Check for
Updates

A Review of
APLAPLUS Il for Windows

Dick Bowman
Dogon Research
2 Dean Gardens
London E17 3QP England
Tel: +44-81-520-6334
E-mail: bowman@®apl.demon.co.uk
Manugistics’ APL®PLUS 1III is the latest incar-
nation of what is possibly the longest lincage of
APL interpreters for the PC; it supersedes the pre-
vious APL®PLUS II and joins Dyalog’s APL/W and
IST’'s APLIWIN as an uncompromisingly Windows-
only product.

Installation

This review centres around Release 1.1 (at the
time of writing Release 1.2 had been announced but
not yet received) which comprised three 35" disks
and a two-inch thick set of manuals (User Manual
and Reference Manual); installation is via the now-
customary Windows install procedure, resulting in
an additional 750-Kb used in my Windows directory
and just over 5-Mb in the new APL®PLUS III
directory. Note that APL&PLUS III adds Win32s
files to your installation. I have since upgraded to
a more recent version of Win32s (needed for
another package) without problems; my sense is
that Win32s is in a rather fluid state at this time.

First Impressions

Following one’s natural instinct, the first thing
that comes to mind with a new APL interpreter
installed is to fire it up and type 1+1 (which has
been known to fail with some interpreters in the
past._).

What you first see is as in Figure 1; a tvpical
Windows screen with menu, toolbar and some blank
space to use. Starting up with all the defaults
means that the display wuses the recommended
screen font (there are three more TrucType fonts
included). Although better than some, this is not
my favourite APL screen font, but as character
mappings are different between vendors it will have
to suffice.

Keyboard usage is “classic” APL in the Unified
kevboard sense; an old-time APLer will be fairly
comfortable with the lie of keys under fingers and
thumbs; although any lingering over the Alt key
will not activate menu options, which may confuse
the non-APLer. If all you use is one version of
APL, there should be no problems—anyone using
two or more versions of APL may be frustrated

APL Quote Quad

15

Clear WS

[4w g, B odarton i .

Figure 1. Inilial Screen Shot

L e

from time to time. I wish we could agree on a
single keyboard mapping.

Compatibility

I don’t really know where the vendors are going
on the compatibility 1ssue; as a long-term APL2
user, I found it hard to get used to the different
meanings of visually-identical code when dealing
with nested arrays in both APL®*PLUS II (and now
IIT) and APL/W—the problems of monadic 4+ versus
o, for example. I'm happy to see that this is begin-
ning to be resolved, with APL&PLUS III adopting
APL2 conventions by default (system command
YEVLEVEL gives programmer control over precise
behaviour).

But this is still some way from being a plug-
and-play situation; if what the user wants to do 1s
to download some mainframe APL?2 application and
run on APL®PLUS III, there's probably still a lot
of work to do—even leaving aside the near-cer-
tainty that user interfaces will deserve substantial
rethinking.

Some APL2 features not present in APL*PLUS
IIT include defined operators, partitioned enclose
(although this 1s emulated by OPENCLOSE), OEC,
JOUT and so forth.

Manugistics provide past users with a full set of
tools for upgrading from previous APL*PLUS ver-
sions; they also include tools for importing APL2
workspaces. Although there are no intrinsic facili-
ties for importing Dyalog APL workspaces, it was a
relatively simple job to create a workspace to do
the job (as usual, the most time-consuming part was
making sure that the character mappings were cor-
rect). Naturally—imports from other workspaces
will normally neced some further manual amend-
ment.

Timing Tests

Althéugh it’s not my intention to start a shoot-
out between vendors and followers of different
implementations, it is instructive to look at some
simple timing comparisons; the table below shows
the results of running through Gregg Taylor’s bat-
tery of timing tests (sce APL Quote Quad, Vol. 21,

http://crossmark.crossref.org/dialog/?doi=10.1145%2F192447.192457&domain=pdf&date_stamp=1994-12-01

Number 1, page 20, for a description of the tests).
It seems fairer to do it this way (all tests done the
same day on the same environment) than to leaf
through past benchmarks. Of course, if perform-
ance 1s critical to your application, you will have to
perform your own tests.

Dyalog Manugistics
APL/W 6.3.2 APL*PLUS II1

Integer Add 16.5 14
I'loating ’oint Add 24.5 33
Integer Multiply 43.5 49
Floating Point Multiply a3 50
Index 2 4
Character Compress 3 3
Integer Compress 3 0
Integer Plus Reduce 0 3
Integer Max Reduce 0 0
Boolean Scan 22 593
Matrix Rotate 0 6
Character Transpose 11 5
Intcger Transpose 11 6
Partition [See Nole] 16.5 20
Rho Lach 16.5 14
Vector Comparison 0 0
Integer Sort 14 8
Boolean Companson 0 3
lota 44 22
Note: APLAPLUS IIl reports a NONCE ERROR
for dyadic enclose, test uses QPENCLOSE

The conclusion I draw from this i1s that neither
APL*PLUS III nor APL/W have a decisive speed
advantage, except possibly for followers of Mr.
Langlet’s interest in Boolean scan (this anomalous
result worried me for a while, but referring buck to

Gregg Tavlor’s review cited above, we see a similar
pattern holding for APL*PLUS II).

Significant Omissions

Manugistics have bitten the Windows bullet
quite decisively with this version; all of the OWIN
facilities of earlier versions are omitted, as are the
OGRAPHICS features. Clearly, there are some
tough decisions to be made by users of the DOS
product.

What surprised me more was that OEDIT is
also omitted.

Programming Environment
APLAPLUS III is an MDI application; the win-

dow normally contains the traditional workspace
log, and additional child windows may be opencd to
hold edit sessions, debug windows and so forth.

16

Function breakpoints, variable watchpoints may
be set and execution traced via the debug window
(which allows single-stepping, argument/variable/
result inspection, and so forth). An example of the
debug window is shown in Figure 2. The debug
window—Ilike the application code—operates inde-
pendently of the MDI parent form.

APL*PLUS - Debugger

n._-\.eart-nl 0l O+'Searching ',{fcdlist(1;1},'

FnSosaorcn ‘nov!

Figure 2. The Dcbug Window

One curiosity is that while it’s only possible to
have one workspace open at a time, any windows
that you open from that workspace will remain
open after a new one is loaded. So you can open a
function for edit from workspace A, leave i1t on-
screen while you load workspace B and save it
there. I wonder about this....

The programming environment is a significant
advance on the facilities offered by APLA*PLUS II—
it takes time to become familiar with it, and full
benefit is only achieved when this time has been
spent. The environment is also customisable—you
can add your own tools (which may, of course, be
APL code) to the menu bar.

Language Extensions
The big language news with APL*PLUS III is

the inclusion of control structures; so far as I am
aware, this is the first time such eclements have
been included in a widely-available APL product.

What APLAPLUS III control structures allow
the programmer to do is to incorporate the “con-
ventional” constructs of if-then-else, do-while,
do-until, and so forth into APL functions; the
mechanism by which this is implemented is by
introduction of a set of keywords which begin with
a colon. Here's an example:

December 1994 — Volume 25, Number 2

:while i<pspos
i«i+1l
chunk<len[ilt+spos[i]itv
chunk<(~chunk (Oss '**'"'')/chunk
name<«Jdef 'V',chunk
:if (0=140pname)r0=2|1

JunkIn«JunkIn,cchunk

rendif

:endwhile

As you can see, code readability is increased,
because we have an extra opportunity to discard
housekeeping clutter. It’s also good to see that
APL®PLUS III respects white space. The experi-
enced APL programmer clearly has a learning curve
to climb here—I freely confess that I originally
wrote the code fragment above in “traditional”
style and converted it later as an experiment.

On the whole, I much prefer code which uses
these constructs than code which doesn’t— Manug-
istics have advanced the state of the APL linguistic
art. But I have reservations. The first of these is
code portability; unless and until the other vendors
adopt these structures, we have reduced code porta-
bility (you can move your old-style code into
APLXPLUS 1III, but you have to work at getting
new-style code out). I note that J Release 2 offers
some similar facilities, but I'm not aware of any-
thing else; of course, the door is very much open to
either consensus or the more traditional APL sol-
ution of everyone doing their own thing.

The other reservation I have about these con-
trol structures is what happens when they get into
the hands of naive users; what I fear is prolifer-
ation of scalar/looping code which does not take
advantage of array operations. Agreed, they could
do it before, but even the naive found that writing
explicit branch statements was tedious.

Designing and Using the Windows
Interface

As we've come to expect from this product line,
the Windows interface is implemented through a
new quad function, OWI, which is quite hecavily
loaded with options.

One of the first tasks which the curious will
want to perform is to design and use a Windows
form, and this is most readily done using the JVED
user command (user commands are an APLXPLUS
feature which does not seem to have been cmulated
by other vendors—a selection are included in the
package). Involted with the syntax “IWED form-
name”, the appecarance is as shown in Figure 3.
Familiar enough to the Visual Basic user, if not
hugely endowed with tools (what this does illustrate
is an orientation of APL®PLUS toward character
GUI applications—if this isn’t a contradiction in
terms), 1WED offers facilities for building menus
and testing forms; the end result after saving is

APL Quote Quad

17

Form Edit

Jest Window

FFigure 3. The Form Lditor

that a variable called “formname_def” appears in
the workspace. From here, the choices proliferate;
the programmer may use the variable within appli-
cations, changing it with 1WED until stable, or pro-
duce a function definition from it (the Manugistics
manual is quite emphatic that programmers should
not try to manipulate the variable directly—
although some may wish to do so). Making the
cquivalent function is the work of another user
command (JWMAKE), which yilelds the function
below:

fmid_Make; x;0wself

AVfmA_Make -- Created 8/31/94 at 20:01:39
'FmAd' Owi 'Delete!

Owself«'fmd' Owi 'New' 'Form' 'Close’
Owi 'caption' 'fmA"'

Owi 'extent' 7.75 37.25

Owi 'where' 9.375 20

Owvself«'fmd.f1' Owi 'New' 'Frame'

Owi 'caption' 'TheFrame'

Owi 'where' 0.5 2 5 25
Owself«'fmd.f1.bnl1" Owi 'New' 'Button'
Owi 'caption' '0K'

Owvi 'where' 1 3 1.5 10
Owself«'fmAd.f1.bn2' Owi 'New' 'Button'
Owi 'caption' 'notOK'

Owi 'where' 2.5 3 1.5 10

In this example, the form 1s quite inanimate—
what we need to do (and could have done with
JWED) is to associate code with events happening
to controls:

fmA_Make A Make the form

tfm4d' Owi 'Wait! a Make it visible and
walit

"fmA.f1.bn2' Owi 'onClick' 'ouch' A Run <ouch> if <bn2>
is clicked

Yaroo, Bunter - that hurt A What <ouch> says

'fmAt i 'Close" A Close the form

*fmd' Owi 'Delete’ a And delete it

What this truly awful example shows is that (in
the session) we can even choose to define event
actions while the form is current and waiting; when
encapsulated into a function, it’s important to
define the event activity before opening the form
('m not quite sure that this is correct—it would
seem useful to be able to redefine responses on the
fly). Of course—normal code would define a lot of
event handling (and other form specifics) inside
fmA_Make.

Notice that APL®PLUS III 1s quite finicky
about upper and lower case—an error message is
the result of using <close> instead of <Close>, for
example.

The great strength of JWED (apart from making
form design and modification very simple), is that it
has zero footprint in the workspace; when you've
finished with it, absolutely nothing except the
required end-product remains. This is, to me, one
of the great advantages of User Commands in the
APL*PLUS product line.

What the careful reader will also notice in the
example above is that Manugistics are infusing a
lot of object-orientation terminolegy (if not more)
into APL; forms are objects, they have properties
and respond to events. Also, notice how “real”
graphics sit not quite so easily into this framework;
you can’t use]JIWWED to put decoration onto your
forms. There are graphical objects, and you can
apply appropriate methods to them, but they're spe-
cial and the programmer has to consider their
requirements separately (for example—if a form
containing both a button and a graphical image is
covered by another window and then uncovered, the
button is redrawn automatically, but the graphical
image has to be redrawn explicitly). It can all be
done, but it’s harder than it needs be—I] think.

DDE

Manugistics’ approach to DDE is very educa-
tional in the message it sends to us about their
designers’ philosophy for the future direction of
APL. Let’s examine a very simple example of using
DDE to retrieve data from an Access database:

z«TestSQL;fmA; junk

junk+«'fmA' Owi 'New' 'Form' ('visible' 0)

Junk«'fmA.Ed' Owi 'New' 'Edit!

*fmAd .Ed' Owi 'ddeTopic' 'MSAccess|audio?;
S@QL Select [Titlel] from Books'®

'fmd .Ed' Owi 'ddeItem' ‘'data’

'fmAd .Ed' Owi 'ddeMode' 'cold!

junk<'fmA .Ed' Owi 'DdeRequest’

z«'fmA.Ed' Owi 'text’

Jjunk«'fmd*' Owi 'Close'!

Junket'fmd' Owvi 'Delete!

What's most striking here is that APL*PLUS
IIl uses forms, and controls on forms, as the vehicle

for implementing DDE. This seems artificial to me.
What I feecl as a long-term, hard-core APL user, is a

need for a more direct path between the foreign
application and my APL workspace; in other words,
the DDE interface which feels right for my APL
application is the one that would be provided by
generalisations of the TestSQL function—I don’t
feel that I get much benefit from having to provide
all of this detail.

This approach to DDE mirrors the approach
found in other languages—most notably Visual
Basic; what it means (probably) is that a Visual
Basic programmer is likely to find APL%PLUS III a
more welcoming environment than one which took
a more purist (or isolationist) APL approach to
DDE.

When the application is being used, this proba-
bly doesn’t matter a great deal—as you can see
above, the form can be made invisible. What we
might guess is that this is a deliberate move
towards making APL seem less alien to the “con-
ventional programmer,” a conclusion which is sup-
ported by seeing control structures implemented
through keywords rather than the more symbolic

-approach which has been aired elsewhere.

I have not been able to stress-test the DDE
interface; it feels fast and stable, but I have not (as
yet) put a great deal of data through it.

Summary
There’s a great deal more in APL®PLUS III

than I've been able to cover in this quite brief
review—I believe that the programming environ-
ment, GUI interface and DDE support are the most
significant new features introduced.

Although I haven’t been able to subject
APLXPLUS III to a great deal of stress-testing, my
sense is that this is a solid and reliable product
which may be used to build sturdy, well-bchaved
Windows applications. I'm a little surprised to find
that Manugistics have not seen fit to include such
things as a help compiler in the package, but
they're not alone in this (it’s rather surprising to
see these things omitted when they come as part of
much more inexpensive “other language” products).

APL®PLUS III obviously issues a challenge to
users of the earlier members of this interpreter fam-
ily by being so clearly targeted at production of
Windows applications.

As a programming language, we see wclcome
extensions such as the new control structures
(although they would be much more welcome if
other vendors also offered equivalents); the pro-
gramning environment is also much improved over
earlier versions. To derive fullest benefit from this
environment, it will be necessary to spend some
time investigating how the tools arc best used, and
unlearning old practices.

Aside from graphics, the only feature that
appears to be missing is any form of OLE support;

December 1994 — Volume 25, Number 2

again—if this is your requirement, you may have to
look elsewhere for the solution. It’s always unrea-
sonable to try to predict the future; Version 1.2 has
been announced as I write this, and includes sup-
port for VBX controls (amongst other extensions)—
it seems reasonable to expect that the product will
continue to be enhanced and become even more

useful. L]
°

Manugistics Responds:

Paul Clements
Business Manager, APL Products
Manugistics, Inc.

2115 East Jefferson Street
Rockville, MD 20852 USA
Tel: 301-984-5324
E-mail: paul@manu.com

Dick Bowman’s article is a good discussion of
many of the technical features of APLA*PLUS III
for Windows and also of the design issues that went
into building it. As he states, version 1.2, with
VBX support is now shipping. In addition to the
Text keyboard, version 1.2 includes an option for
the traditional APL keyboard. We have also cre-
ated a new object class, called “Picture,” that pro-
vides, among other capabilities, a persistent image,
so that a graphical image is redrawn automatically.

Other technical points raised in the article:

e APL®PLUS III provides the user commands
JIN and 10UT to correspond to the APL2 sys-
tem commands)IN and)OUT.

« The function Vedit in the WINDOWS work-
space replaces OEDIT as a developer’s tool.
The new graphical user interface allows pro-
grammers to provide the same functionality in
an application with a Windows look-and-feel.

« Many of our users have told us thecy partic-
ularly like the ability to have an edit session
open, load another workspace, and then save
the object into the new workspace.

= It is indced possible to redefine event handlers,
like “oncClick”, on the fly. You can redefine
not only responses, but object characteristics or
objects themselves, on the fly.

Manugistics believes in minimizing incompatibil-
ity, as Dick mentions with our YEVLEVEL support.
However, it is unrealistic in a competitive market
environment to wait for consensus before providing
new features. Plug-and-play is theoretically appeal-
ing, but restricts innovation.

Just as we unilaterally adopted some APL2 con-
ventions, we would be pleased if our control struc-
tures become a de facto standard, or at least a
target for consensus. The vast majority of our

APL Quote Quad

19

users love them, and we are not seeing bad coding
as a result. In fact, it may be easier to detect and
correct scalar/looping code written with control
structures than that written without them. We are
most pleased that Dick agrees we “have advanced
the state of the APL linguistic art.” That was one of
our goals.

He is also correct that the VB-like approach to
DDE and 1WED are examples of using market-
accepted approaches to Windows programming in
order to close the gap between our community and
the rest of the world. The future promises to hold
even more communication and interface standards,
e.g., ODBC, and the APL world cannot afford to
remain isolationist, no matter how good a tool this
language continues to be. u
]

—3-D Graphics
1995 Symposium on Interactive 3-D Graphics

April 9-12, 1995
Monterey Conference Center
Monterey, CA USA

Sponsored by ACM, the Association for Computing
Machinery and Special Interest Group GRAPH.

For lTurther information, contact:

Michael Zyda

Naval Postgraduate School

Code CS/Zk

Department of Computer Science
Monterey, CA 93943-5100 USA
Tel: 408-656-2305

E-mail: Zyda@trouble.cs.nps.navy.mil

—SIGPLAN 95

ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI)

June 18 -23, 1995
Hyatt Regency
La Jolla, CA

Sponsored by ACM, the Assaciation for Computing
Machinery and Special Interest Group PLAN.

For further information, contact:

David Wall

Digital Western Research Lab
950 University Avenue

Palo Alto, CA 94306

Tel:

E-mail:

415-617-3309
wall@decwrl.dec.com

