
High Performance Infrastructure for
Visually-intensive CSCW Applications

Stephen .Zizbele Steven L. Rohall Ralph L. Vinciguerra
gszabele@tasc.com sh-ohall@tasc.com rlvinciguerra@tasc,com

TASC
55 Walkers Brook Drive

Reading, MA 01867, USA
Tel: 1-617-942-2000

ABSTRACT
We describe a scalable CSCW infrastructure designed to
handle heavy-weight data sets, such as extremely large
images and video. Scalability is achieved through exclusive
use of reliable and unreliable multi cast protocols. The
infrastructure uses a replicated architecture rather than a
centralized architecture, both to reduce latency and to
improve responsiveness. Use of 1) reliable (multicast)
transport of absolute, rather than relative, information sets,
2) time stamps, and 3) a last-in-wins policy provide
coherency often lacking in replicated architectures. The
infrastructure allows users to toggle between WYSIWIS
and non-WYSIWIS modes. That, coupled with effective
use of multicast groups, allows greatly improved

responsiveness and performance for managing heavy-
weight data.

KEYWORDS: CSCW Infrastructure, Reliable Multicast,
Scalable Architecture

BACKGROUND AND MOTIVATION
Our objective is implementing an infrastructure for
computer-supported cooperative work that satisfies many
diverse goals. The system must support a large number of
users, users can be widely distributed from each other,
perhaps across the country, and the system must eftlciently
handle very large data sets of varying type, such as large
images and video. Given these constraints, we have
implemented a replicated architecture. This choice merits
more attention, as it has a large influence on how we
satisfied our design goals.

Centralized vs. Replicated
The debate between centralized versus replicated
architectures for multi-user applications is an old one. The
two primary issues are performance and consistency.
(Other issues presented in the literature, for example [2,5],
largely focus on implementation details and are less
compelling,) Replicated architectures have been lauded for

Permissionto copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
ancflorspecific permission.
CSCW 94- 10/94Chapel Hiil, NC, USA
(3 1994 ACM 0-89791-689-1/94/0010..$3.50

good performance: they require less network bandwidth
since only input, or state-changing information, must be
transmitted between clients. Replicated architectures also
provide good feedback to the user since locally-initiated
input is handled locally: there is no need to wait for the
input to be processed by a central authority and then
transmitted out to the clients. In comparison, centralized
architectures appear better at maintaining consistency
among the clients: the central portion of the system
sequences the various inputs from the clients and ensures
that every client sees the same changes at the same time,
albeit somewhat delayed. Additionally, adding late comers
is much easier than in a replicated approach, due to the
centrally stored state.

Both the performance and consistency arguments have been
greatly influenced by the type of network used in
implementing past systems. Systems either used heavy-
weight, comection-oriented streams to provide reliability at
the cost of bandwidth and performance, or they used light-
weight, packet-oriented datagrams at the cost of reliability,
Recent developments in network protocols allow us to
reinvestigate the issue of centralized versus replicated and
hopefully abstract away from the network implementation
issues that have clouded past arguments, In particular,
reliable, sequenced multicasting of packets can provide the
reliability found in centralized systems and the performance
found in distributed systems.

RendezvousTM [1,2] is a good example of a centralized
approach to building multi-user systems. Rendezvous
relies on a central abstraction connected via bundles of
constraints, or links, to multiple views, This is called the
abstraction-link-view paradigm, or ALV [3]. In
Rendezvous, the abstraction and the views all run as light-
weight processes within the same heavy-weight operating
system process, Connections across the network are via the
X Window Systemm. X serves as a virtual terminal and is
the interface between the user and the system, both for
input and output. Assume that there are n users in a
conference. If every user provides some sort of non-
conflicting input (such as scrolling a window or clicking
the mouse), then 0(n2) messages are sent through the
network. Any single message requires one transmission to
the abstraction and n-1 transmissions from the central
abstraction to the other views. For each user of n users to

395

http://crossmark.crossref.org/dialog/?doi=10.1145%2F192844.193057&domain=pdf&date_stamp=1994-10-22

send a message (n messages), this becomes n*(n-1) or
0(n2).

The price in network usage, though, is not without merit.
Rendezvous provides a reliably consistent view to each
user. In fact, the communication mechanism worked so
well that some applications relied on the reliable,
sequenced broadcast of state changes even for updating
the interface of the user who made the change[4]. This
proved to be a simple and elegant way to write applications.

The Rendezvous abstractions and views described above
actually ran within one process on a single processor.
Assume that a distributed constraint system was
implemented (as described in [2]) and that views ran on the
users’ machines and not on the machine running the
abstraction. Network traffic is still O(n2) as described

above. However, if this system is then implemented on a
network providing reliable, sequenced multicasting, the

network usage is vastly improved--O(n), Any single
message from a client would be sent over a reliable
comection to the central abstraction and is then mukicast to
every other client, resulting in two network transmissions.
For n clients, this becomes 2*n, or O(n). However, the
overall message latency is high because the abstraction is
still processing every message. If the clients are separated
by great distances, such as across the country, round-trip
message time becomes quite significant--3OO msecs or so
even on a fiber 0C3 network.

In contrast, MMConf [5] is a good example of the
replicated approach to multi-user applications. Although its
performance is good (O(n) network messaging traffic in
theory but no centralized bottleneck to add latency), in
practice, applications built on top of MMConf quite often
lost synchronization. In addition, applications were

arbitrarily limited in their functionality. For example,
MMConf explicitly used rigid floor control and token
passing to avoid some of the synchronization problems.
This meant that some users would have to wait to interact
with the application or would not be allowed to interact
with it at all. Besides user dissatisfaction, this floor control
policy was a complicated piece of code that relied on
unique tokens and sequence numbers to work properly--it
often did not. As another example, certain user-oriented
features such as continuous scrolling were disabled, again
to alleviate some synchronization problems. As a result,
application programs presented unnatural interfaces to users
or were less-powerful than their single-user counterparts.
Much of this is due to the fact that MMConf was not
implemented with true, reliable multicast--instead it was
implemented as best as possible on top of TCP/IP.

The modilled Rendezvous with distributed ALV described
above and the MMConf system are more alike than an
initial appraisal reveals. While the twos ystems vary greatly
in programming style and implementation detail, the high-
level architectures are remarkably similar. In essence, by
splitting the Rendezvous abstraction and distributing it
among the now-distributed views, a replicated architecture

has been produced. Assuming that Rendezvous’ reliable,
sequenced message delivery is maintained, the end
appearance to the user should stay the same, with O(n)
messaging and much less latency for user feedback.
Likewise if MMConf were enhanced with truly reliable,
sequenced multicasting, the appearance of applications
would look very similar to those implemented with
Rendezvous.

The Main Issue
The fundamental realization is that it is more important that
every client see a consistent set of events rather than trying
to maintain any notion of a correct set of events. Reliable,
sequenced multicasting can provide that function, even in a
replicated environment. Higher-level, human-to-human
protocols can then evolve to resolve any seemingly bizarre
behavior that remains, in much the same way that policies
naturally evolve in phone conferences. This realization
compelled us to investigate mechanisms for reliable
multicasting and to use those mechanisms in building our
multi-user application infrastructure.

DESIGN GOALS
The desire to evolve an infrastructure that is scalable and
flexible, that offers high-performance, and that well
supports diverse user interactions and data types strongly
influenced our design activities.

Scalability
A primary goal of our design effort has been distilling a
CSCW architecture that supports a large number of users
and that supports efilcient exchange of large data volumes,
such as image and video data sets. CSCW applications are
traditionally implemented using unicast protocols which
function well for two or three users; however, performance
degrades quickly as the required bandwidth can increase (as
illustrated above) as the square of the number of users. As
a consequence, collaborative applications built upon unicast
protocols are quickly mired with even moderate numbers of
users, particularly for imaging applications. We have
therefore emphasized use of multicast protocols whenever
possible and appropriate, as the required bandwidth will
increase at most linearly with the number of users. To
achieve this end, the CSCW communications model centers
on the reliable multicast protocol developed by TASC for
the ARPA-sponsored Image Networking (ImNet) project
[6,7].

Flexibility
A second goal has been designing a CSCW architecture
that supports the breadth of human interactions typically
encountered at meetings and conferences. Traditional
CSCW architectures constructed using shared windowing
systems, such as Hewlett Packard’s SharedX [8] and
Farallon’s Timbuktu [9], use a What-You-See-Is-What-I-
See (WYSIWLS) [10] interaction model where all users see
the same data and all manipulations have global effect;
however, typical human interactions do not fit this model.
For example,

396

●

●

●

☛

Within a single conference there can be multiple
sessions that an individual moves between,

Within a session there are often short, spontaneous,

side discussions between members from the same

organization in addition to any central discussions
being held by the group as a whole;

An individual will often privately examine material
within conference proceedings or briefings other than
what is currently being presented in order to clarify a
previous point or to preview upcoming material; and

An individual will occasionally contact a colleague not
involved with the confe~ence to discu~s the
consequences of any newly presented information or
ask for additional information before making a

presentation.

Our objective is to support a full range of interaction
modes, including the ability to switch between public and
private control of views and the ability to set up
subconferences where a subset of the conference
participants can share and manipulate information without
affecting the group as a whole.

Eliminating mandatory global synchronization of all views
has the added advantage that users can independently
control the presentation and layout of screen area, thereby
allowing different users to have different views open or to
have views arranged differently on the display. As
applications become more complex and competition for
screen area increases, independent control of screen layout
by individual users is extremely desirable.

Performance
A third goal in formulating the CSCW architecture has
been optimizing performance for image conferencing in a
heterogeneous network environment. Consequently the
architecture leverages the adaptive compression and
hierarchical image transport mechanisms also developed
under the ImNet project that allow user-controlled trades of
image quality for speed of response.

The design goal of supporting a wide range of interaction
modes coupled with the design goal of supporting a large
number of users offers an additional means for optimizing
image conferencing performance. By eliminating the
mandatory global synchronization of all views and allowing
users to select and manage views independently, the
particular data sources that each user is actively engaging
are explicitly identified. Combining this information with
the explicit group setup properties of multicast, the
transport of individual sets of image data can be restricted
to only those users currently needing the data. The
combined approach offers substantial gains in conferencing
performance, even over systems such as Rendezvous that
support multiple, simultaneous user interactions but remain
tied to TCP/IP protocols.

Diversity
A final goal has been designing an architecture that readily

supports a full range of data types, including images,
graphics, text, audio, and video, as well as an architecture

that is extensible so that new data types, interaction modes,
or manipulation tools can be integrated as quickly and as
easily as conceived or become available.

DESIGN ISSUES
The central issue in the design of our CSCW infrastructure
was maintaining coherency between distributed object
states while minimizing delays in responding to user
actions.

Maintaining System State
Canonically, CSCW operation involves translating actions
by each user, such as key clicks or mouse movements, into

changes in the state of the CSCW environment. The
implicit problem in designing a CSCW architecture is
maintaining a coherent definition of the state of the
environment across all user workstations involved in the
session.

As even subtle differences in the state of the CSCW
environments on different workstations can have disastrous
effects, state changes made by one user must in general be
propagated to all other users using reliable protocols. Some
state changes can be communicated with unreliable
protocols. For example, fleeting states changes that only
affect the presentation of a single user’s environment, such
as intermediate pointer positions, are unimportant, and use
of unreliable protocols reduces latency. However, any state
changes that are non-transient, such as ending pointer
position, or any state changes that affect the CSCW
environment as a whole, must be communicated using
reliable protocols.

Use of reliable protocols does not, however, guarantee
coherency between environments. CSCW by definition
involves multiple users and as such there is a strong
potential for different users to modify the state of the
environment in contradictory ways. For example, suppose
two users each load a different image into a shared viewer
at very nearly the same time. Since there are unavoidable
communication delays, each workstation will receive a
remote request to load an image from another workstation
immediately after having serviced a local request to load an
image. Without a mechanism or protocol for maintaining
coherency between environments, each workstation can
easily arrive at a state with completely different images in a
supposedly common viewer.

A common approach for resolving coherency problems
involves the use of a round-robin or token passing control
scheme, as is employed in several commercial products
such as HP’s SharedX and NeXT’s Greyboard
implementations. With a token passing approach, only the
user currently in possession of the token can make changes
to the state of the CSCW environment. As there is only a

397

single (but moveable) point of control, absolute sequencing
of user actions is assured, such that a token passing
approach provides a straightforward mechanism for
enforcing coherency. However, the approach induces
unnecessary Iatencies and suffers potentially severe
performance problems for even moderate numbers of users.
For example, consider the typical 150 millisecond (or
greater) round trip time necessary to pass a token reliably
from an east coast user to a west coast user. Ignoring any
token dwell time at individual workstations, the time
between requesting the token and acquiring control of
CSCW environment could easily exceed several seconds
for a fifteen user conference.

As delays on the order of seconds are unacceptable from a
user perspective, we have adopted an asynchronous, multi-
threaded control model that provides multiple users with
simultaneous control over the state of the CSCW
environment. Under this model, any absolute ordering of
user actions is necessarily precluded and requires use of a
conflict resolution protocol to maintain coherency between
workstations.

Within the architecture, entities such as viewing tools (or
views) and images are referred to as objects. Whenever an
object is manipulated or changed, the change is transmitted
along with a timestamp indicating the time of the change. If
a workstation receives a message to modify an object in a
way that conflicts with a more recent change, the message
is simply ignored. Although the approach is more complex,
it offers greatiy increased responsiveness as well as
considerably more flexibility.

Absolute synchronization of clocks between workstations is
notnecessary for the described approach to work, as CSCW
synchronization only requires that the distributed copies of
the CSCW state be the same rather than fair or correct in
any way. In the worst case where a workstation clock is
greatly ahead of all other clocks, no changes made by the
user at that workstation can be undone by any other
conference participant. This occurs as time stamps of
attempted changes by other users will always predate
changes made by the workstation with the errant clock and
will be discarded. Although this is not fair to the other
users, synchronization is maintained.

Obviously loose calibration of system clocks, say to within
100 milliseconds, is desirable operationally and is achieved
by a periodic multicasting of a reference clock time. When
each user’s workstation receives a reference time message,
the reference time is compared with the local clock time to
derive a relative time shift value. Time stamps are then
constructed by adding the time shift value back to the local
clock time.

Communicating State Changes
There are (at least) two design alternatives for
communicating changes made to the state of the CSCW
environment. Either modified objects can be transmitted in
totality, or only the specific changes made to the objects

can be transmitted. While fundamental y simpler, an
approach involving transmission of complete objects
needlessly compounds the problem of maintaining
environment coherency. For example, consider the
independent actions of one user scrolling an image in a
view, and a second user changing image contrast within the
same view. If the entire state of the view object is
transmitted by each user at nearly the same time, the end
state of the respective CSCW environments will not reflect
changes made by one of the users. Our design breaks the
state information within an object into the smallest units
that can be modified independently, offering still greater
flexibility and responsiveness.

Information contained within an object can be divided into
state and data. State refers to attributes such as zoom
settings or scroll positions, whereas data refers to the
usable information such as pixels in an image. As
maintaining coherent environment state is critical, all
changes in state information must be transmitted to all users
within the conference; however, state information is
intrinsically light weight in that relatively small amounts of
data must be transmitted. As such, communications of state
information is inexpensive, particularly if multicast
protocols are used.

In contrast, data can be either light weight or heavy weight.
Heavy weight data sets, such as images or video (and
potentially audio for low bandwidth links) require
significant amounts of bandwidth, whereas light weight
data sets, such as text or amotations, require small amounts
of bandwidth. For example, a circle is completely specit3ed
by origin and radius, requiring transmission of only a few
bytes of information, whereas a lK by lK image can
require transmitting 100 kilobytes or more, even in
compressed format.

As one of the main communication challenges for image-
based CSCW is minimizing network traffic for functions
involving access of heavy weight data volumes, we
explicitly differentiate between transfers involving light
weight data from transfers involving heavy weight data. In
our CSCW architecture, light weight data is always
propagated to all users, whereas heavy weight data is only
propagated to conference participants actively using the
larger data sets. With this scheme the control and state
information critical for maintaining coherency between
CSCW environments is fully and immediately available,
yet the network is not needlessly choked by unnecessary
data propagation involving large data transfers.

DESIGN LAYOUT
The design centers on the use of a shared area, referred to
as a bulletin board, where shared objects, representing
users, tools, and data, are placed and manipulated.
Interactions between objects are accomplished through the
messaging paradigm common to object-oriented languages,
where messaging functions have been extended to provide
transparent network communications between distributed

398

copies of the objects. Coherency between distributed copies
is maintained through a synchronization facility intrinsic

to the messaging service.

Bulletin Boards
The communications infrastructure of the CSCW design
resembles the distributed blackboard architectures
commonly encountered with distributed processing models
for expert systems. Because of the intrinsic human focus
on the data interchange, and due to the topical similarities
of the CSCW system with various chat capabilities on
electronic bulletin boards, we refer to our design as a
distributed bulletin board, or simply a bulletin board.

Within a CSCW session, each client workstation maintains
a bulletin board locally that is a copy of the master bulletin
board maintained by a Conference Manager. Bulletin
boards support management of objects on individual
workstations and receive messages concerning the creation
or change of objects from other workstations. A master
bulletin board differs from client bulletin boards in that the
master bulletin boards have additional functions for
exporting state information. The export functions allow
client bulletin boards created by late-comem to synchronize
with the conference.

Bulletin boards contain three basic object types: user
objects, tool objects, and data objects, as illustrated in
Figure 1. A user object represents a user participating in the
conference. A data object represents data sets such as
images, video sequences, audio sequences, graphics sets, or
text. A tool object represents a public or shared view of a
data object and a set of methods for accessing and
manipulating data objects.

Objects
Within the architecture, objects can be either atomic objects
or collection objects. An atomic object represents a single
user, a single tool, or a single data set such as an image or a
graphical annotation. Collection objects are used to group
atomic objects into more manageable sets for convenience.
Collection objects can also contain other collection objects,
allowing expression of hierarchical relationships. For
example, a collection data object can consist of an image
data object, a text data object, and a collection containing
several graphical annotation data objects. A collection user
object can contain multiple user objects, each of which can
bean atomic user object or another collection user object.,

User, data, and tool objects all derive from a common
parent referred to as a Bulletin Board Object or BBObject.
Each BBObject maintains descriptions of associations with
other BBObjects. For example, a user object maintains
descriptions of all public views that the corresponding user
is currently accessing. A data object maintains references to
all public tools currently accessing it.

The BBObject hierarchy, shown in Figure 2, supports a
wide variety of data objects and allows the addition of new
data types as needed. The first level of the data hierarchy

supports the primary data types, including audio, image,
video, graphics, and text. The set of graphics objects is

subclasses to support graphic annotations of images. The
audio class is specialized to distinguish between
conversation, which can be transmitted unreliably, and
voice annotations, which are archived and so must be
transmitted reliably.

I 1 I

I Data I Users
I
I

I 4

I
I d

I
I I

~ Name

State
Information

Associations

i Tools
I
I
I
I 4-
1 4
I
J

I I

Figure 1, Bulletin Board Structure

Conference Statiup
A scheduling proce~s is used to initiate a conference, shown
in Figtue 3. First, a user calls up the Registration hzterface,
which notifies the Conference Registrar of the time the
conference is to begin along with an optional set of initial
users. The information is placed in the Conference
Schedule. The Registration Interface is also used to join
scheduled conferences, either before conferences start or
while conferences are in progress, with the Conference
Schedule updated as required. If desired, the Registration
Interface and Conference Registrar can enforce various
security policies to restrict conference membership;
however security issues are not currently addressed.

The Conference Registrar monitors the Conference
Schedule, and is responsible for instantiating the
Conference Manager for each conference at the designated
time. The Conference Manager is responsible for
maintaining a master copy of the Bulletin Board that
supplies state information for late joining participants, and
for conference suspend/resume functions.

399

BBObject

I
User Data Tool

I
I

-1

Audio Image Video Graphic TextDoc

I

*

Ellipse
Je mm

T
User

Looation
Multiplexer

Figure 2, BBObject Class Hierarchy

User Conference Conference
Locator Registrar Schedule

Conference Application

Manager Resource
Server

P
Registration

Interface

ELocal
Application E-1Master

Application

Figure 3. Conference Scheduling

400

Upon instantiation, the Conference Manager requests
conference resources (here, a conference multicast
addresses) from the network Application Resource Server,
The multicast address is passed back to the Conference
Registrar for distribution to other participants joining the
conference. A Master Application (here, a Master Bulletin
Board) is then started, and the Conference Registrar is
notitled that the conference is ready to begin.

Upon acknowledgment that the Conference Manager has
completed its tasks, the Registrar hands off the list of
conference participants and acquired resource pointers to
the User Locator. The User Locator inspects the schedule
and contacts the appropriate User Location Multiplexer on
@e appropriate workstation for each registered conference

participant. The User Location Multiplexor then launches
the appropriate conference application (here, a Bulletin
Board) for each user and hands off the resource pointers.
The Bulletin Boards are now free to exchange state
information as needed to achieve synchronization over the
allocated multicast address.

Messaging
Once a conference is in session, a message passing scheme
is used to maintain coherency between the individual copies
of the bulletin board. All messages transmitted within a
conference use a common header format, as shown in
Figure 4. The magic number field of the header allows
validating the incoming message as a legitimate conference
message and contains a value that allows receivers to
determine whether the message originated from a little-
endian machine or a big-endian machine, so that the
remainder of the message can be properly interpreted. The
protocol version field is used to identify CSCW
implementation versions that are incompatible. The
message length is the length of the message after the
header, and the sequence number is used for identification
of messages sent using a reliable protocol. The message
type field is used to distinguish between receivers if
multiple message types are sent to a single multicast group
address; currently, only messages between Bulletin Boards
have been implemented. Finally, the timestamp field is
used for ordering messages and for maintaining
environment coherency.

In addition to the CSCW message header, a second-level
header is used for Bulletin Board messages, as shown in
Figure 5. Bulletin Board messages share the timestamp
from the CSCW message header, which reduces the
message overhead. In addition, a unique object identifier is
used that uniquely identifies each object within a
conference. Unique object ID’s are formed by
concatenating the unique ID assigned to the local bulletin
board creating the object with an incrementing object ID
maintained by that bulletin board. This prevents individual
bulletin boards from creating duplicate Ills, yet does not
require a central ID service or any explicit communications
between bulletin boards to determine the next available ID.
The approach also has the advantage that the creator of an

object can always be derived from the ID and is useful for
archiving purposes.

I Magic Number I

I Protocol Version I

] Message Length I

H
Sequence Number

Message Type

Timestamp

Figure 4. CSCW Message Header

A remote member-function (i.e., procedure) call protocol
between objects has been developed to maintain
consistency and coherency among bulletin boards. Each
object class contains a static array of pointers to remotely
callable member functions, the contents of which are class-
specific. These member functions process user
interactions, such as scrolling a view, accessing a new
image, or deleting an object in an object-specific manner.
They then propagate the changes as appropriate to mirror
objects on remote bulletin boards.

Whenever a user interacts with the conference, the
workstation on which the interaction occurs builds a
message that identifies the unique object ID, the index of
the member function responsible for processing the action,
and the parameters needed by the member function, if any,
The object ID and the member function index are stored in
the BB Identifier field and the Function Index field of the
message header, respectively. Any associated parameters
are contained in the message-specific data, which is
actually the message body. The message is then sent to the
BB Multicast Address and received by the conference
participants. Upon receipt, the function index is used as an
index into the function pointer array, with the parameters
extracted and then passed to the function.

I CSCW Header

H
BB Identifier

Function Index

Message-Specific Data

Figure 5. Bulletin Board Message Header

401

An Example
The use of these messages is best explained using an
example. When the conference is started, the Bulletin
Board is empty. When the fiist user joins the conference, a
Create User message is sent to the BB Multicast Address,
say for User R. Each BB Client receives the message and
adds User R to the user section of the their local Bulletin
Board, while the BB Server adds the user to the master
Bulletin Board. Similarly, as User V and User Z join the
conference, corresponding user objects are placed on each
of the Bulletin Boards.

User V now opens an image viewing tool, and a message is
sent to the BB Multicast Address creating a Tool object on
each of the Bulletin Boards. When user V opens the tool
object by clicking on the viewing tool object icon, an
association between the user object and the viewing tool
object is created, and the corresponding state change is
propagated to each Bulletin Board. When User R and User
Z see the viewing tool icon appear, each opens the viewing
tool, again by clicking on the icon, and the corresponding
associations are created. The resulting state changes are
propagated to each Bulletin Board.

User V now loads an image into the viewing tool. The
sequence of events involved in servicing the request are
shown in Figure 6. Initially, the request is received by the
viewing tool object. A unique multicast group is used for
each image so as to minimize the propagation of heavy
weight image data. As this is a request to view a new
image, the viewing tool requests a multicast address from

the Conference Manager. If the Conference Manager has
any unused addresses, it immediately assigns an address to
the Tool; otherwise, it first requests a new block of
addresses from the Address Server.

The Tool then multicasts an Intent to Request Image
message to the BB Multicast Address, which contains the
multicast group address that will be used for image transfer.
The message is received by the Bulletin Boards and is
passed to the Tool object with the BB Identifier contained
in the message header on the remote workstations. The
Tool objects read the message and join the image multicast
group. Next, the Tool on User V’s workstation issues a
request to the appropriate Image Server to multicast the
relevant portion of the image to the image multicast group.
The image data is received by all of the Tools and
displayed on the workstations.

Synchronization
Within a network-based, asynchronous, multi-threaded
control environment, messages from different users can be
received in an unnatural order and require special handling.
For example, a message sent by a user manipulating an
object can appear before a message sent by a different user
creating that object. This occurs if the creation message is
for some reason delayed or dropped, and the manipulation
message appears intact before the local host completes
detection and retransmission processing for the missing
creation message. Similarly, messages for manipulating

objects can be delayed and arrive after an object has been
deleted.

Solutions for processing out-of-sequence messages in
general require knowledge about object types and are more
appropriately handled by the individual objects. The CSCW
environment does, however, provide basic support to assure
delivery of messages to objects. Specit3cally, processing of
messages addressed to non-existent objects is handled
through the use of a deleted object list and a delayed
message queue maintained locally by each bulletin board.

The deleted object list and the delayed message queue
provide the needed services in the following way. When a
message (other than a creation message) is received for a
non-existent object, the bulletin board checks to see if the
specitled object is in the deleted object list. If the specified
object is a deleted object, then the message is dropped;
otherwise the message is placed in the delayed message
queue. Whenever an object creation message is received,
any pending messages for that object are retrieved from the
delayed message queue and delivered (in order of time
stamp) immediately.

IMPLEMENTATION CONSIDERATIONS
We have emphasized the use of standards to the greatest
extent possible in developing our CSCW prototype. The
communications infrastructure is based on IP/Multicast
because of its widespread support and use in the Internet
community. The complexity of the communications and
user interface components required for a CSCW application
mandates an object-oriented implementation; consequently
we have chosen C++ for its efficiency. Finally, our CSCW
prototype is implemented on SGI IndigoTM workstations
under UNIW.

SUMMARY
The CSCW implementation achieves scalability using a
mixture of reliable and unreliable multicast protocols to
eliminate redundant transmission of data whenever
possible. As such, bandwidth requirements do not increase
as the square of the number of users, providing a
substantially more scalable approach than can be achieved
using unicast protocols. Extensibility is incorporated into
the design by distilling communication and database
functions into a consistent, flexible, well-defined set of
primitives and is achieved using an objective programming
approach by deriving disparate tools from those primitives,

ACKNOWLEDGMENTS
This work was sponsored in part by the Advanced Research
Projects Agency, contract number F19628-91-C-0086.

Rendezvous is a trademark of Bellcore.
X Window System is a trademark of MIT.
UNZX is a trademark of UNIX System Labs.
Zndigo is a trademark of Silicon Graphics, Inc.

402

M
6. Multicast

image

View View

4. Prepare
to Receive

-L
View

Conference
Manager

A

2. Get Multicast
Address

1. User

l--

r
Bulletin
Board

T
1 1 1

3. Muiticast Intent to
Request with

Group Address

Figure 6. Image Request Processing

1.

2.

3.

4.

5.

Patterson, J.F., R.D. Hill, S.L. Rohall, and W.S.
Nleeks, Rendezvous: An Architecture for Synchronous
Multiuser Applications, Proc. CSCW ’90 (Oct. 7-10,
Los Angeles, CA), pp. 317-328.

Hill, R.D., T. Brinck, J.F. Patterson, S L. Rohall, and
W. Wilner, The Rendezvous Language Architecture,
Comm. of the ACM, Jan. 1993, pp. 62-67.

Hill, R.D., The Abstraction-link View Paradigm, Using
Constraints to Connect User Interfaces to
Applications, Proc. CHI ’92 (May 3-7, Monterey, CA)
pp. 335-342.

Brink, T., and L. Gomez, A Collaborative Medium for
the Support of Conversational Props, Proc. CSCW ’92
(Ott 31-Nov 4, Toronto, Ontario), pp. 171-178.

Crowley, T., P. Milazzo, E. Baker, H. Forsdick, and R.
Tomlinson, MMConfi An Infrastructure For Building
Multimedia Applications, Proc. CSCW ’90 (Ott. 7-10,
Los Angeles, CA), pp. 329-342.

6.

7.

8.

9.

10.

Requests
Image

Braudes, R.E, and G.S. Zabele, Requirements for
Multicast Protocols, IETF RFC 1458, TASC, May
1993.

Braudes, R.E., and G.S. Zabele, ImNet: Very High
Speed Image Communication Progress Report: June 1,
1992- November 30,1992, TASC TR-6341-3, TASC,
Reading, MA, May, 1992.

Garfkdcel, D., P. Gust, M. Lemon, and S. Lewder, The
SharedX Multi-user Interface User’s Guide, Version
2.0, HP Research Report No. STL-TM-89-9, Hewlett
Packard, Palo Alto, CA, 1989.

“Farallon Timbuktu User’s Guide”, Farallon
Computing Inc., Berkeley, CA 1988.

Stefii, M., D.G. Bobrow, G. Foster, S. Lanning, and D.
Tatar, WYSIWIS Revisited: Early Experiences With
Multiuser Interfaces, ACM Trans. on Office
Information Systems 5, 2(1987) pp. 147-167.

403

