
1ICT

Heterogeneous Spline Surface
Intersections

Sverre Briseid (sbr@sintef.no)

Trond Hagen (trr@sintef.no)

Geometric and Physical Modeling 2009, San Francisco

2ICT

Outline

 Heterogeneous architectures

 OpenMP & CUDA

 Spline surface intersection/self-intersection

 Multi-core approach

 Results

 Conclusions

3ICT

Heterogeneous architectures

 More than one type of architecture in a system
 Multi-core CPU
 Specialized accelerated cores

 Different programming models
 Sequential algorithms a bottleneck
 Split problem into independent task, run in parallel
 Utilize the strengths of the different architectures

4ICT

Multi-core CPU & OpenMP

int i, m=10, N=1000
double A[N], B[N], C[N];
#pragma omp parallel for
for (i=0; i<N; i++) {
A[i] = B[i] + m*C[i];
}

 2-4 cores in modern desktop computers
 Requires parallel algorithms
 OpenMP

 API for shared memory parallel programming
 C/C++
 Compiler pragmas
 Easy syntax

5ICT

GPU & CUDA

 GPU (Graphics Processing Unit)
All modern computers has one
Massively parallel – Up to 500 cores
Computational power: Up to 2 teraflops
32-bit precision at full speed – 64-bit precision at half speed

 CUDA
API for using NVIDIA graphics cards
GPU computing for the masses
Syntax based on C/C++
Computational kernels

6ICT

Spline surface

 Parametric
 Controlled by a regular

polygon mesh

7ICT

Self-intersection - Singularities

8ICT

Transversal and tangential
intersections

9ICT

Multi-core approach
 Zoom in on problematic areas using parallel resources, analyze

 Let the CPU trace out the intersection curves in a sequential manner

 Overlap-test

 Massive uniform subdivision down to Bezier level. Level n => 2^n
Bezier segments in each parameter direction

 Create axis aligned bounding boxes

 Box-box overlap-test

10ICT

 Intersection-analysis
 Subdivide normal surface to the same level as the surface
 Check if sub-patches contain the origin
 Create direction cones for the bezier normal patches
 Check if cone span is less than pi => no self-intersection
 Check all pairs of normal cones whether they overlap =>

possibly a tangential intersection, given that bounding boxes
overlap

11ICT

The intersection-test modules
1.Spline surface refinement

 Localize the possible intersections

2.Bounding box generation
 Axis aligned boxes containing the Bezier subpatches

3.Box-box overlap-test
 See if two Bezier subpatches may overlap

4.Normal surface refinement
 Refine to the same level as the spline surface

5.Degeneracy-test
 Check if bounding boxes of refined normal surface contain the origin

6.Normal cone generation
 Compute the span of the normals for each Bezier subpatch

7.Cone-cone overlap-test
 Check if we may have a tangential intersection

12ICT

Speedups for subdivision levels 5-8
Input: Cubic Bezier surface &

corresponding quintic normal surface

0

1

2

3

4

5

6

7

8

0 cores 1 core 2 cores 3 cores 4 cores GPU

Level 5

Level 6

Level 7

Level 8

13ICT

Kernel speedups – subdivision level 8

Kernel 1 – Surface refinement

14ICT

Kernel speedups – subdivision level 8

Kernel 2 – Bounding box generation

15ICT

Kernel speedups – subdivision level 8

Kernel 3 – Box-box overlap test

16ICT

Kernel speedups – subdivision level 8

Kernel 4 – Normal surface refinement

17ICT

Kernel speedups – subdivision level 8

Kernel 5 – Normal surface degeneracy test

18ICT

Kernel speedups – subdivision level 8

Kernel 6 – Normal cone generation

19ICT

Kernel speedups – subdivision level 8

Kernel 7 – Cone-cone overlap test

20ICT

Pipeline – Heterogeneous
parallelization

Surface

Surface
refinement

Bounding box
generation

Normal
surface

Normal surface
refinement

Degeneracy test Normal cone
generation

Cone-cone
overlap test

1

Box-box
overlap test

2

3

4

5 6

7

21ICT

Conclusions

 Heterogeneous intersections a good idea?
 It does seems like it

 What about the algorithmic approach?
 Well suited for difficult cases
 Scales well on the CPU for most of the kernels
 Good speedup on the GPU
 Parallel pipeline allows load balancing between CPU & GPU

 Is the algorithm futureproof?
 Future processors will get even more parallel
 Faster CPU-GPU inter-communication reduces overhead
 Heterogeneous algorithms will get even more important

22ICT

Thank you for your attention!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

