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Heterogeneous architectures

 More than one type of architecture in a system
 Multi-core CPU
 Specialized accelerated cores

 Different programming models
 Sequential algorithms a bottleneck
 Split problem into independent task, run in parallel
 Utilize the strengths of the different architectures
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Multi-core CPU & OpenMP

int i, m=10, N=1000
double A[N], B[N], C[N];
#pragma omp parallel for
for (i=0; i<N; i++) {
A[i] = B[i] + m*C[i];
}

 2-4 cores in modern desktop computers
 Requires parallel algorithms
 OpenMP

 API for shared memory parallel programming
 C/C++
 Compiler pragmas
 Easy syntax
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GPU & CUDA

 GPU (Graphics Processing Unit)
All modern computers has one
Massively parallel – Up to 500 cores
Computational power: Up to 2 teraflops
32-bit precision at full speed – 64-bit precision at half speed

 CUDA
API for using NVIDIA graphics cards
GPU computing for the masses
Syntax based on C/C++
Computational kernels
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Spline surface

 Parametric
 Controlled by a regular

polygon mesh
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Self-intersection - Singularities



8ICT

Transversal and tangential 
intersections
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Multi-core approach
 Zoom in on problematic areas using parallel resources, analyze

 Let the CPU trace out the intersection curves in a sequential manner

 Overlap-test

 Massive uniform subdivision down to Bezier level. Level n  => 2^n 
Bezier segments in each parameter direction

 Create axis aligned bounding boxes

 Box-box overlap-test
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 Intersection-analysis
 Subdivide normal surface to the same level as the surface
 Check if sub-patches contain the origin
 Create direction cones for the bezier normal patches
 Check if cone span is less than pi => no self-intersection
 Check all pairs of normal cones whether they overlap => 

possibly a tangential intersection, given that bounding boxes 
overlap
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The intersection-test modules
1.Spline surface refinement

 Localize the possible intersections

2.Bounding box generation
 Axis aligned boxes containing the Bezier subpatches

3.Box-box overlap-test
 See if two Bezier subpatches may overlap

4.Normal surface refinement
 Refine to the same level as the spline surface

5.Degeneracy-test
 Check if bounding boxes of refined normal surface contain the origin

6.Normal cone generation
 Compute the span of the normals for each Bezier subpatch

7.Cone-cone overlap-test
 Check if we may have a tangential intersection
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Speedups for subdivision levels 5-8
Input: Cubic Bezier surface & 

corresponding quintic normal surface
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Kernel speedups – subdivision level 8

Kernel 1 – Surface refinement
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Kernel speedups – subdivision level 8

Kernel 2 – Bounding box generation
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Kernel speedups – subdivision level 8

Kernel 3 – Box-box overlap test
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Kernel speedups – subdivision level 8

Kernel 4 – Normal surface refinement
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Kernel speedups – subdivision level 8

Kernel 5 – Normal surface degeneracy test
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Kernel speedups – subdivision level 8

Kernel 6 – Normal cone generation
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Kernel speedups – subdivision level 8

Kernel 7 – Cone-cone overlap test
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Pipeline – Heterogeneous 
parallelization
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Conclusions

 Heterogeneous intersections a good idea?
 It does seems like it

 What about the algorithmic approach?
 Well suited for difficult cases
 Scales well on the CPU for most of the kernels
 Good speedup on the GPU
 Parallel pipeline allows load balancing between CPU & GPU

 Is the algorithm futureproof?
 Future processors will get even more parallel
 Faster CPU-GPU inter-communication reduces overhead
 Heterogeneous algorithms will get even more important
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Thank you for your attention!

Questions?
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