 

CompanyType is a base attribute, schema Company is 

mapped1 into a non-virtual node, N3. The complete 

schema (SC) of the VDG with nodes N1, NZ and N3 

is the union of base attributes of Maker, Dealer and 

Company: S, = (Regld, Name, Address, CompanyType}. 

As in the case of VDG nodes N1 and Nz, being a non- 

virtual node, N3 requires a new relation ~3 with schema 

Ts(ComlpanyType, Oid) to store the base attribute Com- 

panytype. Thus, Company is represented as a view on 

~1, r2 and rg. 

In order to uniformly define a view for each schema 

version,, we construct each view in terms of the complete 

schema. That is, objects associated with each schema 

version are expanded first to complete objects. In this 

example, the set of complete objects is the union of the 

set of the expanded objects associated with schemas 

Maker, Dealer and Company. Each object schelma, irre- 

spective of whether it maps onto a virtual or non-virtual 

VDG node, is expressed as a view on the com:plete ob- 

jects stored in the relations. Thus, the view of a schema 

version (S;) is defined as a selection on the complete 

objects based on the access conditions associated with 

Si, and then a projection on the attributes of S;. Let 

JQTW) b e a P rocedure that converts an object asso- 

ciated with a particular schema version to a complete 

object. The conversion of the base attributes and the 

attributes viewed through the schema version make use 

of the functions specified in the EVER diagram. Let us 

illustrate step by step the construction of the ,views for 

schemas Maker, Dealer and Company in Figure 5. 

Step 1: Determine the complete schema of the VDG. 

As indicated above, the complete schema (SC) of schema 

Car is {Regld, Name, Address, CompanyType}. 

Step 2: Determine the relations used to store the com- 

plete objects created by each schema version. In this 

example, schema Maker is mapped into the schema of 

relation rl. Thus, the objects created under Maker are 

stored into rl. Similarly, the objects created under 

Dealer are stored into rz. However, the objects created 

under Company must be stored into all three relations 

rl, r2 and rg. 

Step 3: Identify the objects created under a specific 

schema version, and expand them into the complete 

objects. The objects created under a schema version 
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may be stored in different relations. They can be iden- 

tified by joining relations based on Oid. For example, as 

shown in the following table, the objects created under 

schema version Company (03) are selected by joining ~1, 

rr and 73 on Oid. Since the objects created under both 

Dealer and Company are stored in ~2, we must separate 

them to apply the corresponding Ezpand() procedure. 

The objects created under version Dealer (02) are se- 

lected by discarding the objects created under Company 

from relation ~2. Similarly, the objects created under 

Maker are selected by removing the objects created un- 

der Company from relation rl. 

schema the created objects 

Company 03 = rg wO;d r2 wO;d r1 

Dealer O2 = cOidE(IIoi..+( r.)-noi4Os))(r2) 
Maker O1 = ~OidE(~o;d(rl)-noid(OS))(T1) 

Step 4: Construct a view for a schema version. Con- 

vert the complete objects created under a schema ver- 

sion to the objects viewed through the schema ver- 

sion, and then screen the objects that cannot satisfy 

the specified condi&ns out from the view of the pro- 

grams. Let View; represent the view for schema Si. 

If there are n schema versions, then, the view of a 

schema version can be defined uniformly as belows: 

Viewi = IIs;(CT Conditionss,(u~~~ Ezpand(0;)))’ 

where II stands for projection, u for selection and 

Conditionss, for the conditions specified against Si. 

Therefore, in the example, the view of each schema ver- 

sion can be expressed as: 

ViewMaker = n(Regld,Addreas) ( 

~(cmpany~ype=mnker) CUZ Eapand(Oi)) ) 
ViewDenfer = n(Regld,Name) ( 

ff(C mpanyType=dea~ar) CUiZf -f%and(Q)) ) 
Viewc cnnnpany = n(Reyld,Addzess,Nome) ( 

U:zT Ezpnd(Oi) ) 

Each view is stored in the corresponding VDG node 

and it may need to be reconstructed after each database 

re-organization. 

In our approach, we can guarantee that the update 

against a view can be correctly translated into the se- 

quence of updates on the complete objects in the un- 

derlying database based on the following reasons. 

l The key attributes of different schema versions 

0 

. 

5 

must be same or the mapping among them must 

be one-to-one. Therefore, the objects viewed from 

a schema version (view objects) can always be 

mapped into the unique complete objects in the 

underlying database. 

The objects viewed from a schema version (view 

objects) are always a subset of the complete ob- 

jects, and can be mapped into the unique complete 

objects in the underlying database. 

The functions used for representation of attribute 

relationships indicate a unique way to translate the 

view update into the updates against the underly- 

ing database. 

Conclusion 

This paper presented a graphic specification language 

to support schema evolution based on the Entity- 

Relationship (ER) app roach for data modeling. We 

chose to examine the semantics of changes in the con- 

text of the ER model for the following reasons. Firstly, 

this approach has the advantages of being graphic ori- 

ented and of being closer to the designer’s perception of 

data, rather than to the logical database schema which 

describes how data are stored in the database. Sec- 

ondly, the ER model supports many types of relation- 

ships whereas Object-Oriented models primarily sup- 

port one type of relationship, which is similar to the 

“ISA” relationship in the ER model [6]. Thirdly, we 

want to avoid to define yet another Object-Oriented 

model that would support more types of relationships 

[4]. Instead, we are more interested in making the ER 

approach Object-Oriented [12] and hence, effectively 

supporting the mapping of ER schema into any Object- 

Oriented one [ll]. At th e same time, our approach sup- 

ports evolution of the current-state-of-the-commercial- 

art of database systems, that is, relational database sys- 

tems. 

The follow up of this work is to build a prototype for 

the exploration of schema evolution in multiparadig- 

matic access of databases. As presented in the begin- 

ning of the paper and illustrated by Figure 1, through 

the graphic user interface and mapping schemes for 

EVER diagrams, changes to an ER diagram can be 

made transparent to application programs and inter- 

active users. In other words, the application programs 

131 



and users can access all objects in the database using 

their schemas. 
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