
QBI: An Iconic Query System for Inexpert Users

Antonio Massari, Stefano Pavani, Lorenzo Saladini

Dipartimento di Informatica e Sistemistica Universita’ di Roma “La Sapienza”

Via Salaria, 113 - 00198 Roma, Italy

massari@infokit.dis.uniromal.it

Abstract

We present a general purpose query interface for inexpert
users based on the manipulation of icons. The user per-
ceives the reality of interest as structured in classes and at-
tributes while the system internally maintains a schema rich
of semantic information. The query language, fully visual,
is based on the select and project paradigm that has been
proven to be easy to understand. No path specification is
required for composing a query. Automatic feedbacks based
on natural language generation and cardinality constraints
analisys help the user in specifying her/his requests.

1 Introduction

QBI (Query By Icon) is a system that allows users to query
and understand the information content of a database by
manipulating icons. It is especially addressed to the cate-
gory of users characterized by the contrasting peculiarities
of having limited skill and unpredictable exigences in their
requests.

Even though QBI is a general purpose query interface, it
takes its origins as interface for a distributed database of ra-
diological images [I]. In this environment, the high response
times due both to large data sizes and to limited network
speeds, made not feasible a querying approach based on the
database instances browsing [2]. As a consequence, in QBI
the query specification phase has made clearly distinct from
the result analysis phase. All the feedbacks associated to
the user actions are based on the elaboration of intensional
information, since it is supposed to be invariant in time and
not large in size.

The system maintains an internal schema of the
database structure made according to a semantic model,
the Graph Model. This schema, not visible to the user, is a
labeled graph representing both the structural information
(e.g. classes and relationships) and consistency constraints
of the database. The external view is based on the concept
of Generalised Attribute by means of which the database
appears structured in a flat way. More specifically, the user

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice IS given
that copying is by permission of the Association of Computmg
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
AVI 94- 6/94 Bari Italy
0 1994 ACM O-89791 -733~2/94/0010..$3.50

perceives the existence of classes of objects and a set of prop-
erties, called Generalised Attributes, for each class.

As a result, even complex queries can be expressed using
the select-project paradigm that has be proven to be very
simple to understand 131. Finally the possibility of reusing
queries in the specification of more complex ones, further
improves the usability of the system.

QBI takes advantage of iconic metaphors for the visual-
ization of both structural information and constraints. The
implicit ambiguity of iconic representation is resolved by us-
ing automatic generated natural language.

2 Basic Choices

Semantic and object oriented models introduce conceptually
rich constructs for the definition of the database schema
[4]. Users interacting with query languages based on these
models, however, encounter two sources of difficulty:

l understanding the schema and

l specifying logical access paths.

As a matter of facts, the mental effort required to inexpert
users for understanding the meaning of semantic constructs,
such as cardinality constraints or complex relationships, rep-
resents a bottleneck for an effective use of the query lan-
guage. Moreover, the visual representation of such systems
is typically based on diagrams [5], often resulting too com-
plex to be accepted by inexpert users.

Studies have shown how queries involving the navigation
on the database schema are more difficult to express and of-
ten expressed incorrectly [3]. Navigation in semantic data
models is simpified by the use of implicit joins, neverthe-
less the user must still specify the appropriate connection in
her/his query.

The design of QBI has been made taking into account
the previous issues. The following guidelines have been car-
ried out:

0

0

l

2.1

Presentation to the user of a simplified structure of
the reality of interest.

Logical path independence in query specification.

Possibility of incremental composition of queries by
defining views.

The Generalised Attribute

Due to their natural simplicity, the external representation
of the database structure our query interface offers is based

240

http://crossmark.crossref.org/dialog/?doi=10.1145%2F192309.192360&domain=pdf&date_stamp=1994-06-01

exclusively on the concepts of class of objects and attribute
of classes. The user perceives the reality of interest as a
set of classes each one having several properties called Gen-
eralised Attributes (GA in the following). As attributes in
the ER model represent elementary properties of entities, a
GA expresses a generic property of a class; for example the
set of cars owned by a person is treated as an Generalized
Attribute of person as well as its name or birthdate.

In our system the semantic model used for defining the
internal representation is the Graph Model [6]. The major
components of this model are: the class of object, the re-
lationship among classes, and the ISA relationship between
a class and its superclass. Along with the previous basic
concepts it is possible to express cardinality constraints for
the participation of class instances into the relationships. A
Graph Model schema can be expressed in term of a labeled
graph called Typed Graph. The nodes of a Typed Graph
represent both classes and relationships. More specifically,
there are three different kind of nodes: the class nodes, that
can be printable or non printable depending on whether they
represent domains of values or abstract classes, and the role
nodes representing relationships among an arbitrary number
of classes. Edges represent the connections between class
nodes and a role nodes.

The GA is strictly related to the concept of path on
a Typed Graph, where a path is an alternate sequence of
adjacent class and role nodes always starting and ending
with a class node. Given two class nodes nc (picked class
node) and F, a path p starting in nc and ending in K defines
a GA of n, as a multivalued function mapping each instance
5 of n, in a set of instances of K ‘.

A GA can be either single valued or multivalued accord-
ing to the cardinality constraints of the role nodes involved
in the path. The type of the last node of the path determines
the type of the associated GA.

The concept of GA is thus part of the external rep-
resentation; it represents the way by which the user per-
ceives the relationships among concepts. The system is
responsible for the generation of the GAS, in paricular
the GAS of a class node are automatically calculated by
generating all the paths starting from the class node. Is
worth noting how, by means of the GAS of whatever class
node, the user can observe the entire structure of the
database. For example a GA of the class node person can
be “All the hospital located in the same city where
the person lives”. By observing such an attribute, the
user perceives that a hospital is located in a city, that is
a part of the schema not directly connected to person. The
same information, of course, could be got more easlily by
observing the GAS of hospital and city.

If no limitation on the path structure were imposed, the
set of GAS of a class node wolud result infinite. As a conse-
quence, it is necessary to define a criteria for considering a
finite subset of GAS.

Our idea is to define a semantic distancefunctionreturn-
ing, for each GA, a value representing the meaningfulness of
the GA with respect to the picked class node. Many aspects
of the GA structure can be considered for the definition of
semantic distance, for example the path length or the cardi-
nality constraints. The finite set of GAS the system shows

‘The formal definition of the function has not been included for
brevity.

to the user consists of all those GAS “meaningful enough”
to be reasonably used for querying.

2.2 Query Specification

The query language is based on the select-project paradigm:
a query is expressed by first defining the conditions that de-
termine a subset of the picked class node (selection) and
then specifying those GAS that are going to be part of the
output result (projection). In both the selection ad projec-
tion phases no path specification is required to the user.

Each query, considered only in its selection part, can be
treated as a subset of the picked class node; as a consequence
it can be internally represented as a new derivate class node
connected by means of an ISA relationship to the picked
class node.

Consider, for example, a medical database dealing with
patients and diseases. Suppose there are, among the oth-
ers, the class nodes Patient, Disease and a subclass of
this node Heart disease. A multivalued GA of the class
node Patient will be “All the diseases the patient
has had”. Suppose the user is interested in alI the pa-
tients that have had heart diseases; the selection part of this
query will be composed by the atom “All the diseases
the patient has had include some heart disease” ob-
tained by comparing the above GA and the constant set
Heart disease with the connective not-disjoint. Note
that the class node Heart disease has been used as a com-
parative constant in the atomic condition.

The incremental composition of a query is performed by
reusing a derivate class node as a constant in the specifica-
tion of a query.

3 Visualization

The visualization of classes and GAS is based on icons and
automatic generated natural language.

Icons represent both:

l primitive and derivate classes. The icon represents alI
the objects belonging to the class.

l the set of objects related to a generic instance of a
class via a GA. More specifically, let rp be a GA of
a class node ra, and p the associated path starting in
n, and ending in K. The set of objects, belonging
to K, and related to each instance x of n, via yp, is
visualized as an icon.

An icon results in the composition of several graphical
items each one bearing a specific meaning. The picture is
the most important graphical item, since it sintesyzes the
meaning of the type of objects being represented. Other
graphical items are used for presenting cardinality and type
compatibility constraints.

Natural language plays an essential role for disambiguat-
ing the meaning of both GAS and derived classes. Using the
techniques described in [7] it is possible to automatically
generate sentences describing GAS and derived classes.

241

4 The Prototype

A prototype of QBI has been developed for the MS-Windows
environment using the toolkit XVT ’ and the C language.
The functionalities currently available allow the specifica-
tion of both the selection and projection phase of a query,
as well as the management of the GA sets. A query can be
saved as new derived subclass and used, as comparative con-
stant, in the specification of a more complex one, thus allow-
ing the user to adopt the incremental composition querying
approach.

4.1 Selecting GAS: Metaquery

The prototype includes a facility for browsing the GA set of
a class. By means of this tool the user can locate the GAS
of the picked class node she/he looking for and use them
for querying. The set of GAS is sorted by semantic distance
with respect to the picked class node: in this way the most
meaningful GAS are shown first.

The manual browsing of the GA set, can be a not trivial
task if the user is interested in GAS semantically far from
the picked class node. In order to address this problem, the
browsing facility permits the specification of filter conditions
on the GA set. For example, it is possible to select only
those GAS of a certain type or only the single valued ones.
A complex filter condition can be expressed using different
operators; since the operation of GAS selection by filtering
can be regarded as a query on the schema of the database,
it has been called metaquery operation.

4.2 Interface Description

Three windows compose the QBI interface: the Workspace,
the Query and the Browser window.

Workspace Window. This window is the container
of both the primitive and de&ate classes; each icon in
this space corresponds to a class node of the underlying
Typed Graph. The user can freely arrange the icons in the
workspace and create duplicates. Pointing an icon corre-
sponds to make the associated class node the picked class
node.

Query Window. The query window is activated by
double clicking an icon in the Workspace. By using this
window it is possible to specify both the selection conditions
and the projection of a query, as well as to read its natural
language description. In the Query window are by default
present those GAS semantically very close to the picked class
node. This set of GAS (initial GA set) is determined by a
constant threshold value for the semantic distance.

Browser Window. If the initial GA set does not con-
tain those GAS that are necessary to the user for composing
the query, it is possible to look for more attributes by acti-
vating the appropriate command in the Query Window. The
window dedicated to this purpose is the Browser window. In
the Browser window there is a scrolling list of GAS as well as
several spaces and buttons for the metaquery specification.
Each item in the list corresponds to an icon representing the
GA and a natural language sentence describing it. The user
can drag these icons from the Browser window and drop

2This toolkit guarantees the portability of the application in many
window systems

them in the the Query window for either composing a se-
lection condition or specifying the output result part of the
query. The metaquery operators allows the user to restrict
the search of the desired GAS within a smaller set. Among
the various metaquery operators, it is possible to select all
the GAS having a certain type, being single valued or “deal-
ing with” a certain concept.

5 Conclusions and future work

We have presented a general purpose query system based
on icons for which the usability is the main target. Informal
tests seem to shown the high value of this interface in terms
of friendliness both for the schema understanding and query
formulation phases.

Beyond the addition of useful features like transitive clo-
sure and aggregative operators, the major effort must be
done in the direction of proving the usability of QBI with
respect to other systems in a scientific manner. For this
reason the work done so far has to be considered as a first
step.

We believe the most significative comparative analisys
has to be made with respect to other visual interfaces for
which usability results, with respect to non graphical lan-
guages, have already been achieved. In our opinion QBD
[5] is the best candidate for such a comparison, since it is
addressed to the same category of users and actual installa-
tions are currently available.

References

[ll

PI

131

141

[51

[‘31

[71

S.K. Chang, T.Y Hou and A. Hsu. Smart Image De-
sign for Large Image Databases. In Journal of Visual
Languages and Computing, Vol. 3 No.4, December 1992

A. Metro, A.D’ Atri and L. Tarantino. KIVIEW: The
Design of an Object Oriented Browser. In Proc. 2nd
Conf. on Expert Database Systems, Virginia USA, pp
17-31, 1988.

D. Greenblatt and J. Waxman. A study of three
database query languages Database: Improving Usabil-
ity and Responsiveness , B.Scheneiderman, ED. New
York:Academic., 1978.

R.B. Hull and R. King. Semantic Database Model-
ing:Survey, applications and ressearch issues. In ACM
Computing Surveys, Vol. 19 No.3, 1987

M. Angelaccio, T. Catarci and G. Santucci. QBD*:
A Graphical Query Language with Recursion. In IEEE
Transactions on Software Engineering, Vol. 16, No. 10,
1990.

T. Catarci and G. Santucci. Fundamental Graphical
Primitives for Visual Query Languages. In Information
Systems (Vol. 18, No. 3, 1993.

G. Bono and P. Ficorilli. Natural Language Re-
statement of Queries Expressed in a Graphical Lan-
guage. In Eleventh International Conference on Entity-
Relationship Approach, Germany, North-Holland, 1992

242

