A Theory of Typestate-Oriented Programming

Darpan Saini
Carnegie Mellon University

dsaini@cs.cmu.edu

ABSTRACT

Engineers in many disciplines use state machines to reason
about system changes, and many object-oriented libraries
require their clients to follow state machine protocols. No
existing language, however, has native support for state ma-
chines, and programmers often lose productivity and intro-
duce errors when trying to understand and follow interaction
protocols. The Plaid language extends the object paradigm
with explicit states and state transitions, in order to better
model object state transitions. In this paper, we present
Plaidcore, a core calculus for Plaid, which uses states and
permissions to statically guarantee that clients use object
protocols correctly.

Categories and Subject Descriptors
D.3.1 [Formal Definitions and Theory]|: Semantics

General Terms
Languages, Theory

Keywords

Typestate Oriented Programming, Verification

1. INTRODUCTION

As object-oriented programming has entered the main-
stream, the widespread availability of high-quality reusable
libraries and frameworks has enabled an unprecedented de-
gree of reuse. While programmers in the past often focused
on algorithm and data structure details, today’s develop-
ers are more often focused on stitching together components
such as libraries and framework APIs with application spe-
cific logic. In order to gain maximum leverage from com-
ponent reuse, it is important that programmers use compo-
nents correctly.

Many reusable object-oriented components are stateful
and define protocols on their usage. In previous work we pro-
posed typestate-oriented programming [2] as an extension to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FTfJP *10, June 22, 2010, Maribor, Slovenia

Copyright 2010 ACM 978-1-4503-0015-5/10/06 ...$10.00.

Joshua Sunshine
Carnegie Mellon University

sunshine@cs.cmu.edu

Jonathan Aldrich
Carnegie Mellon University

aldrich@cs.cmu.edu

the object paradigm that models objects not with classes but
in terms of their changing state. An object’s typestate [13]
is like its class with its own interface, representation and be-
havior. But unlike object-oriented programming where the
class never changes, in typestate oriented programming an
object’s typestate is allowed to change over its lifetime.

For example, a File object has states open and closed,
and we can only write to or read from it when it is open.
In the open state a call to close causes a state transition to
closed, and in the closed state the only operation available
is to (re-)open the file. In today’s languages such protocols
are mostly implicit and/or documented informally. How-
ever, in Plaidcore protocols can be enforced by the type
system. For the same object, methods such as read, write,
close are available in the open state and the only method
available in the closed state is open.

There have been various typestate-based analyses written
in the recent past [8, 4]. These checkers have been successful
in checking reasonably large programs [5] in languages like
Java. However, there are compelling reasons to carry the
idea of typestate into the programming language (summa-
rized from [2]):

e Language influences how programmers think and go
about their tasks. By explicitly including typestate in
the programming language we encourage programmers
to think in terms of states, which should ultimately
lead to more effective designs.

e Having typestate in the programming language can
lead to simplicity of reasoning. Alluding again to the
file example, in a regular language an invariant of the
closed state is that the file pointer must point to null.
As we will see in Section 2, in Plaidcore a file pointer
simply does not exist in the ClosedFile state, thus mak-
ing reasoning about programs simpler.

In this paper we present a core calculus called Plaidcore
for typestate-oriented programming. Unlike most previous
work on typestate, we make states a first class element of
the language and allow the state of an object to change. De-
pending on the current state of an object, only methods that
were defined in the state can be called. Statically tracking
the changing state of an object is notoriously hard in the
presence of aliasing. In order to achieve this we make use of
a permission [6] based type system.

The contributions of this paper are as follows:

e A novel language design called Plaidcore, which sup-
ports typestate-oriented programming, and examples

© ® N o U oA W N =

10

11

that illustrate its usefulness. Plaid.or. models objects
as records and provides a novel state change operation.

e A type system that statically tracks the state of ob-
jects. Unlike prior type systems for typestate, our
type system is structural. Like [14] we adapt a subset
of access permissions [4] to the setting of the lambda
calculus.

The rest of this paper is organized as follows — In section
2 we introduce the language with an example. Section 3 de-
scribes the syntax of the language, while section 4 describes
its type system. We conclude with related work in section

2. LANGUAGE BY EXAMPLE

In this section, we describe the features of Plaidcore using
an example. Plaidcore is an extension of the lambda calculus
with states (modeled using records), references, permissions,
state change operations and has a structural type system.
A structural type system provides many benefits [12], one
among them being unanticipated code reuse. To provide
such benefits to programmers we envision the full Plaid lan-
guage to be structurally typed and hence it is a natural
choice for us to model a structurally typed core calculus.

The example' is a simple encoding of files, where a file
can either be in the open or closed state. Each state is
represented with a type that contains only relevant fields?
as shown in listing 1. An object is allowed to change its
type (state) over its lifetime, and only those fields that are
defined for its current type are available to clients.

type OpenFile =
state of {
read : (imm of) — imm int
close : (of > ClosedFile) — unit
ptr : imm CFilePtr
}

type ClosedFile =
state ¢f {
open : (¢f > OpenFile) — unit
}

Listing 1: File States in Plaidcore

State definitions. Listing 1 declares two states OpenFile
and ClosedFile. A similar File example was discussed in [2],
but here we adapt it to the prototype-based, structurally-
typed setting of Plaid.or.. These type abbreviations ab-
stractly capture the open and closed states of a file.

The OpenFile state has three fields - read, close (which
have functions inside them) and ptr. The read function
takes as argument an immutable OpenFile and returns an
int. In the close function, the > symbol separates the in-
put and output types of the function’s argument. In this

'In describing the example we take certain liberties for mak-
ing it easier to understand. For instance, even though
Plaidcore does not explicitly support statement sequences
or return statements, we will use them. We also use type
abbreviations that are not part of Plaidcore.-

2As a modeling choice, objects in Plaideore do not contain
methods but only fields; methods are wrapped inside fields
as functions.

© 0w N o o A W N e

-
o

-
.

case, the close function of OpenFile accepts its argument
(conceptually the method receiver) in state of (the recur-
sively bound name for OpenFile), but when the function
returns, the object will be in state ClosedFile. ptr returns
an immutable operating system level file pointer.

In addition to the type, a function also takes permissions
to its arguments. We provide defaults to ease the burden
of specifying permissions on the programmer. An unspec-
ified permission means unique, except for functions, which
are wrapped inside immutable permissions by default, and a
missing > means that the function does not change permis-
sions to the arguments or free variables and returns them un-
changed. Thus, the fully expanded type of the open method
in ClosedFile is

imm (uni ¢f > uni OpenFile) — unit

Access Permissions. Like the language presented in [2]
Plaidcore supports changing the state of objects and tracks
state changes using access permissions. For simplicity we
restrict ourselves to the unique and immutable kinds of per-
missions. A unique permission means that we have the only
reference and we are allowed to change its state. An im-
mutable permission means that there may be other aliases
to this reference but no one is allowed to change the state
of the reference.

State Change Operations. Listing 2% describes how
states can be defined in Plaidcor.. Given that the definition
of OpenFile and CloseFile is mutually recursive, one way to
define them is with the fixed point of a function that changes
the state of a ClosedFile to an OpenFile using a letrec’
like construct. We start by defining a function openf that
takes a ClosedFile and changes it to an OpenFile using the
state change operator < (line 2). The function inside close
recursively uses openf for its open field.

letrec openf = Athis : ClosedFile =
this < state of {

read = //use ptr to read the file

close = Athis : OpenFile =
this «— state ¢f {
open = openf

}

ptr = //return low-level file pointer

}

Listing 2: Defining states in Plaidcore

Listing 3 describes how Files can be used by a client in
Plaidcore. We first create a new object f and change its
state to ClosedFile. While defining ClosedFile we use the
previously defined openf variable. To actually read from the
file we allude to a helper function readFromFile that takes
an OpenFile and returns an integer. To call readFromFile,
we pass an open file to it (line 19).

The call to computeBase in readFromFile presents a po-
tential source for an error. Since f is in scope, it is possi-
ble that computeBase can close the file rendering the call

3Type annotations for fields have been elided to reduce clut-
ter.

“1etrec is not a primitive in the language but can be encoded
using recursive types

© 0 N o O s W N =

T
w N o= O

-
'S

15

16

17

1

©

19

AW N e

© o N o

to read erroneous. In a regular language a similar situa-
tion could arise if there was a global reference to f. Even
worse such an error would only be flagged at runtime. In
Plaidcore however, access permissions help us catch such
errors at compile time.

f = new
f =
f « state cf {
open = openf

computeBase =
A_ : unit [f: Openfile > f: CloseFile] =
i = //...some computation
f.close(f)

return ¢

readFromFile =

Af : OpenFile
= i = computeBase() + f.read(f) // error!

return i

[-open(f)
readFromFile(f)

Listing 3: Using Files in Plaidcore

The code in listing 3 does not compile in Plaidcore be-
cause read requires f to be in the OpenFile state, but
computeBase closes f before read is called. To rectify the
situation we change the signature of readFromkFile to ac-
cept an immutable OpenFile. Now we are guaranteed that
there is no unique permission passed to computeBase and
hence it cannot close the file.

computeBase =
A_ : unit =
it = //...some computation
// cannot close the file!
return ¢

readFromFile =
Af: imm OpenFile
= i = computeBase() + f.read(f);
return i;

Listing 4: Fixed readFromkFile

Instead of explicitly passing the parameter f to
readFromFile we could also write a function that uses vari-
ables currently in scope (like the code for computeBase
in Listing 3). Such a function is described in Listing 5.
readFromFile2 uses permissions to variables that occur free
in its body.

readFromFile2 =
A_: unit
= i = f.read(f);
return i;

Listing 5: Accessing in scope permissions

We write type of such a function with permissions to free
variables in []. So the type of readFromFile2 is

imm (unit) [f: imm OpenFile > f: imm OpenFile] —
imm int

3. FORMAL LANGUAGE

The syntax® of the formal language is summarized in Fig-
ure 1. In place of a simple typing context containing just the
types of variables, we use a linear context A containing both
the permission kinds perm and the types T (together called
the Permission) of variables. Later while defining the dy-
namic semantics, we will extend the same context to contain
permissions to memory locations.

Expressions. The language is restricted to A-normal
form [10]. All expressions must be bound to variables using
the let syntactic form, since the type system relies on se-
quencing to track the state of variables. Both variables and
function abstractions are values and application is written
using juxtaposition vv. A function abstraction is of the form
Az:P, A=e, where P is the Permission to the argument z,
and A contains permissions to other free variables in e (our
concrete syntax placed this in [| brackets, but we omit this
from the formalism). This allows e to refer to variables in
scope, like curried arguments.

States are modeled using records where each record is a
set of declarations of the form state s {D}. Each field of the
record is written as f : P = v where f represents the name
of the field, P the Permission and v the value. The variable
s can occur free in D making the definition recursive. For
simplicity, we choose to model methods by wrapping them as
lambdas inside fields. The new expression is used to create
a new record.

v.f and v!f are ways to deference a field depending on
the permission kinds of v and f. If both v and f are unique
then in order to get a unique permission to the expression
result, we must remove the unique permission from the field.
This is denoted with the destructive field read expression
v!f, which removes the field f entirely from the record v,
thereby changing v’s state. In other cases, f is immutable,
and the non-destructive immutable field read expression v. f
is used to return an immutable reference to the object the
field points to. In this case the field permission within v is
unaffected and hence v’s state remains unchanged. In the
case when v is immutable and f is unique we disallow a call to
v.f. This is because such a case unnecessarily complicates
this particular type system without providing any greater
expressive power. If such a call is allowed, we have two op-
tions — on the one hand, we can remove the unique field
from v, but that would be inconsistent with the semantics
of immutable and on the other, we can return an immutable
permission to f, but then a unique permission to it will still
remain inside v. If we go with the latter, the overall in-
variant of the system must take this into account, which
would otherwise have been that for any unique permission
there must be no other permissions and for an immutable
permission there must be no other unique permissions. If it
is required to store the unique field inside v then it must first
be made immutable (as will become evident in section 4.1,
this can be done using a let-binding).

v « state s {D} is the state change operation that changes
the state of v from what it was before to state s {TD}. As
we will see in section 4, state s {T'D} can be derived from

5We interchangeably use uni for unique and imm for im-
mutable to save space.

FEzpressions e = letz=ceine
v
)
new
v.f
ol f
v « state s {D}
v o= X
Az:P, A=e
0
Types T == s
state s {T D}

Values

unit
Declarations D == fiP=vw
Type Declarations TD = f:P
Permissions P = permT
Perm. kinds perm = unique | immutable
Perm. Contexts A == Ax:P ‘ (7]

Mz.(P,A> P' A" — P,)

Figure 1: Syntax

state s {D} in a straightforward manner.

Types. The type of a record is of the form state s {TD}
where the variable s can occur free in TD. Each type dec-
laration TD is written as f : P. A permission P is the
combination of a permission kind and the type.

The arrow type Ilz.(P,A > P’ A’ — P,) is the type of
a lambda abstraction, where P and P’ are the input and
output permissions of the argument, A and A’ are the in-
put and output permissions to the free variables in e (they
were in brackets [| in the concrete syntax, which we omit
here) and P, is the permission of the return value. We use
a dependent type here to facilitating currying. A curried
function takes several arguments; all but the last of which
come with no permissions. The dependent type allows us to
bind a variable (in P,) so that curried functions to the right
of the — can refer to it in their permissions list.

Permissions. In this formalization we support two kinds
of access permissions — unique and immutable. A unique
permission to a variable means that there exists only one
permission to that variable in the context A and the variable
is allowed to change state. An immutable permission to a
variable means that other immutable permissions to the same
variable are allowed to co-exist in A but the variable is not
allowed to change state.

In other formalizations [4], permissions such as shared, full
and pure have been used. Ultimately the full Plaid language
will support some or all of these permissions, but for this ini-
tial formalization effort we have decided to keep the system
simple and only support two different permission kinds.

4. TYPE SYSTEM

In this section we describe the static and dynamic seman-
tics of the language.

4.1 Static Semantics

The typing rules for the language are summarized in Fig-

ure 2. The typing judgment is of the form
AkFe:PH4A

The A to the left of the I represents the incoming context
for typing expression e and the A to the right of the 4 repre-
sents the outgoing context that remains after typing e. The
incoming context may contain many more permissions than
are required to type e. We thread these unused permissions
to the outgoing context for subsequent expressions.

The T-Var rule returns the permission to the variable x
from the context (A, z : P) and threads through A.

The T-Abs rule is for typing a lambda abstraction. Defin-
ing a lambda requires no permissions, so the context A is
passed through unchanged. The body of the function, how-
ever, is allowed to assume a permission for the argument as
well as other permissions to free variables in the function
body. Assuming Aj,x : P, if we can type the expression e
such that e : P, the outgoing context is A} and e changes
the permission P to P’ then we say that the function is
well-typed. We also insist that all free variables in A are
present in A, although permissions to them at the time of
definition maybe different from when the function is called.
This is to prevent any accidental dynamic scoping of these
permissions. Finally, we give the function an immutable per-
mission kind because every expression or value must have a
permission kind and a type.

The T-App rule is for typing a lambda application. The
initial incoming context A is used to type the value vs.
Given the remaining context A’ we type the value v, such
that it has an arrow type and A; is a subset of A’. The
output context of the rule are the permissions that the ab-
straction returns (Al, P') in addition to the part of A’ it
didn’t require (Ag).

The T-Let rule is for typing a let expression. Before the
let binding happens, the incoming context Ay can be relazed
through the judgment A; F A’ (defined in Figure 4). This
is required because a unique permission can be passed where
ever we need an immutable . We perform permission relax-
ation in the let rule because that prevents us from having to
worry about it any place else, since we can always let-bind
an expression if permission splitting is required. The result-
ing context A} is used to type e; which results in Ay as the
output context. The let expression is well typed if assuming
permissions Ag,x : P we can type ez and thread through
As. We require that As does not contain a permission for
x as x goes out of scope after the let.

The T-Update rule is for typing state change operations.
We first check if we have a unique permission to v. For
the state change operation to work we must make sure that
we have appropriate permissions to all values declared in
D. For this we use the helper function typecheck (Figure
3). For every declaration f : P = v in D, the typecheck
function checks if v : P. The result of the state change
operation is a unique permission to state s {f : P}, where
f: P is straightforwardly derived from D by taking away
values. Note that the input to the typecheck function is D
with state s {D} substituted for s. This is done because
D can contain declaration types of the form f : s.

The T-New rule returns a new unique permission to an
empty record without disturbing the incoming context.

The T-Call-Field-Imm rule is for typing a field deference
of an immutable field of a value v. We first check if we
have a permission to v in A, followed by checking if f is an

AFe:PH4A

T-VAR

Al,x:Pl—e:PT—iAll,m:P/

domain(A1) C domain(A) T- ABs

Az:PHx:PHdA

AFUQZP"A/ A/:AhAz

A’ F vy s immutable (Ilz.(P, A, > P/, A} — P")) 4 A

A Ax:P, Aj=>e : immutable (TIIz.(P,A; > P' Al - P))4A

Al Fa Ay

A1F61:P4A2

T-Aprp

A v : P H Ag,A'l,'Ug - P’

Ao, z:PFey:P 4A
2T e 3T-LET

A1 F v :unique T = Ag D=f:P=vw

A | typecheck(Di[state s {f : P}/s]) 4 As

Albletz=eiines: P A3

T-UPDATE

A1 v« state s {D} : unique (state s {f : P}) 4 A3

A1 Fv:perm (state s {TD}) 4 As

(f : immutable T") € TD

T-NEW

A F new : unique (state s {}) 4 A

T-CALL-FIELD-IMM

(f : unique T") € TD

Ay Fu.f : immutable T 4 A

Ay kv :unique (state s {TD}) 4 A

TD' = (TD[state s {TD}/s] \ f)

T-CALL-UNI-UNI

A1 Flf : unique T 4 Ag, v : unique (state s {TD'})

Figure 2: Static Semantics

A I typecheck(D) A|

TC-EmpP

A I typecheck(2) 4 A

AlFv:P A, AV typecheck(ﬁ) - Asg

— TC-REC
A1 F typecheck(D, f : P =v) 4 As

Figure 3: Static semantics Helpers

immutable field of v. The resulting type is an immutable per-
mission to f. Also, the incoming context is threaded through
undisturbed. As mentioned earlier, we disallow calling v.f
is v is immutable and f is unique .

The T-Call-Uni-Uni rule is for typing a field deference
of a unique field of a unique v, and is interesting because
it leads to changing the type of v. We syntactically dis-
tinguish such a dereference from the other, since it also has
different dynamic semantics (rule E-Call-Uni, Figure 5). For
type-checking, we first check if we have a unique permission
to v and f is one of its members. The resulting type is
the type of f. Note that unlike the previous rule the out-
going context is different since the permission to v is now
unique state s {T'D’}, where T'D’ are the original type dec-
larations minus f. Note that any occurrences of s in the
signature should be replaced with the original definition of
s (i.e. before f is removed); this ensures, for example, that
methods which depend on the field cannot be called until
the field is restored.

4.2 Dynamic Semantics

AleA A=A

! SPLIT
AbFa A

SAME

z : perm Type = x : perm Type

Drop

x : perm Type = &

. - - SpLIT-UNI
z 2 uni T'ype = z : imm Type, x : imm Type

SPLIT-IMM

z :imm Type = x : imm Type, x : imm Type

Figure 4: Permission splitting

In this section we describe the dynamic semantics of the
language. We augment values with references o and the
linear context to hold typing information for references as
well as variables. This leads to addition of a new T-Loc
rule to the static semantics. We use u to represent the heap
where each reference o points to a list of declarations D.

Values v = «x ’ 0
Ax:P, A=e
Perm. Contests A = A, (x| 0:P) | @
stores p = u,(0— D) | D
T-Loc

Ao:PFo:P-HA

Figure 5 describes the dynamic semantics. The E-App,
E-Let and E-Let-Cong rules are similar to those found in

eQu — eQpu

E-A
(Az:P, A=e)v2Qu — [v2/z]e@pu o

e1Qpu —s ef@y’

e1 value
E-LET

let = ey in e2@u +—> [e1/z]e2@Qpu

D=f:P=v o—{D'}ep

let £ = ey in ex@Qu+— let © = €] in e;@Qp

u = p\o

;E-LET-CONG

o ¢ domain(u)

E-UPDATE E-NEw

=D :P=veD
#lo) / Y E-CALL

0 « state s {D}Qu +— 0@u', 0 — {D[state s {f : P}/s]}

f:P=veD o—Decypu

new@u +— 0Qu, 0 — {}

= D =D
A \ fE-CALL-UNI

o.fQu — vQpu

olfQu +—s v@Qu' 0 — D’

Figure 5: Dynamic semantics

the simply typed lambda calculus.

The E-Update rule is for the state change operation. Given
that a reference o exists in the heap, we update its declara-
tions to point to the new D given in the expression. Note
that we substitute s in the declarations just as the declara-
tions are added to the heap. This ensures that when we look
them up later we do not encounter an undefined recursive
type variable s.

The E-New rule adds a fresh o to the heap with the new
location pointing to an empty set of declarations.

The E-Call rule is used for field dereferencing. We first
look-up o in the heap and make sure f is a member of the
resulting declarations D. The rule returns the value is stored
in f and leaves p undisturbed.

The E-Call-Uni rule is used for dereferencing a unique field
of a unique o. Given that a reference o exists in the heap, we
update its declarations to E/, which has all the original dec-
larations but f. Note that since we already substituted s in
the recursive declarations when we added them (E-Update)
we don’t have to worry about substitution during removal
of f. The rule returns the value that is stored in f.

4.3 Type Safety

We are currently proving soundness for this language by
mechanizing it in the SASyLF [1] proof checker. Our proof of
soundness consists of the conventional progress and preser-
vation theorems. For soundness to work however, we need
a heap invariant that guarantees properties such as unique-
ness and immutability of references on the heap. The heap
invariant has been elided in this paper due to space con-
straints but is similar to previous work of the last author
[4].

4.4 Discussion

Extending the Lambda calculus. We have envisioned
the full Plaid language as multi-paradigm which supports
both object-oriented and functional programming. Since
Plaidcore is the foundational basis for Plaid, it is impor-
tant that it can model both first-class functions and objects
in the presence of access permissions. This is the reason
we chose to extend the lambda calculus with records, per-
missions and state change operations. Note that the state
change operation subsumes assignment. To change the value
of a field in a state we just change the state to one with the

new value. This is a slight departure from the traditional
notion of assignment, where the type of the new value must
match the type of the expression it is being assigned to.
Structural Types. Plaidcore’s structural type system
has lead to simplification in the formalization of this lan-
guage. In previous work typestate based languages have
had to include expressions for packing and wunpacking ob-
jects [8]; mainly to deal with reentrant methods. For every
field dereference operation, an object is first unpacked, tran-
sitioning it to an invalid state till a pack operation is called
which makes it valid again. But our structural type system
precludes the need for unpacking objects before dereferenc-
ing fields. Dereferencing a unique field from a unique object
results in that field leaving the object and the object imme-
diately changes its type. This way the object is never in an
invalid state (though after such a “destructive field read” it
may have fewer fields than it was initially declared with).

S. RELATED WORK

There have been languages in the past that allowed chang-
ing the type of objects in a first-class way. State change
can be modeled in Smalltalk [11] using the become method,
which results in one object exchanging state and behavior
with another object. Also, in the Self [16] language an object
can change the objects it delegates to (i.e. inherits from),
thereby providing a way to model state changes. However,
both these languages are dynamic whereas we model state
changes in the type system.

Statically typed languages such as Ego [3] provide a re-
lated notion of changing the class of objects. If changing
classes are viewed as states, this is similar to our state
change operation. Other systems such as Fickle [9] distin-
guish “state classes” which describe states that can change,
but are unable to track the state of fields. An alternative
approach to checking typestate before calls is to suspend a
call until the receiver is in an appropriate state [7]. In addi-
tion, there have been many typestate based analyses [4, 8]
in the past but none of these allow state changes to objects
in the type system like we do. Also, as mentioned earlier
they have nominal type systems compared to ours, which is
structural.

From the object modeling point of view, the closest work
to ours is Taivalsaari's proposal to extend class-based lan-
guages with explicit definitions of logical states (modes),

each with its own set of operations and corresponding imple-
mentations [15]. Our proposed object model differs in pro-
viding explicit state transitions (rather than implicit ones
determined by fields) and in allowing different fields in dif-
ferent states.

Our type system has similar capabilities as the linear type
system presented in [8], but our setting is different in that
we extend the lambda calculus and we have structural types
compared to nominal.

6. CONCLUSION AND FUTURE WORK

Our foremost priority is to prove that Plaidcore is type
safe. Mechanizing the proof in a proof checker has forced
attention to detail and subsequently led to many changes in
the type system. But we feel that we have now reached a
semantics that is sound. Next we plan to incorporate the
share permission kind into the system. A share permission
suggests that there may be several aliases to a reference and
anyone is allowed to change its state. A share permission
also introduces the concept of state guarantees, where each
shared reference is guaranteed to never transition out of a
hierarchy of states.

In conclusion, we presented the core calculus Plaidcore for
the Plaid programming language®. Our type system intro-
duced novel notions of adapting permissions to the lambda
calculus, in addition to modeling states and state changing
operations on objects.

7. ACKNOWLEDGMENTS

We would like to thank the Plaid group, Ronald Gar-
cia and the anonymous reviewers for their feedback on ear-
lier versions of this work. This research was supported by
DARPA grant #HR00110710019 and NSF grant #CCF-
0811592.

8. REFERENCES

[1] J. Aldrich, R. Simmons, and K. Shin. SASyLF: an

educational proof assistant for language theory. In

Proceedings of the 2008 international workshop on

Functional and declarative programming in education,

pages 31-40. ACM, 2008.

J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks.

Typestate-oriented programming. In Proceeding of the 24th

ACM SIGPLAN conference companion on Object oriented

programming systems languages and applications, pages

1015-1022. ACM, 2009.

A. Bejleri, J. Aldrich, and K. Bierhoff. Ego: Controlling the

power of simplicity. In Proceedings of the Workshop on

Foundations of Object Oriented Languages (FOOL/WOOD

2006). Citeseer, 2006.

K. Bierhoff and J. Aldrich. Modular typestate checking of

aliased objects. In Proceedings of the 22nd annual ACM

SIGPLAN conference on Object-oriented programming

systems and applications, page 320. ACM, 2007.

[5] K. Bierhoff, N. Beckman, and J. Aldrich. Practical API
protocol checking with access permissions. ECOOP
2009-0bject-Oriented Programming, pages 195-219.

[6] J. Boyland. Checking interference with fractional
permissions. Static Analysis, pages 1075-1075.

[7] F. Damiani, E. Giachino, P. Giannini, N. Cameron, and
S. Drossopoulou. A State Abstraction for Coordination in
Java-like Languages. In Proceedings of FTfJP, 2006.

2

3

[4

Shttp://www.plaid-lang.org

[8] R. DeLine and M. Fihndrich. Typestates for objects.
ECOOP 2004-0Object-Oriented Programming, pages
465-490.

[9] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and
P. Giannini. Fickle: Dynamic object re-classification.
ECOOP 2001 Object-Oriented Programming, pages
130-149.

[10] C. Flanagan, A. Sabry, B. Duba, and M. Felleisen. The
essence of compiling with continuations. ACM SIGPLAN
Notices, 28(6):237-247, 1993.

[11] A. Kay. The early history of Smalltalk. ACM SigPlan
Notices, 28:69-69, 1993.

[12] D. Malayeri. Coding Without Your Crystal Ball:
Unanticipated Object-Oriented Reuse. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, USA, 2009.

[13] R. E. Strom and S. Yemini. Typestate: A Programming
Language Concept for Enhancing Software Reliability.
IEEE Transactions on Software Engineering,
12(1):157-171, 1986.

[14] J. Sunshine and J. Aldrich. Dynxml: Safely programming
the dynamic web. In APLWACA ’10: Proceedings of the
2010 Workshop on Analysis and Programming Languages
for Web Applications and Cloud Applications. ACM, 2010.

[15] A. Taivalsaari. Object-oriented programming with modes.
Journal of Object Oriented Programming, 6:25-25, 1993.

[16] D. Ungar and R. Smith. Self: The power of simplicity. Lisp
and symbolic computation, 4(3):187-205, 1991.

