
Translucent Patches
—Dissolving Windows—

Axel Kramer

GMD (German National Research Center for Computer Science)
PO. Box 1316,53731 Sankt Augustin, Germany

E-mail: axel.kramer@gmd.de

ABSTRACT
This paper presents motivation, design, and algorithms for
using and implementing translucent, non-rectangular
patches as a substitute for rectangular opaque windows.
The underlying metaphor is closer to a mix between the
architects yellow paper and the usage of white boards, than
to rectangular opaque paper in piles and folders on a
desktop.

Translucent patches lead to a unified view of windows,
sub-windows and selections, and provide a base from
which the tight connection between windows, their
content, and applications can be dissolved. It forms one
aspect of on-going work to support design activities that
involve “marking” media, like paper and white boards,
with computers. The central idea of that research is to
allow the user to associate structure and meaning
dynamically and smoothly to marks on a display surface.

KEYWORDS: Interface metaphors, interaction techniques,
irregular shapes, translucency, pen based interfaces.

INTRODUCTION
Historically, window systems came about from the urge to
present multiple information contexts at the same time.
Indeed, the very first window system presented each
window on a separate physical screen. Sutherland took
this idea one step further, treating a window as a view onto
a large virtual world [38]. In Flex, Kay put multiple
windows side by side on the same screen, and finally,
within the Smalltalk environment, created the concept of
overlapping windows on the same screen [22, 44]. This
further developed into the desktop metaphor used in the
Xerox Star and subsequently in other commercial products.
From then on this kind of presentation of and interaction
with information on computers became dominant in the
commercial world.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the pub-
lication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@ 1994 ACM 0-89791 -6=-3JMJO01 1....$Md

Application-centered User Interfaces
Initially, window systems were application centered.
Typically, each window represented one application. The
user focused on starting applications in order to do work.
Material created in the window of another application
could be copied into the current application window, but
could only be edited and changed in the window of the
originating application. The association between window
and application was very tight. Some applications
required more than one window, e.g. for iconic command
palettes, or for showing various documents of the same
type. Some systems allowed windows to be nested: an
application window would contain “sub-windows” for open
documents of that application [27].

Document-centered User Interfaces
Eventually, the desire for mixing information from
different applications into one document became stronger,
and the UI-community sought ways of embedding
documents of one application into a document of another
application in a transparent way, that is, by still allowing
the user to edit the embedded document inside the
embedding document with the operations and interface of
its original application [11, 12, 25]. The perception of a
document changed from being of a particular application,
to being an assemblage of information from various
applications. The document could contain areas and
sections of material originating from various applications,
and they could all be edited right on the spot, in the same
document window. The association between application
and window vanished, a window was now associated with
a document instead.

Even with embedding documents into each other, the
association between the application and the representation
itself, that is the characters and graphical objects, is still
static. Very few applications can put a different
interpretation or meaning on the representation shown to
the user. One example that comes to mind are text editors
which can turn tab-delineated text into a table, and vice
versa. The opportunities to spatially arrange embedded

documents is minimal. Typically, the embedded document
is restricted to an opaque rectangular area.

Usually, users have to choose an application, or an area
within a document, and can only then “till in the blanks”,
e.g., they choose a word processor and can then type text,

November 2-4, 1994 UIST ’94 121

http://crossmark.crossref.org/dialog/?doi=10.1145%2F192426.192474&domain=pdf&date_stamp=1994-11-02

they define an area within a document to be a drawing area
and can then draw circles and boxes in that area.

Dynamic Interpretations
While this static association between interpretation and
representation might be appropriate for certain domains, we
are interested in supporting design activities with
computers. In particular, we would like to support design

activities that involve marking media, e.g. paper and white
boards.

Empirical design studies show that the design process is
seldom a straight forward process, proceeding step by step
in a linear and logical fashion, but usually a social process
of negotiation in which tools provide means of mediating
communication on various levels of abstraction and
ambiguity. [29, 43]. Koestler points out that a very

important component of the creative process is to be able to
see the same thing under a different light, from a different
point of view [23]. It is no surprise that some of the

interesting ideas appear in dreams first; how much more
fluid in the manipulation of reality can one get? Arnheim
describes the central role that images, shapes, and forms
play during the thought process [5].

The interpretation of symbols and gestures used in the
design process is determined on the spot, through negotiated
understanding, supported by personal experience, the social
context, and the common understanding of practitioners in
the field. Using computational facilities to support some of
the manipulations of symbols in this process comes at a
cost. In order to perform operations on symbols, computers
require the interpretation of these symbols to be rigid and
well defined. Yet, the role of computer tools should not be
to constrict the fluidity of the design process nor the fluidity
with which meaning is attached to the symbols used in this
process. Instead, computer tools should make
representation only rigid when necessary for computational
operations, at the appropriate level of abstraction chosen by
the user.

Thus the central idea of the research this work is embedded
in, is to dissolve the static association between
representation, its structure, and its interpretation as
delineated by a window and its associated application and
experiment with a dynamic user driven association between
representation, structure and interpretation as the central
mechanism for using computers. We will call this approach
representation driven.

Instead of choosing an application and then “filling in the
blanks”, this approach puts representation before structure
and interpretation. Using a pen, the user draws marks on an
electronic display surface, and only when needed, possibly
at some later point in time, identifies a subset of the marks
and applies some interpretation to it.

Consider an architect in discussion with her client. While
talking, listening, and sketching, she jots down numbers in
some empty space of her electronic sketchpad. Later, she

selects them as a structure and applies a calculator
interpretation to that structure. While this calculator
interpretation is applied, new marks in that area will be
treated as numbers, or operations particular to the
interpretation. When space is really needed for something
else the structure can be moved around to some other area.
Since it and the other structures are translucent, the drawing
below is still visible. In contrast to current user interfaces,
the overhead is not paid up- fi-ont, but only when the
operations are really required by the user.

This paper focuses on aspects of our research as they relate
to windowing systems. In particular, we concentrate on
concepts and implementation for supporting translucent
non-rectangular patches. Patches are dynamically created
by the user in order to identifi a spatial subset of marks on
the display surface. A patch can be associated with an
interpretation and thus allows the user to manipulate or
transform the identified marks, as well as new marks in

particular ways. Translucent patches are uniform

structuring tools and uni@ the concepts of windows, views
and selections, and let the user choose to move particular
spatial regions to the appropriate level of computational
abstraction and rigidity.

The rest of the paper is divided into three sections, The fust
section discusses related work in the area of supporting
design activities, using translucency and irregular shapes in
user interfaces. The second section elaborates on the

concept of translucent patches. It discusses the usage of
translucency and irregular shapes in today’s tools. It
concludes by presenting interesting operations that do not
make sense in traditional application or document based
windowing systems, but are interesting for a representation
based system. Finally, we present design and algorithms to
implement translucent patches.

RELATED WORK
The following overview of related work focuses on the
usage of translucency and irregular shapes in user
interfaces. Since this paper concentrates on aspects of our
research that relate to windowing systems, we will touch the
vast body of related work in supporting design activities
with computers only briefly.

There are a number of research and application areas that
made the support of design activities with computers their
focus, One is architectural design and technical drawing.
Sketchpad [38], from I. E. Sutherland, is probably the earliest
example of such work. He aimed at providing support for
creating engineering drawings, and invented a number of
concepts commonplace in today’s user interfaces. A fixed
set of constraints was available to the user for speci~ing the
relationships between graphical objects. The network of
graphical objects and constraints then formed a technical
drawing. Negroponte and his group did some early work on
supporting architects. His approach was governed by an
attempt to embed all “intelligence” necessary for the design
process into the machine itself [32], The MediaSpace
project [42, 46] investigated the use of video technology to

122 UIST ’94 Marina del Rey, California

support architectural and engineering design activities

across space and time. With the advent of the personal
computer, architecture applications and layout programs
became commonplace.

Another area of research includes meeting support

environments. Early work in this are was done by Doug
Engelbarts’ group at SRI while doing research on the
hypertext system NLS/AUGMENT [15]. Colab is an
extension of these ideas, providing personal workstations
with private windows for each participant, a large back-
projected common viewing area, as well as experimental
software tailored to support meetings within this new
interactive media [40, 16]. Tivoli [34] added an electronic
pen as an input device, and enhanced the meeting support
software. Based on a slide metaphor, the electronic pen can
be used to enter sketches and lists. Buttons and gestures are
provided to perform editing and list operations.

Other approaches blend this technology with video and
attempt to support distributed synchronous meetings [19].
Commune [1 O] and other experiments [9, 30] investigate the
impact of sketching facilities when added to distributed
design sessions.

A third area of research attempts to formalize design and
argument structure. Examples for such systems are
NoteCard [18], NLS/AUGMENT [15], and design rationale
systems [26].

In the domain of graphical symbols, Fred Lakin presents an
approach to support design activities through parsing visual
languages [24]. His system operates in a two step process,
a fi-ee-form sketch entered by the user is parsed against a
visual grammar in a second step, Nakagawa argues that
lazy recognition provides a better principle for pen
interfaces than immediate recognition. [31].

Translucency
The usage of translucency as an aspect in the design of user
interfaces is not very common. Some drawing and
architectural programs provide (totally-)transparent layers
[14]. Adobe Photoshop allows the user to speci~ an alpha
channel associated with an image that can then further be
used as a mask in Adobe Premier videos [2].

Staples [39] gives examples and shows mock-ups for
extending the flat space of today’s user interfaces by the
usage of light, space and levels of transparency.

Beige et,al investigate how hard it is for users to discern
which object is in which transparent layer. As described in
[7] the experiments are based on totally transparent, or
opaque slides that exactly overlay. The computer based
experiment included tests on access of objects in
transparencies only.

Wong provides an interesting observation of an architect
using yellow paper [47]. The subsequent design sketch of a
computer system is based on a fixed number of exact

overlay transparencies that can be named, and easily
reordered or turned into opaque transparencies.

An interesting use of translucency is demonstrated in the
ClearBoard project [19]. Here, live video images are
displayed and overlaid with a translucent sketching area.

The See-ThroughTM interface [8] provides an innovative
idea of applying transparency to command buttons.
Translucent command panels can be used to “stamp”
commands on underlying objects. Other panels can be used
as filters to show the underlying objects in a different way.

Display-PostScript as used in the NeXT display system can
associate an alpha. channel to bitmaps. Active application
of the alpha channel is possible only on the display surface
though, and not during printing [1].

None of the papers relate their respective implementation.
As can be seen below there are some interesting challenges
which make the processing of translucent areas or windows
very different fkom the processing of overlapping opaque
display areas.

Irregular Shapes
Most windowing systems today provide primitives that
allow programmers to manipulate non rectangular shapes.
Probably first embedded into QuickDraw [3], it is also
available on Windows [28], and as an X extension [33].
Steinhart [40] shows a possible implementation for regions.

Using irregular shapes in user interfaces has caught on even
to a lesser degree than using translucency. A notable
exception is the lasso tool, used to manipulate areas in paint
programs [4]. Fractal Painter X2 extends this concepts and
turns the once short lived lassoed areas into fill fledged
objects, allowing multiple areas to exist concurrently, and
even be saved to the file [17].

Translucent Patches
Our everyday world contains many examples for using
translucency. In some technical drawings of three
dimensional bodies the foreground surfaces are made
translucent, to suggest to the viewer the structure of the
hidden surfaces. Rolls of yellow paper are a ubiquitous
medium in architects oftlces. When working on subsequent
or alternative versions to a plan, architects ofien overlay the
old plan with a new sheet of yellow paper. Since the old
plan is still showing underneath, additions can be sketched
without replicating the whole plan. Or particular aspects of
the old plan can be traced to be incorporated into the new
version.

Annotations done by editors act as translucent layers. Here,
the effect of translucency is not created through the use ,of
an actual translucent medium, but by writing the
annotations with a pen in handwriting and thus setting them
apart from the content written in a typeset font. Both, the
annotations and the manuscript are still visible, allowing to
relate the annotations to the written material.

November 2-4, 1994 UIST ’94 123

Real windows are translucent, letting light in, and letting us
see the outside, but providing protection ffom rain, cold and
wind. Very similar to the use of plastic wrapping of certain
products. A protective layer, which the customer can see
through, yet provides unity of the content and easier
handling.

Subtitles in some movies are annoying when not done in a
translucent way, that is, if the subtitles are done on a white
rectangle covering up the lower part of the movie.

In summary, translucency in our everyday world serves two
main purposes. It preserves context, allowing us to relate

multiple bodies of information at the same time. It protects
content, allowing us to experiment with or manipulate the
content without actually effecting it directly.

Non-Rectangular forms and shapes are also a common
occurrence in our everyday environment. Natural forms are
typically non-rectangular forms. Growing processes

produce forms with non-rectangular shapes. For example,
plants grow in natural regular, but not rectangular shapes
[37]. Maps of old cities reflect the changes to the city
layout over time as it follows terrain on the one hand, and a
sense of unity on the other [13].

Looking at the content of note-books and white boards, one
finds many examples of non-rectangular shapes. Project
plans, organizational charts, data models, illustrate the use
of spatial information and shapes to communicate

information (see figure 1.) [45]. Design of algorithms
usually involves the playfid simulation of data structures in
time. Reflecting and thinking is a growing process that
points to the need for spatial layout and structures that are
more complex than just rectangular shapes.

For artists shapes define unity and the flow within a
painting as perceived by the viewer [20, 36]. Shapes define
boundaries of objects perceived and thus set objects apart,
or define groupings of objects.

In summary, irregular shapes in our everyday environment
arise out of growing processes, and provide a sense of
groupness and unity.

The approach presented in this paper employs translucency
and irregular shapes as an important infrastructure for
selecting, presenting, and manipulating information with
computers. In combination with a dynamic, user driven,
association between content and interpretation, we attempt
to preserve the fluidity necessary during the design process.

User Interaction
Users interact with our system in quite a different way than
with common window systems. Translucent patches are

created by the user in order to either identi~, and thus
group, a spatial subset of marks, or to create space. Let’s
pick up the calculator example from above. An architect
and her client are in a discussion about a kitchen extension
and work in front of an Architects Electronic Sketchboard
as shown in figure 2.

The client brought the plan of his map on disk, and it

opened in a translucent patch in the center of the electronic
sketchboard, partly covering some work the architect
worked on the day before. While discussing the client and
the architects both sketched and drew on the sketchboard,
extending the original patch by some area to sketch the
kitchen extension, sketching a vertical view of the extension
in some empty space, and creating a new patch for some
comments the architect wrote down.

Other irregular shapes play together with the usage of
translucency. Imagine magazine cover pages with opaque

rectangles around article headlines covering up the cover
pictures, or annotations of papers and manuscripts, where
the annotation is not left transparent in its irregular shape,
but are neatly embedded into white rectangles.

Figure 2. Architects Electronic Sketchboard

The architect knew the client would want a rough cost
estimate right away, so she started to write down the main
cost items during the discussion, see figure 3.

Figure 1, Example for a non-rectangular spatial
structures in notebook

124 UIST ’94 Marina del Rey, California

... :,.,.#,,,,,.,,,,,,,—--J--4’ --6i%&”=w%4’”” - .%’:-,

----- ,,,,,,.,. .,,”&:, .J ,.

Figure 3. Architects scribbles in translucent patch

Now, at the end of the session, she writes a number next to
each item, a double bar below the list of numbers, and then
chooses to apply a calculator interpretation to the patch.
The interpre;aiion recognizes
them up below the double bar

the lis~ of numbers, and

g

...:” : -,,

~ . :&*d+~,+,*, -
: “+’y j$”.’’’:y. ,’,:54U:,..-.

.,~.kidG:L/zc,,~~

.!,::Ji&z?#u#’t.. .

Iv ~{-“TEF“’.~”i.’iw“::.&-. ,.:,x:, ##’ “... .,,
.,-, ...,-..,”.

,“.
,,-,,” “,..s’ 7 :,, ‘, ,,,,’,

, .’-,,,,,,,, ,,,
.<-.,, ,, ,.: .,, ,,

,,”..”,,
,, ... ‘,

adds

Figures 4. Estimates in calculator interpretation

The client decides that he might do without the additional
door. The architect uses a gesture to create a patch
including the door item, and some gesture to delete the
patch with content, The door item in the list is deleted, and,
due to the calculator interpretation, elements below are
shifted up, and the sum is re-calculated (see figure 4).
Since the patch is translucent, the other plan below is still
visible. It can be moved to the top by clicking on one of its
handles, one of the thicker areas around the border.

Untypical Operations
Operations on patches have a different flavor than
operations on windows in regular window systems. Some
are similar, like bringing a patch to the top, moving it
around, or collapsing it. The untypical operations relate to
the disassociation of windows from their content.

Creating patches
A patch is created by the user with a gestural mark selecting
either empty space, or some subset of marks in some other
patch. The interpretation associated with a patch decides
what gestural mark creates a new patch, for example, where
the default gesture is a closed shape above a minimal size, a
list-interpretation could provide a gesture for enclosing a
list entry with a patch by a vertical bar gesture, or a text
interpretation could enclose a word in a patch after it has
been double clicked.

Patches essentially act like selections and subviews, in that
they are used to create structures, spatial subsets of marks,
and in that operations are provided that act on the selected

subset as a whole.

As a default, a new patch is contained in the patch it was
created in. Typically, a new patch lifts up the spatial subset
of content marks and owns them from then on.

Deleting, dissolving, and clearing a patch
There are three operations that relate to deleting a patch, or
its content. The user might decide to delete the patch and
its content. Or the user might just want to dissolve the
patch as a unit of marks, thus essentially moving the marks
contained in the patch to the containing patch below, and
then deleting the patch. A third possible operation is to
clear the inside of a patch, leaving the patch itself intact.

Enlarging patches
The area a patch includes maybe enlarged or made smaller
to include or exclude space or marks. This is done via
gestures that lead out of the patch into the space and back
into the patch (for enlarging), or from the outside inside,
and back into the outside for making it smaller. Some
interpretations might grow or shrink the patch automatically
when content is added or removed.

Assigning interpretation
Each patch is at least associated with the basic

interpretation. This interpretation interprets marks as plain
ink, provides some gestures for deleting marks, and gestures
for creating new patches and assigning a different
interpretation. When a patch is created within a particular
interpretation, the interpretation might decide to assign
some other interpretation than the basic interpretation to the
new patch. For example, when the user assigned a textual
interpretation to a patch, newly created patches inside that
patch might be initialized with the textinterpretation also.

Lifting and releasing content
The user might want to lift marks from underlying patches
into a patch above, or release some subsets of marks to the
containing patch.

Pearls
Drawing a gesture ffom the outside into a patch generates a
pearl, a small circular object, at the beginning of the
gesture. A pearl is a handle to the patch, and can be used to
collapse and expand it, as well as to change its relative
positions to patches above and below. Pearls can be moved
around, and they can be embedded in a patch, like any other
object on the display surface. The user can write a label, or
a little sketch next to a pearl, or just arrange a number of
pearls in a particular spatial arrangement.

We are still experimenting with a consistent set of gestures
for these operations. The challenge is not only to make the
gestures consistent and memorable, but also to preserve the
fluidity of interaction. Table 1. lists the patch-related
gestures we are using for now. The little arrow heads are

November 2-4, 1994 UIST “94 125

not part of the gesture, they
direction.

create dissolve delete

just visualize the drawing

clear pearl

~@ <“- ..
“,

@@@

draw straight zig z;g
closed gesture crossing

polygon out border

lift release grow

zig zag line into
filling patch
patch

shrink assign

@@@<@@
counter- clockwise insideto

clockwise spiral outsideto
spiral inside

outsideto small
insideto circle ->
outside pop up

Table 1. Current patch related gestures

The current deletion gesture is an example of a gesture that
is memorable and consistent with other deletion gestures,
yet feels not swift enough in actual execution.

Gesture marks are differentiated from content marks by the
pressure of the pen or an additional button on the pen when
no pressure levels available. This proves very useful in
practice, but needs to be evaluated and compared to

traditional time-out mechanisms.

Some gestures execute immediately (e.g. create patch,
dissolve), others can be executed at some later time by
tapping them (e.g. delete). Non-yet executed gestures act as
if they are regular components, e.g. they are lifted like other
components into a new patch. Besides executing them with
a tap, the user can erase them with a zig-zag mark
(essentially a meta-gesture).

ALGORITHMS
Implementing translucent patches is quite different ffom
implementing a window system for opaque rectangular
windows. Although there are similarities: e.g. one deals
with overlapping surfaces that can be nested and contain a
variety of graphical objects, mostly ink, but also text,
circles, lines, etc., there is a main difference in that covered

Class Region instance creation

empty “return new region”

fIOmReGtangk r “return rs~ion based cm rectangle”

tlomPolygon: p “return region based on polygon”

operations

add eReglon “add given region to recewer”

subtract allegion” subtiact given region from receiver”

intersect: eRegion “return the intersection between

receiver and argument”

testing

containsPOint p “return true If receiver contains point”

Figure 5. Class Region

patches still need to display the content of the covered
areas, albeit with a different intensity.

The simple minded approach to overlapping opaque
windows is to just paint all the windows from the bottom
up, and expect that windows on the top will cover windows
firther down. The analogy for transparent windows would
be to paint the windows from the bottom up, but “massage”,
e.g. lighten up the surface below a window, before it is
drawn, and to not draw over the surface with the
background color as the fust invalidation operation.

This conceptual approach could be implemented well if one
would deal mostly with pixmaps. One would need to
traverse every pixel and change its color value according to
the translucency of the window above. This approach has
several disadvantages:

background patterns would eventually add up to a
muddy gray. This is closer to the physical analogy, but
decreases the possible contrast between background
and foreground, which we would like to avoid
(compare Kandinsky’s watercolor: Trtiumerische
Regu;g [21]), -

covered patches would not have a choice to not display
certain information if covered , e.g. certain information
might be so detailed that rendering does not make
sense. One might not want to draw control symbols
when covered,

and the opposite: covering patches would not have a
choice of asking covered patches to represent
themselves in a particular way, e.g. as in see-through
interfaces [8],

does not work very well for current drawing models
that developed away from bit mapped graphic; towards
graphical primitives, e.g. PostScript printing would not
be supported easily.

Instead, the approach presented in this paper keeps track of
the appropriate intensity values for each area of a patch that
is overlapped. The intensity value reflects the amount of
light that still comes through the patches above. An

intensity value of 1.0 denotes no change in brightness,
whereas an intensity value of 0.0 is used for regions that are
covered by an opaque patch. When rendering the patch
content, color values will be changed according to the
intensity value.

Regions
An important infrastructure that is used in the design and
implementation of this algorithm is the notion of a region, a
spatial, two-dimensional area, that supports particular
region operations, and that can later be used as a clipping-
region when rendering graphics. The definition in figure 5.,
shows an excerpt of typical operations that are rekevant in
the context of this paper.

126 UIST ’94 Marina del Rey, California

Regions can typically be created empty, based on a

rectangle, or based on a polygon. Interesting operations
include adding a region to another region, subtracting a
region from another region, and computing a region that

contains the intersection between to regions, that is the
overlapping region. One can test if a point is contained in a
given region, and one can use a region as the clipping
region when drawing objects. Note, if one wants to
experiment with translucent patches using the given
algorithms, but not incur the space and time overhead
associated with regular regions, one can use rectangular
regions instead (which are much easier to implement and
represent), and restrict all patches to have a rectangular
outline.

The difference between a patch and a region is that a region
defines some shape in a two dimensional coordinate system.
A patch is a display object that contains other graphical
components, an associated translucency value (how much
light shines through), an interpretation, and an outline,

Two Observations
There are two interesting observations that have impact on
algorithms for translucent patches. The first relates to the
association between regions and patches, and the second
adds an additional constraint by showing the non-local
properties translucent patches have with respect to the
patches they cover.

Space Filling Perspective
The first observation is to project all intersections between
patches on one plane, that is flatten them out, and realize
that they represent the whole without any overlapping.
Figure 6. illustrates this. The patches A, B, C, and Z
overla~. Z is below A is below C is below B. The right
figure- shows the intersecting regions. The sum
regions a, b, c, d, e, f, g, z cover the whole surface.

of ‘all

Figure 6: Translucent Patches, Intersecting Regions

From the patches point of view, each has a collection of
regions with associated intensity values that cover the
patches area. For example, the patch A has four regions a,
b, c, d with respective intensity values: 1, 1/2, 1/4, 1/2
(assuming that each patch has the same translucency value).

From the regions point of view, each has a sequence of
patches associated with it, from the uncovered patch to the
patch covered by all other patches in this region. For
example, the region c covers the patches: B, C, A, Z. The
intensity value can be implicit by the position in the
sequence, or computed dynamically by adding up the
translucency values for each patch in the sequence.

I

‘ %tk&h1*
q b$)

w

~1
~

/----%./t““’Q!$/jlk ~
\%--——-—-——_

Figure 7. Nested Translucent patches

Non Local Rendering
An important consideration for computing the appropriate
intersecting regions is the observation that components

inside a patch have impact on the rendering of the patches
below. Figure 7. illustrates this problem.

A patch A contains a patch B (that is patch B is a
component of A, e.g. if A moves B moves). The one wavy
vertical line is a component of patch A. The two wavy
horizontal lines in the background are components of a
patch Z below. Notice, that the lower one is displayed with
less intensity while being below patch B. That is, the region
of a nested translucent component needs to be treated as a
“fwst-class” translucent region, so that all objects below
appear with the correct intensity.

This is very different from opaque windows, where the
components an opaque window contains have no impact on
the rendering of components of windows below.

Basic Data Structures
The following operations are based on the region-centered
view. A previous system was implemented in the patch
centered view, but due to the non-local rendering properties,
the implementation was more complex and resource
demanding. DisplayRegions are like regions, but each
contains in addition to the regular region state a list of
patches that totally cover that region. The regions are
managed centrally for a given display surface, or in our
case, the window in which the transparent patches live.

One object, a RegionManager, contains the list of regions
that totally cover the display, and also implements behavior
for adding, dissolving, reshaping, and moving regions and
patches.

Fundamental Functions
There are two fundamental fi,mctions which are used to
implement a variety of operations on patches. One adds a
region to a patch, the other removes a region from a patch.

Adding Region to Patch
Adding a region to a patch essentially enlarges the patch by
the given region. This is done by enumerating over the
existing regions and computing the intersection of the new
region with an existing region.

November 2-4, 1994 UIST “94 127

If there is an intersection, the intersection becomes a region
that includes the patches the existing region referred to, as
well as the patch the region is being added too. If the
intersection covers all of the region to be added, the
algorithm has come to an end. If the existing region is
covered totally by the intersection, the existing region is
substituted by the new intersection and will be removed. If
the new region still contains some area after all the existing
regions have been enumerated, we have a new region that is
only displaying the given patch. All intersections will be

DisplayRegions that have the patch at the end of their patch
list, All regions that have changed and should be
invalidated eventually will be returned.

addRegion: region for patch

“Add the given region for the patch to the list of regions Split regions if

necessary. Note, the region might be changed, or even released after this algorithm,

Return the display regions that got added and should be invalidated eventually.”

\ o i end new dead I

o = region. i = DkplayRegion empty. end .= false.

new := OrderedCollection new. dead := OrderedCollection new.

self do:[:rl

(I becomesRegion. o intersecting. r) = nil ifFalse:[

i patches: (r patches copyWith: patch).

(o minus: i) == nil dTrne: [end:= true o release].

(r minus: I) = nil iffrne:[dead add r. r release]

new add: i.

end iflrue:[self removeA1l. dead. self addAll: new “new].

i = DisplayRegmn empty]].

i release

self remnveA1l: dead,

new add (o asDisplayRegionFoo patch). self addAll: new,

“new

Figure 8. Adding a region to a patch

Removing Region from Patch
The other essential function is to remove a region from a
given patch. The algorithm is very similar to the algorithm
for adding a region. The main difference is that the given
patch is removed when the region intersects with an existing
region. The algorithm ends when the argument region is
shrunken to an empty region, or if all of the regions
referring to the patch have been enumerated. If a region is
given as the argument that is actually larger than sum of
regions covering the patch, the left over region will be
released. As in the adding algorithm, regions that were
changed, are returned at the end.

Both functions, adding and removing a region from a patch,
can potentially leave regions behind that refer to the same
collection of patches. These can be consolidated to save
resources and processing time.

Patch Functions
Operations like adding, deleting, reshaping and moving a
patch can be implemented on top of the two fundamental
fimctions given above.

Adding Patch
Adding a patch requires computing a region for the patch
and then calling the method above with the new region and
the patch. An interpretation associated with the containing
patch will create a patch with an outline extracted from the

gesture. It will then transfer components of the containing
patch intersecting the new patch over to the new patch, add
the patch with its region, and then invalidate the returned
changed regions.

Dissolving Patch
Dissolving a patch is not based on one of the fimdamental
operations. Instead, all existing regions are enumerated,
and for all that refer to the given patch, the patch is
removed from the patch list of the display region. If there is
no patch left in the patch list of the display region, the

display region will be removed and released. Otherwise the
region needs to be returned, so it can be invalidated later.

Growing and Shrinking
Growing is implemented by computing the region that
needs to be added, and then calling the adding function.
Shrinking is done analogously with the remove region
fimction.

Reshaping Patch
Reshaping a patch with a new outline, involves a
combination of adding and removing a region for a patch.
First, a new region, based on the new outline is computed.
Subtracting the new region from the existing outline of the
patch results in a region of the patch that needs to be
deleted. Subtracting the existing outline fi-om the new
region results in a region that needs to be added to the
patch.

Moving Patch
Moving a patch is just computing its new outline, and
reshaping the patch with it. The regions returned as
changed must include all the display regions referring to the

patch. An interpretation will also need to move all
components and invalidate returned regions. Attention
needs to be paid to patches contained in the patch being
moved. These need to be removed fust, before moving the
patch and are added back in afterwards. This complication
is due to the impact local patches have on global rendering.

removeRegion: region for, patch

“Remove the given region for the patchfrom the list of regions, Spht regions If

necesamy, Note, the region r will be released in this algorithm, Return the list of

regions that changed, and thus should be invalidated later, ”

I o i end patches new]

o:= region. i := DlsplayRegion empty end:= false.

new:= OrderedCollection new

(self regionsFor. patch) do:[.r)

(i becomesRegion: o intersecting: r) == nil itTalse [

(o minus: I) = nil iffrue: [end = true].

patches .= r patches.

(r minus, I) = nil iffrue:~r tOtaIly covered

(self remove. r) release].

patches size >1 ifrrne[

i patches: (patches copyWhhout. patch),

self addLast (new add i)

i := D1splayReglon empty].

end dTrue.~ release. o release %ew]]],

i release. 0 release

Mew

Figure 9. Removing a region from a patch

128 UIST ’94 Marina del Rey, California

Raising and Lowering
Raising and lowering patches is done by changing the patch

sequence for the display regions that contain a reference to
the patch.

Invalidation
For now the intensity value, that is, the value which

determines by how much a color value needs to change,
because it is covered by some patch, is computed as a
fi.mction of the number of patches in a display region. It
would be easy to change, for example to give each patch a
particular translucency value and change translucency
values with gestures (e.g. to make a patch opaque).
Invalidation asks the containing window for a renderer, and
then enumerates through the display regions. The clipping
region is set based on the display region, the region is filled
with the background color of the top patch, and then each
patch in the display region sequence is asked to render
itself, after the intensity value has been set. The renderer
will transform each request for a color value according to
the intensity value set.

Implementation
The above algorithms are embedded in a system that has
been implemented in Smalltalk-80, VW 4.1, using
Windows 3.1 on a 486/66 with a Wacom pressure sensitive
digitizer, and Windows for Pen Computing on a Compaq

Concerto. The pre-predecessor of this system was
implemented in the summer of 1987/88 while visiting the
University of Canterbury, Christchurch, New Zealand. At
the time the system provided a mechanism for defining
gestures in a declarative manner. The predecessor of this
system, without translucent patches but with user defined
structures, was created in the spring of 1992 and was used
to create slides for a talk and a demonstration video. At the
time of this writing the framework for integrating dynamic
interpretations has been designed and is in early stages of
implementation.

SUMMARY AND FUTURE WORK
This paper presented one aspect of our current research, as
it relates to windowing systems. Instead of rectangular
opaque windows, we use translucent patches as a unifiing
mechanism that subsumes windows, sub views and
selections. Instead of maintaining a static association
between a window and its content, we attempt to make that
association dynamic and user driven, in order to support
design activities that require a fluid manipulation of
symbols on a marking media like paper and whiteboard.
The central idea is to let the user choose the level of rigidity
groups of symbols have, so they can be processed by
computer programs.

Using patches that way leads to interesting operations that
are not common in regular window systems, the

assignment of structure to marks on the surface is more
dynamic. We presented the current set of gestures that we
implemented to interact with patches.

Our implementation of translucent patches is based on two
insights: (1) the flattening of the intersections of the
patches covers the whole space and provides two points of
views for associating patches with intersecting regions, (2)

nested patches effect the rendering of non-local
components. The algorithms presented could also be used
in a less resource demanding environment that limits
translucent patches to be rectangular.

Lots of work still needs to be done, both in the area of
implementation and user testing. Our set of gestures is still
under change. There is a tension between getting a coherent
set of gestures that still allows a fluid and eflicient
interaction with the system. We plan to do more than our
current informal user testing once the set of gestures

stabilize. Our differentiation of gestures and content marks
works very well in practice and needs to be compared
against time-out mechanisms and modes, as used in
commercial pen-systems.

Associating interpretations with patches is in the early
stages of implementation. Our goal is to provide a
fhmework in which we can embed various kinds of
interpretations easily. Creating and implementing
interpretations on a suitable level of abstraction is an
interesting challenge.

ACKNOWLEDGMENTS
I like to thank Thomas Christaller and Reinhard Keil-
Slawik for valuable discussions and comments. Peter
Wisskirchen for enabling me to do this work in the context
of the GMD. Andreas Genau, Diana Merry-Shapiro, and
Markus Sohlenkamp for reviewing drafts of the paper,

BIBLIOGRAPHY
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Adobe Systems Inc., The Display PostScript System

Reference Manual, Adobe Systems Inc., 1990

Adobe Systems Inc., Photoshop and Premiere Users

Manuals, Adobe Systems Inc., 1993

Apple Inc., Inside Macintosh, Addison-Wesley, New York,
1984

Apple Inc., MacPaint Users Manual, Apple, 1984?

Amheim, R., Visual Thinking, University of California Press,
1969

Bekker, M., Representational Issues Related to

Communication in Design Teams, InterCH1 93, Adjunct
Proceedings, 1993

Beige, M et al., Back to the Future: A Graphical Layering

System inspired by Transparent Paper, INTERCH1 93
Adjunct Proc., 1993

Bier, E. et al, Toolglass and Magic Lenses: The See-Through

Inter-ace, ACM Computer Graphics Proceedings, 1993

Bly, S., A Use of Drawing Surfaces in Dl~erent

Collaborative Settings, CSCW 88, Portland, 1988

Bly, S. and Minneman, S., Commune: A Shared Drawing

Surface, in SIGOIS Bulletin, 1990

Brockschmidt, Inside OLE 2, Microsoft Press, 1994

November 2-4, 1994 UIST ’94 129

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32,

33.

34.

Carr, R. and Shafer, D., The Power of PenPoint, Addison-

Wesley, 1991

Ching, F., Architecture: Form Space & Order, Van Nostrand

Reinhold, New York, 1979

Claris, MacDraw-Pro Users Manual, Claris, 1991

Engelbart, D., The Augmented Knowledge Workshop, A

History of Personal Workstations, Ed. A. Goldberg, Addison

Wesley, 1988

Foster, G. and Tatar, D., Experiments in Computer Support

for Teamwork - Colab, Video, Xerox PARC, 1988

Fractal Design, FractalPainter X2 Users Manual, Fractal

Design, 1994

Halasz, F., Reflections on NoteCards: Seven Issues for the

Next Generation of Hypertext Systems, in: CACM 31, 7

(1988), 836-851

Ishii, H. and Arit% K., ClearFace: Translucent Multiuser

Interface for Team WorkStations, Proceedings of the Second

European Conference on Computer Supported Cooperative

Work, 1991

Kandinsky, Point and Line to Plane, Dover, New York, 1979

Kandinsky, Watercolors by Kandinshy at the Guggenheim

Museum, Guggenheim Museum, New York, 1991

Kay, A., The Early History of Smalltalk, HOPL-11, ACM,

1993

Koestler, A., The Act of Creation, Penguin, 1964

Lakin, F., Parsing Visual Languages, Visual Languages, Eds.

S,Chang, T. Ichikaw% P.Ligomendides, Plenum Publishing,

1986

Linton, M., Fresco-Slides, Stanford InterViews FTP Server,

1993

MacLean, A., et.al, Design Rationale: The Argument behind

the Artifact, CHI 89, ACM, 1989

Microsoft Corporation, Microsoji Windows 3.1 Users Guide,

Microsoft Corporation, 1992

Microsoft Corporation, Microso) Windows 3.1 SDK,

Microsoft Corporation, 1992

Minneman, S., The Social Construction of a Technical

Realip: Empirical Studies of Group Engineering Design

Practice, Dissertation, Xerox PARC, SSL-91-22, 1991

Minneman, S. and Bly, S., Managing a Trois: A Study of a

Multi-User Drawing Tool in Distributed Design Work, Xerox

PARC, SSL-91-118

Nakagaw& M. et.al., Lazy Recognition as a Principle of Pen
Znte.fac.s, InterCHI 93 Adjunct Proceedings. 1993

Negroponte, N., SOB Architecture Machines, MIT Press, 1975

Packard, K., Xl l-Nonrectangular Window Shape &tensions,

MIT-Consortium, 1989

Pedersen E. et.al., Tivoli: An Elctronic Whiteboard for

Informal Workgroup Meetings, InterCHI 93 Conference

Proceedings, 1993

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Perlin, K. and Fox, D., Pad: An Alternative Approach to the

Computer Interface, ACM Computer Graphics Proceedings,

1993

Peters, Joye, Using Shapes in Paintings, Private

Communications, 1994

Prusinkiewicz, P. and Lindenmeyer, A. The Algorithmic

Beauty of Plants, Springer Verlag, New York, 1990

Sutherland, I. E., Skdchpad-A Man Machine Graphical

Communication System, MIT Lincoln Laboratory Techincal

Report no. 296, 1963

Staples, L, Representation in Virtual Space: Visual

Convention in the Graphical User Interface, INTERCHI 93,

ACM, 1993

Stefik, M. et al., Beyond the Chalkboard: Computer support

for collaboration and problem solving in meetings, CACM,

30(1), 1987

Steinhart, J.E., Scanline Coherent Shape Algebra, in:

Graphics Gems H, J.Arvo (cd.), Academic Press, San Diego,

1991

Stuks, B., Experimental Uses of Video to Support Design

Activities, Xerox PARC, 1988

Tang, J.C., Listing, Drawing, and Gesturing in Design: A

Study of the Use of Shared Workspaces by Design Teams,

Dissertation, Xerox PARC, SSL-89-3, 1989

Teitelman, W., Ten Years of Window Systems - A

Retrospective View, Methodology of Window Management,

Eds. Hopgood et.al, Springer, New York, 1986

Tufte, E. R., Envisioning Information, Graphics Press, 1990

Weber, K. and Minneman, S., The OfJce Design Project,

Video, Xerox PARC, 1987

Wong, Y.Y, Layer Tool: Support for Progressive Design,

InterCHI 93 Adjunct Proceedings, 1993

130 UIST “94 Marina del Rey, California

