Interactive Training of Virtual Agents

A.Del Bimbo, Member, IEEE, E.Vicario, and, D.Zingoni, Member, IEEE
Dipartimento Sistemi e Informatica, Universita di Firenze
3, via Santa Marta, 50139, Firenze, Italy =

1 Introduction

Human-computer interaction has evolved from early
textual programming towards visual languages with 3D
direct manipulation interfaces. In this evolution, the
cognitive effort of the user in managing objects of the
system has been progressively reduced by augmenting
its engagement in the operation. Virtual rezlity may be
regarded as the ultimate stage in this trend [9].

In carly textual interfaces, objects were not directly
operated but rather the user conversed about them
through an intermediate language[10].

In 2D direct manipulation interfaces, linear textual
strings have been replaced through icons, i.2. synthetic
images representing real-world objects or processes. In-
teraction largely relies on visual communication, and
the user engagement is increased by the direct opera-
tion of object simulacres. In this operation, visual lan-
guages provide conceptual guidance in regarding spa-
tial and temporal arrangements of icons as visual state-
ments, and exploiting human natural capabilities in pic-
ture recognition and interpretation. Nevertheless, in 2D
iconic interfaces, the dialogue between the user and the
objects is still mediated by a language structure (albeit
visual). This structure, though characterized by sim-
ple syntax and semantics, still requires a preliminary
learning for cffective operation of icons by the user.

In 3D direct manipulation interfaces, such as vir-
tual reality environments. the world of interest is repre-
sented directly, and no intermediary exists between the
user and the objects [8]. The interface features a set
of virtual agents which change their state in response

*This work was partially supported by MURST under project
40%..

Permission to copy without fee all or part of this material is

ranted provided that the copies are not made or distributed for
girect co‘ranmercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given
that copying is by permission of the Association cf Computing
Machinery. To copy otherwiss, or to republish, requires a fee
and/or spacific permission.

AV! 94- 6/94 Bari ltaly

© 1994 ACM 0-89791-733-2/94/0010..$3.50

to external and internal stimuli so as to emulate some
real-life environment. The user interacts with these vir-
tual agents according to syntactic and semantic conven-
tions which reflect the characteristics of the emulated
environment. In this way, the need for a preliminary
learning by the uscr is overcome by its knowledge of
the emulated real-life environment.

To attain an effective emulation, virtual agents must
exhibit both realistic graphic shapes and realistic be-
haviors. Realistic shapes help the user to perceive the
virtual environment as a replica of a real context thus
forcing ways of interaction that are usual in reality. Re-
alistic behaviors improve the user’s engagement in the
virtual world, giving the sensation of interaction with a
context populated by living and natural agents.

In this evolution, due to the increasing complexity of
interaction systems, the use of appropriate notations,
methodclogies and tools supporting the designer during
the entire lifecycle from the specification to the imple-
mentation stage assumes a major relevance. The de-
velopment of virtual worlds is currently addressed by
several ongoing projects, but only in few cases the de-
sign of agent behaviors is considered explicitly. The
AVIARY system provides a general framework where
the behavior of virtual agents is made up by lnw-level
physical (rather than behavioral) laws [13]. In the VR
toolkit [14], the specification of reactive behavior for vir-
tual agents is supported through the use of rule-based
specification.

Following this trend, at our Departiment we are cur-
rently involved in a project aiming at the development
of a tool supporting an evolutionary approach to the
interactive and visual specification of the behavior of
virtual agents [5]. This tool enforces the concept of be-
havioral training, i.e. the interactive building of agent’s
behavior: each agent is natively provided with 2 set of
basic actions; the behavior pattern by which the agent
engages these basic actions in its interaction with the
environment is specified by example through a visual
interface. In this construction process, the behavior of
each agent is defined by visually replicaling its reac-
tion pattern to specific perceived stimuli coming from

http://crossmark.crossref.org/dialog/?doi=10.1145%2F192309.192345&domain=pdf&date_stamp=1994-06-01

the virtual world [eatured by the interface. The reac-
tion pattern is represented through a Petri Net based
mocdel [12] which permits rapid prototyping so as to sup-
port interactive specification. Besides, spatio-temporal
stimuli are represented through an original design lan-
guage, referred to as eXtended Spatio Temporal Logic,
which extends concepts of conventional ‘lemporal Logic
[11][1] so as to deal with space and time within a unified
framework.

I the rest of this paper, the languages used for the
representation of stimuli and reaction patterns are de-
seribed in Sects.? and 3. Afterwards, the visual inter-
face of the training environinent is prescnted in Sect.4
and conclusions are drawn in Sect.5.

2 Specification of Perceived Stimuli

Spatio-temporal relationships comprise the basic
essence of interaction among the agents of a virtual en-
vironment. Ciesture patterns (such as grasping, touch-
ing, pointing. approaching and the like) are largely per-
vaded by this type of relationships. According to this,
in our approach, the agents of a virtual environment are
sensitive Lo spatio-temporal stimuli, i.c. to the evolu-
tion over time of their spatial relationships with other
agents in the environment.

The specification of this type of interaction model re-
quires an appropriate language allowing for the expres-
sion of 3D spatio-temporal situations as encountered in
the narural perceptual process of real-life agents. This
requirement has a number of major implications:

e the language must encompass both spatial and
temporal phenomena within a cohesive and ho-
mogenous framework:

the language must be oriented towards the expres-
sion of qualilative spatial and temporal relation-
ships so as to match the incomplete and umprecise
knowledge which pcrvades the environment per-
ception of real-life agents. Besides, the language
must also incorporate some form of smoolh quan-
lily Lo permit the expression of qualitative metric
relationships [7] such as: distances between agents
(such as near and far); time intcrvals between sub-
sequent conditions (such as soon and late); and rel-
ative speeds of the agents (such as slow and fast);

As to the expression of spatial relationships between
objects. for each agent, spatial relationships must be
referred to an individual reference systems, and metric
conditions (both spatial and temporal) must be defined
s0 as Lo match the characteristics of the individual per-
cepiual process of the agent itself. To this end, each
virtual agent must be provided with an individual spa-
tial reference system and with individual spatial and

173

temporal thresholds delining concepts such as near, far,
soon, late, slow and fast; Both the individual reference
system and the qualitative metric thresholds must be de-
fined according to pragmatic criteria so as to reflect the
geometric and behavioral characteristics of the agent
itself.

To cope with these requirements, an original language,
referred to as eXiended Spatio Temporal Logic (XSTL),
has been designed, which extends the concepts of con-
venlional Temporal Logic , so as to support a homo-
geneous description of both spatial and temporal phe-
nomena. Specifically, the spatio-temporal evolution of
the contents of a dynamic scene are captured through
assertions that are organized in two nested dynamic and
static levels [3]. At the dynamic level, sequence asser-
tions expressed through the conventional operators of
Temporal Logic capture the evolution over time of the
spatial contents of the individual frames; In turn, these
spatial contents are defined at the static lcvel by frame
assertions that are formed according to an original lan-
guage which transposes the concepts of 'Temporal Logic
so as to deal with space instead of time. By extending
concepts proposcd in [1] to augment Temporal Logic
with quantitative modeling capability, XSTT introduces
metric expressivity in both frame and sequence asser-
tions so as to permit the representation of qualitative
metric relationships among space points and time in-
stants in which certain conditions hold.

2.1 Static Descriptions

The spatial relationships between the agents in a
static virtual scene are expressed through fraine asser-
tions which transpose the concepts of conventional Tem-
poral Logic so as to deal with space instead of time. In
the following, the syntax of these assertions and their
mecaning are informally introduced. For a more rigorous
treatment, the reader is referred to [6].

A generic frame assertion ® is made up of a point r
and a spatial formula ¢: () Es ¢ and it is read
as: "formula ¢ hods in point . In turn, spatial formu-
lae are formed by inductively composing the identifiers
of the agents in the scene through the Boolean connec-
tives, and a set of spatial operators which transpose in
the space the semantics of the usual operators of Tem-
poral Logic. Given a point » and an object p, the basic
assertion of Spatial Logic is expressed as

(r) Esp (1)

and means that object p stands over 7.

The spatial operators eventually in the space (Oez),
and always in the space (O,z) permit to state a formula
over somc or all of the points encountered moving from
a starting point r along the direction of a coordinate
axis e;. Specifically, the assertion

(1) e O, 50 @)

means that formula ¢ holds in some of the points that
arc cncountered moving from r along the positive direc-
tion of axis ¢; Conversely, the assertion

(r) s O (3)

raeans that formula p holds in all the points that are
encountered moving from r along the positive direction
of axis e;.

The spatial operator until in the space (unt.+), per-
mits to state that a formula ¢, holds over all the points
encountered when moving from a starting point » along
the direction of an axis at least until a point is encoun-
tered in which a second formula ¢ holds:

(4)

In the construction of frame assertions, multiple spatial
operators and Boolean connectives can be inductively

(r) s drunt, s,

combined so as to compose finer assertions. For in-
stance, the assertion
(r) lzs OETDE; (pVv ‘1) (5)

means that, starting from point », a point 7' is reached
such that, in all the points encountered moving from »/
along thie negative direction of axis es, there are objects
por q.

The composition of eventually operators referring to
opposite directions of the same axis permits to disregard
the alignment condition orthogonal to that axis, thus
permitting the expression of don’t care conditions. For
mstance, the assertion

(6)

eans that, moving from point r along the positive di-

rection of the first axis (O,+) and along one of the two
1

() k=, <>er,<>cj<>e:p ,

directions of the second axis (Ocjoe;)' a point r' is
reached such that object p stands over 7. Of course,
don’t care conditions can be used for multiple axes; in
particufar, if this is done for all the axes, a somewhere
condition can be expressed.

>

4

.1.1 The Walkthrough Paradigm

Frame assertions deriving {rom the composition of mul-
tiple spatial operators can be regarded as spatial walk-
throughs leading from a starting point r to a second
point ' in which some spatial formula holds. In this
rective, the spatial relationship of an object p with
respect to a point » can be represented through the set
of the possible walkthroughs leading from r to any of
the points in p. Walkthroughs are expressed considering

pers

174

paths parallel to the coordinate axes of an underlying
reference system which, in our case, is assumed to be
object-centered. With one such reference system, scene
descriptions are independent of the observer’s point of
view. Each object is provided with its individual refer-
ence coordinate system, and the overall description of
the scene is given by a set of descriptions, each captur-
ing how one object sees the other objects with respect
to its own reference coordinate system.

It is worth remarking that this walkthrough paradigm
does not refer to object projections on coordinate axes,
thus basically differentiating frame assertions of XSTL
from previous approaches based on symbolic projections

[21(4].

2.1.2 Context Declarators

The spatial relationship of an object p with respect to
point » may be represented by the set of the possible
walkthroughs from r to any of the points in p. By exten-
sion, the spatial relationship of an object p with respect
to a second object ¢ can be represented by the set of
the walkthroughs from the points in ¢ to the points in
p. To this end, context declarators are introduced so as
to refer frame assertions to the overall set of the points
in an object: if ¢ is an object identifier and ¢ a formula,
the assertion

(9) Fs 0 (7)

(read "¢ holds in ¢”) expresses that, for each point r
in g, there exists a walkthrough originating in » which
satisfies ¢. For instance, the assertion

(9) s Ot Oetp (8)

means that, for any point » in ¢, there exists a walk-
through along the positive directions of axes e; and e
which leads into a point »' belonging to p (see I'ig.1a).

(c)

(a) (b)

Figure 1: Three sample scenes.

It should be noted that, according to this definition,
negation does not distribute with respect to context
declaration. In fact, in general (—(q) k= ¢) #Z ((¢9) Fs
—¢). This permits the expression of assertions referring
to some rather to than all the points in a context object
q. Tor instance, the assertion

(0 B ~(0400m) (9)

means that it is not the case that formula ﬂ(oe;,oe;,p)
holds for all the points in ¢, i.e. it means that there
exists al least one point » in ¢ such that the walkhrough
O'ETOE? leads from » to a point in p (see Fig.1b).

‘I'he use of context declarations has a critical impact
on the feasibility of a decision algorithm checking frame
assertions [or satisfaction. In fact, in order to check for
satisfaction a (rame assertion of the form (q) s ¢,
the formula ¢ must be verified for all the points of the
object ¢, which may be not feasible if ¢ stands over a
dense set of points. This problem may be overcome if
each object ¢ is associated with a finite set of represen-
tative points, and the assertion (¢) =< ¢ is read as ”for
any representative point r in q, the assertion (r) =, ¢
liolds™. Note that the selection of these representative
points determines the model of objects assumed for the
descriptions. and that different selections may be con-
sidered so as to accomplish different levels of detail and
accuracy in the representation of the object relation-
ships within a scene.

2.1.3 IRestricted Fragments

In general, different XSTL assertions can be stated for a
single scene. While giving means to description refine-
ment in manual construction of assertions, this absence
of nnivocality clashes with the possible need of auto-
matic generation of XSTL assertions from the interpre-
tation of sample scenes. To resolve this clash, some
assumptions must be made about the kind of assertions
generated by the system so as to obtain only one de-
scription for each scene. These assumptions involve the
structure of Boolean composition of the different spatial
operators as well as the number of objects considered
in each assertion, and define the fragment of XSTL that
will be actually exploited by the automatic generator of
assertions.

As an example, a possible fragment is made up of the

assertions which are formed through the use of eventu-
ally operators relating couples of objects. Using this
structure of assertions, the spatial position of p with
respect to ¢ in Fig.2 can be expressed by two possible
walkthroughs: (¢) k=, choejp 1s possible for all the
points in ¢, while (¢) = Oe.;p is possible only for the
poiuts of ¢ in the dark-gray area of the figure.
Note that, saying that the spatial position of p is ex-
pressed by two walkthroughs means that: for each point
int ¢. at least one of the two walkthroughs is possible and
that each of the two walkthroughs is possible at least
in one point of ¢.

175

(A ez P

Figure 2: A sample scene allowing for two different
walkthroughs from ¢ to p.

2.2 Dynamic Descriptions

Static frame assertions can be composed through op-
erators of conventional Temporal Logic such as eventu-
ally (O4), always (O;) and until (unt,) so as to form se-
quence assertions capturing the evolution over time of
the spatial relationships expressed as frame assertions.

2.2.1 Sequence Assertions

A sequence assertion © is made up of a scene index j
and a temporal formula 6: (j) k=t 6 and it is read
as: "formula 6 holds in the j** scene of the sequence”.

Temporal formulae are formed by inductively com-
posing spatial assertions through the Boolean connec-
tives, and the usual set of operators of Temporal Logic.
For instance, if o is a sequence of frames, j is a frame
index and ¢ is a frame assertion, the sequence assertion

() Er i (10)

means that, along the sequence o, after the jt* frame,
there is a frame in which the frame assertion ¢ holds.
Besides, the sequence assertion

() e Bid (11)

means that the frame assertion ¢ holds in all the frames
subsequent to j along the sequence o. Finally, the se-
quence assertion

(J) Ee druntidy

means that, along the sequence o, ¢; holds in all the
scenes subsequent to j at least until a frame in which
@2 holds.

The appropriate composition of temporal operators
permits the description of time ordering relationships
between frames in which different spatial conditions
hold. For instance, the sequence assertion

(12)

(ta) Bt ((0) e ©302p) A O ((0) bs O Oupp)

(13)
means that, object p is initially right of object ¢ and
that, eventually, it will be left of it.

It is worth noting that the above assertion permits
any change of the spatial relationships between ¢ and
» belore the final condition in which p is left of ¢ is
reached. This depends on the fact that the temporal
ceenfually operator does not state a condition in the
nerl state but rather in some state in the future. In
general. the temporal eventually operator can be used
to attain partial descriptions of a sequence in which only
sole relevant conditions are encountered. On the con-
traryv, the temporal unt:d operator permits the descrip-
tion of sequences in which all the subsequent conditions
are defined.

2.3 Achieving Quantitative Descriptions

Following the approach proposed in [1], qualitative
metric relations are added both in framec and sequence
assertions througli the use of spatial and temporal freezc

variables.

2.3.1 Metrics in Spatial Descriptions

Spatial freeze variables are used 1o mark poinls on the
objects. and to track their subsequent positions in the
evolution of the sequence. Lor instance, the [rame as-
serfion

(r) },—_.\. V.0 (14)

means that (r) =, @ is satisfied if the pesition of point
rin the current frame is assigned to the freeze variable
. After this [reezing opceration. the variable v, cannot
be used in any other freezing operation but it can be
used to refer to the position taken by point r along the
subsequent. frames of the sequence.

Positional values assigned to spatial lreeze variables
may bo used to express metric relationships regarding

the distance between the points they track. Tor in-
stance. the frame assertion
() e e (03O () (15)

means that. (sec I'ig.lc) starting {rom point r, whose
position is freezed in the variable v,. and moving along
the positive direction of the axis e; and along the pos-
itive direction of the axis ¢4, a point is reached, whose
position is freezed in the variable ¢, which is part of
the ohject. p. This assertion can be refined through
nmetric conditions on the distance between the positions
freezed in thie variables v, and .0

(r) =« vy (O-elf'&e.:w,./.(p)) A (Jler = e} = near)

(16)
which specifies that the positions freezed in v, and v
are near (i.e. it falls within the range of near).

If the freeze operator is introduced between the even-
lually operators, metric constraints hetween intermedi-
ate points of the walkthrough can be expressed.

2.3.2 Metrics in Temporal Descriptions

Temporal freeze variables are used to retain the indexes
of frames in which certain conditions hold and to ex-
press metric rclationships among these indexes. For in-
stance, the sequence assertion

(1) =t La- (O t6.(0)) A (Jtg = to| = soon) (17)

expresses that, after the jt* frame of the sequence, a

frame will be encountered soon (i.e. within a time in-
terval which can be characterized by the soon qualifier)
in which the assertion # holds.

2.3.3 Metrics in Spatio Temporal Descriptions

The joint use of spatial and temporal freeze variables
permits the representation of relationships and condi-
tions where space and time arc inherently tangled, such
as, for instance, advancement and approaching of ob-
jects. By combination of spatial and temporal metric
relationships, considerations about the relative speed of
the objects are also possible.

The approaching of an object ¢ towards an object
p (sec Tig.3) can be expressed through the following
assertion:

(ta) o () s ve-(9)) A ((P) Es vp-(p)) A
Cely. (|lvg(ta) — vp(ta)]] < [Juglts) — vp(ts)l]) (18)

which states that, freezed in v, and v, any two points
belonging to p and ¢, there will eventually be a frame ¢,
in which the distance between v, and v, is lower than in
the first frame t,. Note that this basically states that,
there will be a frame in which any couple of points in p
and ¢ will be nearer than they are in the first frame. The
context declaration can be weakened through the use of
negation connectives so as to state that the approaching
condition holds not for all the couples of points but only
for some of them.

—

Figure 3: An object ¢ approaching a second object p.

The expression of the advancement of an individual
object requires the comparison of the positions of the

176

same object in different frames (see Fig.4). This is ac-
complished by the following assertion:

) () Fe v (0)) A Ot ((eglta)) o ©,00)

(19)
which asserts that. for any point vy belonging to ¢, there
will be a time ¢, in which the point v, is right of the
position ot v, in the initial frame.

Figure <1: An object ¢ advancing along the positive di-
rection of its first axis.

Reasoning about the speed of changes in the spatial
ips belween the objects is supported by the

relation
joint use of spatial and temporal quantifiers. For in-
stance, a distance which changes of a quantity far in
a time interval soon intuitively correspond to a fast
motion. The appropriate combination of temporal and
spatial relationships also permits the description of
composite spatio temporal relationships such as zigzag,
hackward and forward or revoluizon motions.

3 Specification of Reaction patterns

[lach virtual agent is natively provided with a set of
basic actions. For instance, a virtual car is provided
with basic actions to advance, blink, turn, and so on.
The)rlmwox pattem of th(‘ a.gent is d fmed by the

._._
g
@
e
<
=
)
o
’f
1]
a
:
o

Actlons in response to d]ﬁ'e t f‘()lllblll«.\LlOHS of stimuli
received from the environment. For instance, referring
again 1o the example of the car, the reaction logic could
e defined so as to ensure that the car stops when a
second car is approaching from its right hand side or
when a pedestrian-like agent 1s encountered on a zebra-
('l'l")s‘*:illf"

Following the opera
tioi of ciibedded 3¥S
through a process-orien
operation nf behavioral 1

tional approavh to the specilica-
teims, reaction 1u51\,> arc defined

ted la nfruage which supports the
automatic odels during the
execution of the virtual environment.

Briefly described. the reaction logic of an agent is
macle up of a set of execution modes and a schedul-
ing logic controlling their activation. Each mode is a
secuence S of basic actions, possibly including loops,
random selections, and blocks:

S=t]|S5 = 8|5 |5 NSy | stop (20)

The simplest possible execution mode for an agent is
made up of a single basic action t. More complex modes
can be constructed through the concatenation opera-
tor — which permits to chain the execution of multiple
Sequenceb or with the loop operator * which permits
ition of a sequence. The random
sclection operator M allows for the specification of non-

choices taken by the agent. Finally, the

+1- o A
bllU 1uuc1uubc repe

deterministic
stop action defines a blocking condltlon in which the
mode does not engage the execution of any further ac-
tion.

The operation pattern of the agent results from the
interleaved execution of the sequences of its modes.
This operation occurs under the supervision of the
scheduling logic which activates and disactivates exe-
cution modes in reaction to the occurrence of external
stimuli. When a mode is activated, its sequence is ex-
ecuted starting from the first action until the mode is
disactivated by the scheduling logic. Multiple modes
may be concurrently active.

The scheduling logic of an agent is suitably described
by a condition-event Petri net model [12]:

Scheduling Logic =< C,E, A > (21)
where:
Fme annlh commnlo ad writh o
(194 lb’ caclil db)Ul,laabCLl Witili &

external stimulus. Conditions as-
| es, represented as double circles,

cprcsell oubDle C

mode or with an
sociated with mo
are either true or false whether their correspond-
ing modes are active or not. Conditions associated
with stimuli, represented as circles, are true when
their corresponding stimuli are being perceived and
false otherwise. True conditions are marked with
a black token to distinguish them from false condi-
tions.

e A is a set of pre-condition and post-condition arcs
associating conditions with events or viceversa. In
the graph, pre-conditions and post-conditions are
represented as arcs directed from conditions to
events or viceversa.

The status of truth or falseness of conditions change
over lLime ar‘rnrdlng to the execution rule of events

which is defined in the following three clauses:

e Firabilily: An event is firable if all the conditions
that are connected to it through a pre-condition

are true;
o imnd. Dulonooe TF om avant 1o Freabkls #law i+ well
- Yy Cun 1'ULITIicCos I all Cvcellu 1o Jllabl LIICIL 1L Wil

e Firing: When event ¢ is fired: (1) all the conditions
that are connected to e through a pre-condition
or tLrough a post-condition are removed from the
set of true conditions, (2) all the conditions that
are connected to e through a post-condition are

inserted in the set of true conditions
M@
o/ 7
Y-
-~/ 2
—()e,
\r .
. Y
g ‘nlr:
(advance—fast) A
0, Ok e O —
4 A 1 N e
S
9, () she i
'U I
JLi
e fl\
b 1Y T
1 S’
gong—slow=
e Kadvance—s/ow/
@/ = car appproac/ung from rjgfit
< at near or medium distance
(] s = pedestrian in front al medium distance
@3 = pedestrian in fron! at near distance

As an example, in Fig.5, a simple model is presented
which captures the behavior pattern of a car-like agent.
The car is associated with two modes, referred to as
going and going-slow, which consist in the cyclic execu-
tion of a fast or slow advancement action. The agent is
sensitive to six different stimuli, corresponding the the
presence or absence of a pedestrian-like agent in {ront

ot n and to tha nyr
(<%

medinm a
v a Al v i pra

A3
Inealiunmni,

FT IS TOLYN
Lisvaliic

oar

noaw Qaansn AT
1iCat Or 1w} H

1ce o
absence of a car approaching from the right hand side.
If no cars are approaching from the right hand side and
no pedestrian-like agents are on the road at a distance
medium or near, the going mode is scheduled and the
car advances at fast speed. In this condition, if a pedes-
trian is found at a distance medium along the road, the
going mode is disactivated and the mode going slow ac-
tivated, and the car advances with low speed until no

il acdrion agenta e tm bha range ~f neadise ik amens
lJLu" Ssullcall C‘lbclll) LT 11l i La,usc Ol mieqgiuii ulDl‘alle
and the going mode is cntered again. Besides, whatever

178

mode is execuling, if a pedestrian is found at a distance
in the range of near or if a car approaching from right
is detected, both the modes are suspended so that the
car stops until the going mode is entered again.

The operational model which defines the reaction

larice of an aoant vermits a natural translation into code
1V 1V UL il Lb&\,lll‘ l} llllJD a liauvuiral ULGIIDI@\IIUII lllJ\I AL L)
In this translation, each agent is associated with an au-

tomaton which operates its condition-event net and in-
terleaves calls to the active modes so as to execute them
step-by-step. Besides, a global parser observes the vir-
tual scene to detect the occurrence of spatio-temporal
evolutions corresponding to stimuli that are relevant for
any of the virtual agent. Whenever onc such stimulus
is detected, the parser sets true the appropriate condi-

Ry s P

tion in the scheduli
conditioning the execution of ils operation automaton.

It is worth noting that. ir

QI NOLIE ias, mn

PN LY I ISP, [T
b 10g1C Ol e lnteresued d.g(_‘[ll- wnus

tvne of ir lnlornpnfahnn

VIZIS Ny LI pnCINCnLa Ll

| o4
the automata associated with agents basically behave
as coroutines: on each activation they are able to exe-
cute a number of steps in the operation of their corre-
sponding agent and then release control until the next
call. This allows for the implementation of light weight
scheduling policies which permit to run a large number
of concurrent agents (each executing a number of con-
current rnodes) within a single thread of control, thus
lievin ng the uperau
ng from multi-thread

1B

'VC[1€& d.u ucuv—

o)

crrabon Foeonn 4l o
SYSiLE€m ITOI e

control.

ie

4 A Tool for the Interactive Training of
Virtual Agents

Specifications of reactive behaviors according to
XSTL spatio—temporal assertions and Petri-net based

opera

o]

l()Ild-l ”lO(lelb may l'CSllll; lIl very DUIO("llt)OH'le (,()U‘
ing even for simple dynamic virtual scen This hur-
vi

es.
] be overcome by the use of appropri:
interfaces supporting v1sual specifications by example
of agent behaviors, provided that automatic parsing of
visual specifications and code generation of behavior
models are available.

To this end, a prototype system has been developed,
based on the representation techniques expounded in
the previous sections, for the training by exampie of dy-
namic scenes in virtual environments. In this system,
depict a 3D virtual s
specific agent to assume selected behaviors in reaction
to the occurrence of spatio-temporal relationships with
other agents populating the scene. The system runs on
a IBM RISC 6000 machine with 7234 G'I'O for real time
interaction support with the 3D virtual world. This is
visualized through Gra-phigs under X-windows. 3D ob-
Jects and 3D scenes are graphically constructed using a
scparate software pdckage (3D-studio) and downloaded

D_

le ma

1Ay

<

.._
g
a
&

i

+1
llllJU Ull\" 3_ybbblll CllVllUlllllClllJ

ti
defined for the objects that must exhibit

T
IJ.CI.C

in order to define specific dynamic situations to which
the trainee has to react. A single agent may be trained
for different reactive behaviors to multiple situations in
order to huild even complex "reaction patterns”.
Reaction pattern specification is carried out visually,
by example, separately for each agent: in the training
ssion, the user identifies himself in the object to be
trained and uses special buttons to activate the basic ac-
tions of the agent itself at the occurrence of some spatio-
temporal relationships with the other objects. Reactive
behaviors so specified are encoded according to the op-
erational model and added to the object description.

=E

In Tigs.6 and 7, a case example of designing a dy-
nanue virtual environment for giving driving lessons to
a beginner 1s presented. In this environment, the be-
ginner must drive a car virtually in a city and interacts
with the other agents in the virtual world. Rules of
“good driving™ are supposed to be learnt by the begin-
ner during his driving, by observing the behaviors of the
other agenls and the effects of his actions in different
situations.

Agents in the environment are limited to be pedestri-
ans and cars for the sake of simplicity. Cars are trained
with right driving rules with respect to pedestrians and
other cars, according to the behavioral model given in
Sect. 3.

Fig.6a depicts the virtual scene that has been cre-
aled for the definition of car behaviors. The designer
drives the virtual car, and a pedestrian is made cross-
ing the road when the car is al a medium distance (see
I'ig.6b). Acting on the buttons, the designer lowers the
speed and hence stops when he get near to the pedes-
trian (see ['ig.6c). After, he restarts. Spatio-temporal
relationships hetween virtual objects are detected by a
parser which translates these relationships into XSTL
ctanses. These are associated with the activations of the
basic actions of the car (lower the speed, stop, restart)
in a simple behavioral net. If training is satisfactory
(the trained behavior can be played back for checking)
the behavioral net is added to the car model.

In Fig.7, the training of the behavior with respect to
other cars in the proximity ol a crossroad is shown.
Here again the designer drives the virtual car (the one
on the left of the screen) and gets closer to the crossroad
lowering the car speed (T'igs.7a). As a consequence, the
spatio-temporal clause ”approaching to a crossroad be-
ing at a medium distance” is associated to the basic
car action “lower the speed”™. As a second car appears
on his right side at "medium distance”, he stops his
car (Figs.7b and 7¢). As an effect, the spatio-temporal
clause "a car is approaching from the right side” is as-
sociated with the disactivation of the advancement con-
dition. These condition-reaction associations arc again
added to the car model if satisfactory. Alter he restarts.
Behavioral nets with multiple behaviors have a comb-

179

Figure 6: Visual programming of a car agent: behavior
in the presence of a pedcstrian.

i
SRR A

Figure 7: Visual programming of a car agent: behavior
in the presence of a car at a crossroad.

180

like structure that makes easy their maintenance and
changes. If a new behavior is specified for the same
object, this is simply added as a comb tooth. Changes
to behaviors that have been specified result into addi-
tions/deletions to the appropriate subnet, depending on
the type of change-mode selectec. If "change with ad-
ditions” is selected, for every spatio-temporal pattern
detected by the parser, subnets that include this pat-
tern as a precondition are activated; as a new action
pattern is specified this is simply added to the existing
subnet(s) leaving unchanged the test of the subnet. If a
"change with deletions” is selected, also in this case for
every spatio-temporal pattern detected by the parser,
subnets that include this pattern as a precondition are
activated; but differently from the previous case, as a
difference in the condition-reaction patters is detected
between the previous and the actual definition, the old
definition is deleted and replaced by the new one.

In Fig.8, some situations are shown, concerning the in-
teraction of a driving beginner with the virtual world
previously designed, is shown. Here the beginner is
driving the car on the right side of the screen. The
other car in the virtual environment is expected to ex-
hibitl the behaviors trained in the previous stage. In the
first case, the beginner driver car reaches first the cross-
road and the cars coming on his left side is expected to
give it the right of way according to the training (see
Fig.8a and 8b). After the car has passed, the other
restarts. Since a pedestrian is on zebra-crossing in the
car lane, it stops again to make the pedestrian to pass
over. (Figs.8c and 8d).

5 Conclusions

In this paper, visual specification by example of be-
haviors of virtual agents has been addressed. Visual
specification by example is believed to largely reduce
efforts of coding and to make easy maintenance of dy-
namic virtual worlds. Agents are trained by the de-
signer by visually replicating reaction patterns to spe-
cific spatio-temporal relationships with other agents in
the virtual world. Visual specification is formally sup-
ported by an appropriate language for the qualitative
representation of spatial relationships between objects,
as well as by an operational mode! of behaviors.

References

[1] R.Alur, T.Henzinger, "A really temporal logic,”
Tech.Rep. 92-1310 Dept. of Compuler Scicnce,
Cornell University, Ithaca, New York, Nov.1992.

[2] S.K.Chang, Q.Y.Shi, C.W.Yan, "Iconic Indexing
by

Figure & Interaction with the virtual e

trained agents.

nvironment with

181

(3]

[5]

[6]

(11]

[12]

[13]

[14]

2-D Strings”, IEEE Tr.on PAMI,Vol.9,No.3,July
1987.

A Del Bimbo, E.Vicario, D.Zingoni, " Sequence Re-
trieval by Contents through Spatio temporal In-
dexing,” Proc. IEEE VL’98 Workshop on Visual
Languages, Aug.1993, Bergen, Norway, 1993.

A.Del Bimbo, E.Vicario, D.Zingoni, "A Spatial
Logic for Symbolic Description of Image Con-
tents,” accepted for publication on Journal on Vi-
sual Languages and Computing.

A DelBimbo, E.Vicario, D.Zingoni, ” Design of Vir-
tual Worlds,” Proc. VL'93 IEEE Symposium on
Visual Languages, Bergen NW, 1993.

A.Del Bimbo, E.Vicario ” A Logical Framework for
Spatio-Temporal Indexing of Image Sequences,”
in Spatial Reasoning, S.K.Chang, E.Jungert, and
G.Tortora (Eds.), to be published by Plenum
Press.

A. Frank, "Qualitative Spatial Reasoning about
Distances and Directions in Geographic Space”,
Journal of Visual Languages and Computing, vol.
3, pp. 343-371, 1992.

J.B. Lewis, L. Koved, D.T. Ling, " Dialogue Struc-
tures for Virtual Worlds”, Proceedings of CHI’91,
New Orleans, 1991

S.K. Helsel, J.P. Roth, ”Virtual Reality, Theory,
Practice and Promise”, Meckler Ed., Westport
London, 1991

K.T. ITuang, " Visual Interface Design Systems”, in
*Principles of Visual Programming Systems”, S.K.
Chang Ed., Prentice Hall Ed. Englewood Cliffs,
NJ, 1990

Z.Manna,A .Pnueli,” The Temporal Logic of Reac-
tive and Concurrent Systems,” Springer Verlag,
New York, 1992.

T.Murata, " Petri nets: properties, analysis and ap-
plications,” Proceedings of the IEEE, Vol. 77, No.
4, Apr. 1989.

A.J. West, et al., " Aviary - a Generic Virtual Real-
ity Interface for Real Applications”, Tech.Rep.1992
AIG Dept. Computer Science, Univ. of Manch-
ester, Manchester, UK, 1992.

"Virtual Reality Distributed Environment and
Construction Kit (VR-DECK): User’s guide,” Vir-
tual Worlds Group, IBM T.J.Watson Res.Center,
Yorktown Heights, NY. May 1993.

