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ABSTRACT
This paper builds a complete modeling framework for under-
standing user churn and in-degree dynamics in unstructured
P2P systems in which each user can be viewed as a station-
ary alternating renewal process. While the classical Poisson
result on the superposition of n stationary renewal processes
for n → ∞ requires that each point process become sparser
as n increases, it is often difficult to rigorously show this
condition in practice. In this paper, we first prove that de-
spite user heterogeneity and non-Poisson arrival dynamics,
a superposition of edge-arrival processes to a live user un-
der uniform selection converges to a Poisson process when
system size becomes sufficiently large. Using this finding,
we then obtain closed-form results on the transient behav-
ior of in-degree, paving novel ways for a variety of additional
analysis of decentralized P2P systems.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Algorithms, Performance, Theory

Keywords
Peer-to-Peer, User Churn, Superposition, In-Degree

1. INTRODUCTION
Behavior of P2P networks under churn (i.e., in the face of

node join/departure) is one of the most fundamental issues
of P2P research [1], [3], [5], [6], [7], [8], [9], [10], [12], [15],[16].
Prior work typically uses a homogeneous Poisson process to
model user arrivals, assumes that user lifetimes are exponen-
tially distributed, and addresses only certain limited aspects
of P2P performance under churn [6], [10], [16]. Among the
recent modeling studies, [20] models each user as an alter-
nating renewal process that is ON when the user is logged
in and OFF otherwise. This model allows the online/offline
duration distributions to be unique to each user, thus cap-
turing their inherent heterogeneity. While this generic churn
model can be adopted in many cases, [20] does not expose
any restrictions on the selection of ON/OFF distributions
or rigorously establish the Palm-Khintchine result.
To address these problems, we build a novel modeling

framework for understanding user churn and in-degree dy-
namics in P2P systems. Each user i is modeled by a station-
ary alternating renewal process Zi(t) representing the user’s

∗Supported by NSF grant CNS-0720571.

online/offline states. Unlike [20], the ON/OFF durations of
Zi(t) are based on the type of user i, which is chosen ran-
domly from some finite set of pre-defined peer types (e.g.,
desktop or mobile). As in many P2P networks and [7], we
assume that each joining node selects k initial out-neighbors
and then continuously replaces them as they fail with exist-
ing users in the system. We build a complete closed-form
model characterizing the evolution of edge-arrival and in-
degree under the assumption of uniform neighbor selection.

While the Palm-Khintchine Theorem [4] states that the
superposition of n stationary renewal processes converges
to a Poisson process as n → ∞, it requires that each point
process associated with the renewal process becomes sparser
as n → ∞ and the various processes be independent. How-
ever, it is often difficult to prove that these condition hold in
real systems, which frequently impedes application of well-
known Poisson theory in practice. In this paper, we first
prove that despite user heterogeneity, non-Poisson arrival
dynamics, and two types of edge-creation processes (i.e.,
initial and replacement), the aggregate edge-arrival process
to each live user under uniform selection converges to a
Poisson process when system size becomes sufficiently large.
This novel result, an important consequence of our modified
churn model, offers relatively simple analysis of the edge-
arrival process, backed by a solid theoretical justification.
We then derive the expected transient in-degree as a func-
tion of the lifetime distribution F (x), including cases with
non-exponential peer lifetimes, and show that users who stay
online longer quickly accumulate non-trivial in-degree and
become much more resilient to isolation over time.

2. GENERAL EDGE­CREATION MODEL
We start by formalizing the user join/departure model

and the out-link model of unstructured P2P networks. Due
to limited space, all proofs omitted from this paper can be
found in the technical report [19].

2.1 Overview
As observed in real traces [2], [17], each peer can be viewed

as alternating between online/offline states. Define Zi :=
{Zi(t)} to be an ON/OFF right-continuous process on time
interval [0,∞), indicating online/offline states of user i:

Zi(t) :=

{
1 user i is ON at time t

0 otherwise (OFF)
, t ≥ 0, 1 ≤ i ≤ n, (1)

where n is the number of participating peers. Following the
illustration at the bottom of Figure 1, define random vari-
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Figure 1: Process {Zi(t)} depicts ON/OFF behavior
of user i, for i = 1, . . . , n. Process {Y c

i (n, t)} indicates
DEAD/ALIVE behavior of the c-th out-link of user
i, for c = 1, . . . , k. Process {Uc

i (n, t)} counts the num-
ber of DEAD→ALIVE transitions within the cur-
rent ON/OFF cycle of i.

ables Li,m > 0, Di,m > 0 to be durations of user i’s ON (life)
and OFF (death) periods, respectively, and {τi,m}∞m=1 to be
arrival times of user i, where τi,m+1 = τi,m + Li,m + Di,m,
for m ≥ 1. Further define {Mi(t)} to be the point process
that counts the number of arrivals of user i in interval [0, t]:

Mi(t) :=

∞∑
m=1

1τi,m∈[0,t]. (2)

To remain connected and participate in the system, each
user i creates k out-links to other peers upon joining the
network and then continuously repairs them as they fail.
Denote by Y c

i := {Y c
i (n, t)} an alternating process repre-

senting the states of i’s out-link c:

Y c
i (n, t) :=

{
1 out-link c of user i is ALIVE at t

0 otherwise (DEAD)
, (3)

for c = 1, . . . , k and t ≥ 0, where ALIVE means that the
neighbor adjacent to this link is currently alive and DEAD
means that the neighbor has departed from the system and
a replacement is being sought. If node i is offline at t, all of
its links are considered DEAD.
As depicted at the top of Figure 1, user i’s c-th link be-

comes ALIVE at arrival times {τi,m}m≥1 and then alter-
nates between DEAD and ALIVE states during i’s ON peri-
ods. Note that ALIVE durations of Y c

i are residual lifetimes
of selected neighbors and DEAD durations are search delays
for finding replacement neighbors, with the exception of the
very last ALIVE cycle in each ON period, which is termi-
nated by i’s departure rather than neighbor failure. When-
ever Y c

i transitions from DEAD to ALIVE, user i creates an
edge (i.e., performs one selection). Define initial edges to be
those added when users arrive in the system (i.e., whenever
Zi transitions from OFF to ON) and replacement edges to
be those added in response to neighbor failures. Note that
processes {Y c

i } are dependent in general and rather complex
since multiple users may concurrently connect to the same
neighbor and each out-link may point to a peer v again after
v re-appears in the system.
Figure 1 also shows right-continuous process {Uc

i (n, t)},
which is the number of transitions DEAD→ALIVE of Y c

i

within the current ON/OFF cycle of i up to time t. We set
Uc

i (n, τi,m) := 1 for all arrival times τi,m, use notation t− to

represent the instant just prior to t, and denote by

Uc
i (n, τ

−
i,m+1) = sup

τi,m≤t<τi,m+1

Uc
i (n, t) (4)

the number of selections for link c in the m-th ON cycle of
user i.

Finally, the number of selections that i performs for link
c across all ON durations of i in [0, t] is given by

W c
i (n, t) :=

Mi(t)∑
m=1

Uc
i (n, τ

−
i,m)− Uc

i (n, 0) + Uc
i (n, t), (5)

where Mi(t) is the number of arrivals of i in [0, t]. Then,
the edge-creation process of user i is the superposition of k
processes W c

i :

Wi(n, t) :=

k∑
c=1

W c
i (n, t). (6)

Observe that
∑n

i=1 Wi(n, t) is the number of out-degree edges
generated by n users in [0, t], which is the same as the num-
ber of in-degree edges received by living users in [0, t].

2.2 Assumptions
We next make several assumptions about the system, with-

out which the main result of this paper may not hold.

Assumption 1. The number of out-links k a user creates
upon joining the system is a constant for all n.

This assumption often holds in unstructured P2P net-
works where individual users are unaware of system size
(e.g., Gnutella) and some structured P2P networks with con-
stant node degree (e.g., de Bruijn [11]).

The next assumption classifies users into a number of
types and explains how users generate their online/offline
durations according to their types.

Assumption 2. 1) There exists some set F of distinct
pairs of non-lattice CDFs defining non-negative ran-
dom variables:

F :=
{(

F (1)(x), G(1)(x)
)
, . . . ,

(
F (T )(x), G(T )(x)

)}
,

where T ≥ 1 is a fixed number of user types and CDFs
F (j)(x) > 0 and G(j)(x) > 0 for all x > 0, all j =

1, . . . , T . Further, each mean l(j) :=
∫∞
0

(1−F (j)(x))dx

and d(j) :=
∫∞
0

(1−G(j)(x))dx satisfies 0 < l(j), d(j) <
∞ for all types j = 1, . . . , T ;

2) Each Zi is associated with a pair of CDFs (Fi(x), Gi(x))
that is independently drawn from set F , where type j
is selected with probability pj ≥ 0 and

∑T
j=1 pj = 1;

3) Defining S to be set of selections made by each user
and conditioning on S, set {Zi(t)}ni=1 consists of mu-
tually independent, stationary alternating renewal pro-
cesses, where ON durations {Li,m}∞m=1 are indepen-
dently identically distributed (i.i.d.) with CDF Fi(x)
and OFF durations {Di,m}∞m=1 are i.i.d. with distri-
bution Gi(x).

Part 1) in Assumption 2 uses T as the “diversity” factor
of user behavior (e.g., T = 1 reduces the system to a net-
work of homogeneous users) and mandates that all average
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online/offline durations are both positive and finite. Part 2)
allows for bias in the selection process and lets certain user
types be more popular than others. Part 3) ensures that
once users have chosen their types (i.e., ON/OFF duration
CDFs), {Zi(t)}ni=1 evolve as independent stationary renewal
processes.
For simplicity of notation, conditioning on user type, de-

fine li := E[Li,m|i’s type] and di := E[Di,m|i’s type] to be
the mean ON/OFF duration of each user i, respectively.
Denote by

λi := (li + di)
−1 (7)

the arrival rate of the user into the system. To ensure sta-
tionarity, the first arrival time τi,1 is defined as

τi,1 :=

{
Le

i +Di with probability (w.p.) ai

De
i w.p. 1− ai

, (8)

where Le
i has the equilibrium distribution of Fi(x) (i.e.,

P (Le
i < x) = (li)

−1
∫ x

0
(1 − Fi(u))du, x ≥ 0), De

i has the
equilibrium distribution of Gi(x), and ai is user i’s avail-
ability:

ai := li(li + di)
−1. (9)

Due to stationarity, the expected number of arrivals of i in
interval [0, t] is E[Mi(t)] = λit for any t ≥ 0, where λi is
given in (7).
In the next subsection, we focus our attention on prop-

erties of aggregate user lifetimes, the system population at
time t, and residual lifetimes of selected neighbors, upon
which we compute the rate of edge-creation from each user.

2.3 Properties
For each instance of user i being present in the system

during interval [0, t], place its ON duration Li,m into set
Si(t) and define S(t) = ∪n

i=1Si(t). Then let F (n, t, x) be the
CDF of values collected in set S(t) (i.e., the probability that
the obtained lifetimes are less than or equal to x). Given
n participating users, define F (n, x) := limt→∞ F (n, t, x) to
be the aggregate lifetime distribution of the system and l(n)
to be its mean in the equilibrium. By [20, Theorem 1], with
Assumption 2 and any finite n ≥ 1, the aggregate lifetime
CDF F (n, x) and its mean l(n) are respectively given by

F (n, x) =
n∑

i=1

biFi(x), l(n) =
n∑

i=1

bili, (10)

where bi := λi/
∑n

j=1 λj and λi is defined in (7). The

asymptotic results on F (n, x) and l(n) are given below.

Lemma 1. Under Assumption 2, the following sequences
converge almost surely (a.s.) as n → ∞:

F (n, x)
a.s.−−→ F (x) :=

∑T
j=1 pjλ

(j)F (j)(x)

λ
, (11)

l(n)
a.s.−−→ l :=

a

λ
, (12)

where λ(j) := 1/(l(j) + d(j)) is the arrival rate of type j,

λ :=
∑T

j=1 pjλ
(j) is the average arrival rate across all user

types, a :=
∑T

j=1 pja
(j), and a(j) := l(j)/(l(j) + d(j)) of type

j. Further, F (x) is a proper CDF function and 0 < l < ∞.
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Figure 2: Residual Ri(t) is the duration of user i
from time t until i departs, conditioned on Zi(t) = 1.

Now, suppose node v picks a random currently-alive user
i as a potential neighbor. Denote by Ri(t) the remainder
of the current ON cycle of user i, as illustrated in Figure 2,
and by Hi(x) the CDF of Ri(x):

Hi(x) := P (Ri(t) ≤ x|Zi(t) = 1), (13)

which is invariant in t due to stationarity of Zi. It is known
from [18] that Hi(x) = (li)

−1
∫ x

0
(1− Fi(u))du, x ≥ 0.

Next, define R(n, t) to be the residual lifetime of the user
uniformly randomly selected from among peers that are alive
at time t. Let N(n, t) :=

∑n
i=1 Zi(t) be the system popu-

lation at time t and denote by H(n, x) the distribution of
R(n, t) conditioned on that at least one user is alive:

H(n, x) := P (R(n, t) ≤ x|N(n, t) ≥ 1). (14)

It is not hard to see from (14) that H(n, x) depends on
the distribution of N(n, t), the CDF of Ri(t) of each user,
and neighbor selection strategies. In the following, we exam-
ine the properties of N(n, t), upon which we derive H(n, x)
when user v uniformly randomly selects neighbors.

Lemma 2. Given Assumption 2 and N(n, t) ≥ 1, µn/N(n, t)
converges to 1 in r-th mean for all r ≥ 1:

lim
n→∞

E
[∣∣∣ µn

N(n, t)
− 1

∣∣∣r |N(n, t) ≥ 1
]
= 0, (15)

where µn := E[N(n, t)] = na is the mean population and a
is given immediately following (12).

Applying the above two lemmas leads to the main result
of this subsection.

Theorem 1. Given Assumption 2 and uniform selection,
H(n, x) defined in (14) converges a.s. to the following as
n → ∞:

H(n, x)
a.s.−−→ H(x) :=

1

l

∫ x

0

(1− F (u)) du, (16)

where F (x) and l are given in (11)-(12).

Theorem 1 shows that the residual CDF H(n, x) can be
reduced to a simple function of the aggregate lifetime CDF
F (x). Recalling that ALIVE durations of Y c

i are residual
lifetimes of selected users and applying (16), we next deal
with the edge-arrival process to each user i.

3. EDGE ARRIVAL PROCESS
For convenience, denote by δi,z the z-th time at which

user i makes a selection, across all links of i, and by Iji,z the
indicator that user i selects peer j for its z-th connection.
Note that the z-th selection time δi,z of user i is determined
by the ON/OFF process Zi and residual lifetimes of i’s all
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previous selections z′ < z. This indicates that the history
observed by i up to time δi,z clearly helps i predict whether
the previously selected peers are alive at δi,z. The model
for the number of users available for selection at time δi,z is
rather intricate due to the dependence on i’s past selections.

3.1 Preliminaries
In the following, we first deal with uniform integrability

of set {(Wi(n, t))
r}n≥1 and then proving that residuals of

selected neighbors in [0, t] are asymptotically independent
as n → ∞. These two important results make the edge-
creation process tractable for systems with large size and
pave the way for computing the CDF of residual R(n, δi,z)
of neighbor selected at time δi,z, as presented in Lemma 3.
Note that uniform integrability of {(Wi(n, t))

r}n≥1 shows
that E[(Wi(n, t))

r] converge as n → ∞, for all r > 0. We
then apply the distribution of residuals R(n, δi,z) and the re-
generative property of process {Uc

i (n, t)} (see (4)) to obtain
the limit for E[Wi(n, t)].

Lemma 3. With Assumptions 1-2 and uniform selection,
we have for each user i and all t ≥ 0:

1) Collections {(Wi(n, t))
r}n≥1 are uniformly integrable

in n, for any r > 0;

2) Residuals {R(n, δi,z)}z≥1 of selected neighbors at ran-
dom times δi,z are asymptotically independent and con-
verge in distribution as n → ∞ to i.i.d. r.v.’s with
CDF H(x) in (16);

3) Define {U(s)}s≥0 to be a pure renewal process whose
cycle lengths follow the CDF H(x) in (16) and whose
mean is E[U(x)] = 1 +

∑∞
r=1 H

∗r(x), where H∗r(·) is
the r-fold convolution of H(·). Given user i’s type, the
mean number of edges that i creates in [0, t] is

lim
n→∞

E[Wi(n, t)|i’s type] = kλitE[U(Li)|i’s type]

= kλit

∫ ∞

0

E(U(x))dFi(x), (17)

where Fi(x) is i’s lifetime CDF and λi is its arrival
rate. Unconditioned on user types,

E[Wi(n, t)] = (k + θ)λt, (18)

where θ := k
∑∞

r=1

∫∞
0

H∗r(x)dF (x), λ is given in
(12), and F (x) is the aggregate lifetime CDF in (11).

We next make several notes on Lemma 3. Intuitively, as
system size n increases, the probability that user i selects
any other peer more than once in the interval [0, t] becomes
smaller. In other words, for sufficiently large n, it is more
likely that the set of neighbors that i connects to in [0, t]
contains distinct peers and thus the CDF of neighbor resid-
uals selected at δi,z approaches that of residual R(n, t) of a
randomly selected user shown in (16), which is the rationale
behind part 2 of Lemma 3.
The result in (18) demonstrates that as n → ∞, user i

brings k initial edges and an average of θ < ∞ replacement
edges per ON/OFF cycle into the system and that the edge
creation rate from each user approaches the constant (k +
θ)λ. As we will see in the next subsection, (k+ θ)λ is equal
to the edge-arrival rate from the system to a given existing
user.

3.2 Poisson Result
Given a set of n participating users, our approach is to set

aside a given user v (so the values of Zv(·) are given) and
examine edge arrival to this user, from n − 1 other peers
under uniform selection.

Define ξn,i(t) :=
∑Wi(n,t)

z=1 Ivi,z to be the number of edges
delivered by user i to node v in [0, t], for i ̸= v, where Ivi,z
is the indicator that i selects v at time δi,z. Then, the edge
arrival process from the system to user v is the superposition
of processes ξn,i:

ξn(t) :=

n∑
i=1,i ̸=v

ξn,i(t) =

n∑
i=1,i̸=v

Wi(n,t)∑
z=1

Ivi,z. (19)

The properties of process ξn are presented in Theorem 2,
which follows from Lemma 3 and the result on the conver-
gence of random measures in [14, Proposition 3.22].

Theorem 2. Under Assumptions 1-2 and uniform selec-
tion, conditioned on Zv, the point process ξn defined in (19)
converges in distribution as n → ∞ to a non-homogeneous
Poisson process ξ with local rate γZv(t), where Zv(t) is a
deterministic function of t,

γ := (k + θ)/l, (20)

θ is in (18), and l is the mean lifetime given in (12).

Theorem 2 shows that when user v is alive (i.e., Zv(·) = 1),
the instantaneous rate of edge arrival to v is the constant γ;
otherwise it is 0. That is, the edge arrival process to v is a
Poisson process whose rate varies according to process Zv.

The above important result states that despite multiple
user-types and non-Poisson user-arrival dynamics, the edge-
arrival process to each user v is Poisson. This allows us to
obtain relatively simple models for in-degree that we study
later in this paper, and other interesting metrics (e.g., traffic
load on each user).

3.3 Simulations
We next show simulations explaining this result and its

accuracy in systems with finite age and size. We gener-
ate a network of n users whose arrival/departure follows
the introduced churn model. The system evolves for at
least 50 virtual hours before being examined. We start by
generating T = 1, 000 pairs of means li and di, which are
drawn randomly from two Pareto distributions with α = 3
as described next. For mean ON durations, we use β = 1
and obtain E[li] = 1/2 hour; for mean OFF durations,
we use β = 2 and get E[di] = 1 hour. We study three
cases throughout the paper: 1) heavy-tailed system H with

F (j)(x) ∼ Pareto(3, 2l(j)) and G(j)(x) ∼ Pareto(3, 2d(j)); 2)

very heavy-tailed system VH with F (j)(x) ∼ Pareto(1.5, l(j)/2)

and G(j)(x) ∼ Pareto(1.5, d(j)/2); and 3) exponential sys-

tem E with F (j)(x) ∼ exp(1/l(j)) andG(j)(x) ∼ Pareto(3, 2d(j)),
where notation Pareto(αi, βi) represents

Fi(x) = 1− (1 + x/βi)
−αi , αi > 1, βi > 0, (21)

The actual pairs (Fi(x), Gi(x)) are selected uniformly ran-
domly from F .

Figure 3 shows the distribution of edge inter-arrival delays
to a single node obtained in simulations with two types of
systems, given that the node is alive. Notice in the sub-
figures that for finite n, the distribution of inter-arrival delay
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Figure 3: Distribution of edge inter-arrival delays
approaches exponential with rate γ in (20) for n =
1000, k = 10, and θ = 10 using 109 iterations.

is approximately exponential with the rate given by (20).
Additionally, Figure 4 shows that the distribution of the
number of edge arrivals to a node in an interval of size ∆t
approaches a Poisson distribution with the same rate γ in
(20).
Finally, note that the Poisson result in Theorem 2 is not

an assumption of the paper as in prior work [6], [10], [13], but
rather a consequence of the churn model introduced earlier.

4. IN­DEGREE
In this section, we aim to understand how the in-degree of

each live user changes with user age. We start by building a
generic in-degree model for any lifetime distribution F (x).

4.1 Expected In­Degree
In a stationary system, define Xn(t) to be the in-degree

of a random online user v at age t ≥ 0. Applying Theorem
1 and Lemma 3, we show transient and limiting properties
of Xn(t) under Assumptions 1-2 and uniform selection of
neighbors in the next theorem.

Theorem 3. Given that a user is alive in the system, its
expected in-degree at fixed age t ≥ 0 converges as n → ∞ to
a monotonically increasing function of age

E[Xn(t)] → k

∫ ∞

0

(E[U(x)− U(x− t)]) dH(x), (22)

where H(x) is in (16), {U(s)}s≥0 is a pure renewal process
defined in Lemma 3, E(U(x)) = 1+

∑∞
r=1 H

∗r(x) for x ≥ 0,
and E(U(x)) = 0 for x < 0.

To better interpret the mean in-degree of user v at fixed
age t, we transform (22) into

lim
n→∞

E[Xn(t)] = kE[U(R)− U(R− t)], (23)

where r.v. R ∼ H(x) denotes the age of a random user i
that is ON at time t, for i ̸= v, R − t is the duration that
i is alive but v is offline, and U(x) represents the number
of selections that i makes for link c in an interval with a
given length x (recall U(x) = 0 for x < 0). It is then not
hard to see that the left-hand side of (23) is the expected
number of connections that peer i builds since both i and v
are alive. By Theorem 3, this metric is equal to v’s mean in-
degree (i.e., the expected number of existing users that select
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Figure 4: Distribution of the number of edge arrivals
to a node in the interval [t, t + ∆t] in a system with
n = 1000 users, k = 10, and θ = 10. The lines show
Poisson fits with γ in (20) at t = 500 hours and after
105 iterations.

v since v’s arrival), which is consistent with the symmetry
of out-going/in-coming edges under uniform selection. Our
last note is that as t → ∞, (23) tends to kE[U(R)], which
provides a simple upper-bound at which the in-degree of
each user saturates.

We next show that (23) can be expressed in simple closed-
form for exponential lifetimes and further apply Theorem 2
to obtain the distribution of in-degree Xn(t) at age t.

Theorem 4. For exponential lifetimes L and n → ∞,
the mean in-degree at failure θ = k and

E[Xn(t)] → 2k(1− e−t/E[L]). (24)

Moreover, the distribution of Xn(t) converges to a Poisson

distribution with mean 2k(1− e−t/E[L]) as n → ∞.

In (24), the mean in-degree of a node increases mono-
tonically from Xn(0) = 0 when it arrives into the system
to E[Xn(∞)] = 2k when its age tends to infinity. For the
exponential case we directly use (24), while for the Pareto
lifetime case with α > 2 we numerically solve (23). Simu-
lation results in Figure 5 demonstrate that the models are
very accurate and indeed saturate at predicted values 2k and
kE[U(R)] as age t → ∞. Furthermore, if a node survives
for more than 1 hour in the system under the parameters of
this simulation, it develops an average of 12 − 15 in-degree
neighbors (depending on the distribution of L) and is un-
likely to be isolated from the graph from that point on. It
is also interesting to observe in the figure that the Pareto
curve increases slower, but saturates at larger values, which
suggests more resilience support for users with very large
lifetimes.

5. CONCLUSION
This paper introduced a generic framework for model-

ing user join/departure, edge arrival, and in-degree. Us-
ing this foundation, it then developed closed-form results
on the edge-arrival process to each user and their transient
in-degree. Future work involves modeling of non-uniform
neighbor selection, measurement of real P2P dynamics, and
analysis of non-stationary user arrivals.
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(a) exponential (24) with
µ = 2
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(b) Pareto (22) with α = 3

Figure 5: Comparison of the model for E[Xn(t)] to
simulation results for n = 2000, E[L] = 0.5 hours, and
k = 8 after 106 iterations.
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