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A data tree is an unranked ordered tree whose every node is labelled by a letter from a finite
alphabet and an element (“datum”) from an infinite set, where the latter can only be compared
for equality. The article considers alternating automata on data trees that can move downward
and rightward, and have one register for storing data. The main results are that nonemptiness over
finite data trees is decidable but not primitive recursive, and that nonemptiness of safety automata
is decidable but not elementary. The proofs use nondeterministic tree automata with faulty
counters. Allowing upward moves, leftward moves, or two registers, each causes undecidability. As
corollaries, decidability is obtained for two data-sensitive fragments of the XPath query language.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]:
Formal Languages—Decision problems; F.1.1 [Computation by Abstract Devices]: Models
of Computation—Automata; H.2.3 [Database Management]: Languages—Query languages

General Terms: Algorithms, Verification

1. INTRODUCTION

Context. Logics and automata for words and trees over finite alphabets are rel-
atively well-understood. Motivated partly by the search for automated reasoning
techniques for XML and the need for formal verification and synthesis of infinite-
state systems, there is an active and broad research programme on logics and au-
tomata for words and trees which have richer structure.
Initial progress made on reasoning about data words and data trees is summarised

in the survey by Segoufin [2006]. A data word is a word over Σ × D, where Σ is
a finite alphabet, and D is an infinite set (“domain”) whose elements (“data”) can
only be compared for equality. Similarly, a data tree is a tree (countable, unranked
and ordered) whose every node is labelled by a pair in Σ×D.
First-order logic for data words was considered by Bojańczyk et al. [2006], and

related automata were studied further by Björklund and Schwentick [2007]. The
logic has variables which range over word positions ({0, . . . , l − 1} or N), a unary
predicate for each letter from the finite alphabet, and a binary predicate x ∼ y
which denotes equality of data labels. FO2(+1, <,∼) denotes such a logic with two
variables and binary predicates x + 1 = y and x < y. Over finite and over infinite
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data words, satisfiability for FO2(+1, <,∼) was shown decidable and at least as
hard as nonemptiness of vector addition automata. Whether the latter problem is
elementary has been open for many years. Extending the logic by one more variable
causes undecidability.

Over data trees, FO2(+1, <,∼) denotes a similar first-order logic with two vari-
ables. The variables range over tree nodes, +1 stands for two predicates “child” and
“next sibling”, and < stands for two predicates “descendant” and “younger sibling”.
Complexity of satisfiability over finite data trees was studied by Bojańczyk et al.
[2009]. For FO2(+1,∼), it was shown to be in 3NExpTime, but for FO2(+1, <,∼),
to be at least as hard as nonemptiness of vector addition tree automata. Decid-
ability of the latter is an open question, and it is equivalent to decidability of
multiplicative exponential linear logic [deGroote et al. 2004]. However, Björklund
and Bojańczyk [2007] showed that FO2(+1, <,∼) over finite data trees of bounded
depth is decidable.

XPath [Clark and DeRose 1999] is a prominent query language for XML docu-
ments [Bray et al. 1998]. The most basic static analysis problem for XPath, with
a variety of applications, is satisfiability in the presence of DTDs. In the two ex-
tensive articles on its complexity [Benedikt et al. 2008; Geerts and Fan 2005], the
only decidability result that allows negation and data (i.e., equality comparisons
between attribute values) does not allow axes which are recursive (such as “self or
descendant”) or between siblings. By representing XML documents as data trees
and translating from XPath to FO2(+1,∼), Bojańczyk et al. [2009] obtained a
decidable fragment with negation, data and all nonrecursive axes. Another frag-
ment of XPath was considered by Hallé et al. [2006], but it lacks concatenation,
recursive axes and sibling axes. A recent advance of Figueira [2009] shows Exp-

Time-completeness for full downward XPath, but with restricted DTDs.

An alternative approach to reasoning about data words is based on automata
with registers [Kaminski and Francez 1994]. A register is used for storing a datum
for later equality comparisons. Nonemptiness of one-way nondeterministic regis-
ter automata over finite data words has relatively low complexity: NP-complete
[Sakamoto and Ikeda 2000] or PSpace-complete [Demri and Lazić 2009], depending
on technical details of their definition. Unfortunately, such automata fail to pro-
vide a satisfactory notion of regular language of finite data words, as they are not
closed under complement [Kaminski and Francez 1994] and their nonuniversality
is undecidable [Neven et al. 2004]. To overcome those limitations, one-way alter-
nating automata with 1 register were proposed by Demri and Lazić [2009]: they
are closed under Boolean operations, their nonemptiness over finite data words is
decidable, and future-time fragments of temporal logics such as LTL or the modal
µ-calculus extended by 1 register are easily translatable to such automata. However,
the nonemptiness problem over finite data words turned out to be not primitive
recursive. Moreover, already with weak acceptance [Muller et al. 1986] and thus
also with Büchi or co-Büchi acceptance, nonemptiness over infinite data words is
undecidable (more precisely, co-r.e.-hard). When the automata are restricted to
those which recognise safety properties [Alpern and Schneider 1987] over infinite
data words, nonemptiness was shown to be ExpSpace-complete, and inclusion to
be decidable but not primitive recursive [Lazić 2006].
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Contribution. This article addresses one of the research directions proposed by
Segoufin [2006]: investigating modal logics and automata with registers on data
trees. Nondeterministic automata with registers which can be nondeterministi-
cally reassigned on finite binary data trees were recently studied by Kaminski and
Tan [2008]: top-down and bottom-up variants recognise the same languages, and
nonemptiness is decidable. However, they inherit the drawbacks of one-way non-
deterministic register automata on data words: lack of closure under complement
and undecidability of nonuniversality.

We consider alternating automata that have 1 register and are forward, i.e., can
move downward and rightward over tree nodes: for short, ATRA1. They are closed
under Boolean operations, and we show that their nonemptiness over finite data
trees is decidable. Moreover, forward fragments of CTL and the modal µ-calculus
with 1 register are easily translatable to ATRA1 [Jurdziński and Lazić 2007]. The
expressiveness of ATRA1 is incomparable to those of FO2(+1,∼) and the automata
of Kaminski and Tan [2008]: for example, the latter two formalisms but not ATRA1

can check whether some two leaves have equal data, and the opposite is true of
checking whether each node’s datum is fresh, i.e., does not appear at any ancestor
node. By lower-bound results for register automata on data words in [Neven et al.
2004; David 2004; Demri and Lazić 2009], we have that ATRA1 nonemptiness is not
primitive recursive, and that it becomes undecidable (more precisely, r.e.-hard) if
any of the following is added: upward moves, leftward moves, or one more register.

Motivated partly by applications to XML streams (cf., e.g., [Olteanu et al. 2004]),
we consider both finite and countably infinite data trees, where horizontal as well as
vertical infinity is allowed. For ATRA1 with the weak acceptance mechanism, the
undecidability result over infinite data words [Demri and Lazić 2009] carries over.
However, we show that, for safety ATRA1, which are closed under intersection and
union but not complement, inclusion is decidable and not primitive recursive. When
a data tree is rejected by an automaton with the safety acceptance mechanism, there
exists an initial segment whose every extension is rejected. We also obtain that
nonemptiness of safety ATRA1 is not elementary. The latter is the most surprising
result in the article: it means that the techniques in the proof that nonemptiness
over infinite data words of safety one-way alternating automata with 1 register is
in ExpSpace cannot be lifted to trees to obtain a 2ExpTime upper bound.

The proofs of decidability involve translating from ATRA1 to forward nondeter-
ministic tree automata with faulty counters. The counters are faulty in the sense
that they are subject to incrementing errors, i.e., can spontaneously increase at any
time. That makes the transition relations downwards compatible with a well-quasi-
ordering (cf. [Finkel and Schnoebelen 2001]), which leads to lower complexities of
some verification problems than with error-free counters.

We define forward XPath to be the largest downward and rightward fragment in
which, whenever two attribute values are compared for equality, one of them must
be at the current node. By translating from forward XPath to ATRA1, we obtain
decidability of satisfiability over finite documents and decidability of satisfiability
for a safety subfragment, both in the presence of DTDs. In contrast to the decidable
fragments of XPath mentioned previously, forward XPath has sibling axes, recursive
axes, concatenation, negation, and data comparisons.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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2. PRELIMINARIES

After fixing notations for trees and data trees, we define two kinds of forward au-
tomata and look at some of their basic properties: alternating automata with 1
register on data trees, and nondeterministic automata with counters with incre-
menting errors on trees.

2.1 Trees and Data Trees

For technical simplicity, we shall work with binary trees instead of unranked ordered
trees. Firstly, as e.g. Björklund and Bojańczyk [2007], we adopt the insignificant
generalisation of considering unranked ordered forests, in which the roots are re-
garded as siblings with no parent. Secondly, the following is a standard and trivial
one-to-one correspondence between unranked ordered forests t and binary trees
bt(t): the nodes of bt(t) are the same as the nodes of t, and the children of each
node n in bt(t) are the first child and next sibling of n in t. The correspondence
works for finite as well as infinite unranked ordered forests. In the latter, there may
be infinite (of type ω) branches or siblinghoods or both.
Without loss of generality, each node will either have both children or be a leaf,

only nonleaf nodes will be labelled, and the root node will be nonleaf. Formally, a
tree is a tuple 〈N,Σ,Λ〉, where:

—N is a prefix-closed subset of {0, 1}∗ such that |N | > 1 and, for each n ∈ N ,
either n · 0 ∈ N and n · 1 ∈ N , or n · 0 /∈ N and n · 1 /∈ N ;

—Σ is a finite alphabet;

—Λ is a mapping from the nonleaf elements of N to Σ.

A data tree is a tree as above together with a mapping ∆ from the nonleaf nodes
to a fixed infinite set D. For a data tree τ , let tree(τ) denote the underlying tree.
For a data tree τ and l > 0, let the l-prefix of τ be the data tree obtained by

restricting τ to nodes of length at most l. For each Σ, the set of all data trees with
alphabet Σ is a complete metric space with the following notion of distance: for
distinct τ and τ ′, let d(τ, τ ′) = 1/l where l is least such that τ and τ ′ have distinct
l-prefixes.

2.2 Alternating Tree Register Automata

Automata. A run of a forward alternating automaton with 1 register on a data
tree will consist of a configuration for each tree node. Each configuration will be
a finite set of threads, which are pairs of an automaton state and a register value,
where the latter is a datum from D.
Following Brzozowski and Leiss [1980], transitions will be specified by positive

Boolean formulae. For a set of states Q, let B+(Q) consist of all formulae given by
the following grammar, where q ∈ Q:

ϕ ::= q(0, ↓) | q(0, 6 ↓) | q(1, ↓) | q(1, 6 ↓) | ⊤ | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ

Given a configuration G at a nonleaf tree node n, for each thread 〈q,D〉 in G, the
automaton transition function provides a formula ϕ in B+(Q), which depends on
q, on the letter labelling n, and on whether D = E, where E is the datum labelling
n. In ϕ, an atom r(d, ↓) requires that thread 〈r, E〉 be in the configuration for node

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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n · d (i.e., the register value is replaced by the datum at n), and an atom r(d, 6 ↓)
requires the same for thread 〈r,D〉 (i.e., the register value is not replaced).
Formally, a forward alternating tree 1-register automaton (shortly, ATRA1) A is

a tuple 〈Σ, Q, qI , F, δ〉 such that:

—Σ is a finite alphabet and Q is a finite set of states;

—qI ∈ Q is the initial state and F ⊆ Q are the final states;

—δ : Q× Σ× {tt,ff } → B+(Q) is a transition function.

Runs and Languages. The semantics of the positive Boolean formulae can be
given by defining when a quadruple R↓

0, R
6 ↓
0 , R

↓
1, R

6 ↓
1 of subsets of Q satisfies a for-

mula ϕ in B+(Q), by structural recursion. The cases for the Boolean atoms and
operators are standard, and for the remaining atoms we have:

R↓
0, R

6 ↓
0 , R

↓
1, R

6 ↓
1 |= r(d, ?)

def
⇔ r ∈ R?

d

We can now define the transition relation of A, which is between configurations
and pairs of configurations, and relative to a letter and a datum. We write G →E

a

H0, H1 iff, for each thread 〈q,D〉 ∈ G, there exist R↓
0, R

6 ↓
0 , R

↓
1, R

6 ↓
1 |= δ(q, a,D = E)

such that, for both d ∈ {0, 1}:

{〈r, E〉 : r ∈ R↓
d} ∪ {〈r,D〉 : r ∈ R 6 ↓

d } ⊆ Hd

A run of A on a data tree 〈N,Σ,Λ,∆〉 is a mapping n 7→ Gn from the nodes to
configurations such that:

—the initial thread is in the configuration at the root, i.e. 〈qI ,∆(ε)〉 ∈ Gε;

—for each nonleaf n, the transition relation is observed, i.e. Gn →
∆(n)
Λ(n) Gn·0, Gn·1.

We say that the run is:

—final iff, for each leaf n, only final states occur in Gn;

—finite iff there exists l such that, for each n of length at least l, Gn is empty.

We may regard A as an automaton on finite data trees, a safety automaton, or
a co-safety automaton. We say that:

—A accepts a finite data tree τ iff A has a final run on τ ;

—A safety-accepts a data tree τ iff A has a final run on τ ;

—A co-safety-accepts a data tree τ iff A has a final finite run on τ .

Observe that, for finite data trees, the three modes of A coincide.
Let Lf in(A) denote the set of all finite data trees with alphabet Σ that A accepts,

and Lsaf (A) (resp., Lcos(A)) denote the set of all data trees with alphabet Σ that
A safety-accepts (resp., co-safety-accepts).

Remark 2.1. The valid initial and successor configurations in runs were defined
in terms of lower bounds on sets. In other words, while running on any data tree,
at each node the automaton is free to introduce arbitrary “junk” threads. However,
final and finite runs were defined in terms of upper bounds on sets, so junk threads
can only make it harder to complete a partial run into an accepting one. This will
play an important role in the proof of decidability in Theorem 3.1.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Boolean Operations. Given an ATRA1 A, let A denote its dual: the automaton
obtained by replacing the set of final states with its complement and replacing, in
each transition formula δ(q, a, p), every ⊤ with ⊥, every ∧ with ∨, and vice versa.

Observe that A = A. Considering A (resp., A) as a weak alternating automaton
whose every state is of even (resp., odd) parity, we have by [Löding and Thomas
2000, Theorem 1] that Lcos(A) is the complement of Lsaf(A). Hence, we also have
that Lsaf (A) is the complement of Lcos(A), and that Lf in(A) is the complement
of Lf in(A).
For each m of fin, saf , cos , given ATRA1 A1 and A2 with alphabet Σ, an

automaton whose language in mode m is Lm(A1)∩L
m(A2) (resp., L

m(A1)∪L
m(A2))

is constructible easily. It suffices to form a disjoint union of A1 and A2, and
add a new initial state qI such that δ(qI , a, tt) = δ(q1I , a, tt) ∧ δ(q2I , a, tt) (resp.,
δ(qI , a, tt) = δ(q1I , a, tt)∨ δ(q2I , a, tt)) for each a ∈ Σ, where q1I and q2I are the initial
states of A1 and A2. (Since the initial thread’s register value is always the root
node’s datum, the formulae δ(qI , a,ff ) are irrelevant.)
We therefore obtain:

Proposition 2.2. (a) ATRA1 on finite data trees are closed under complement,
intersection and union.

(b) Safety ATRA1 and co-safety ATRA1 are dual, and each is closed under inter-
section and union.
In each case, a required automaton is computable in logarithmic space.

Safety Languages. A set L of data trees with alphabet Σ is called safety [Alpern
and Schneider 1987] iff it is closed with respect to the metric defined in Section 2.1,
i.e. for each data tree τ , if for all l > 0 there exists τ ′l ∈ L such that the l-prefixes
of τ and τ ′l are equal, then τ ∈ L. The complements of safety languages, i.e. the
open sets of data trees, are called co-safety.

Proposition 2.3. For each ATRA1 A, we have that Lsaf(A) is safety and
Lcos(A) is co-safety.

Proof. By Proposition 2.2(b), it suffices to show that Lsaf(A) is safety. Suppose
for all l > 0 there exists τ ′l ∈ Lsaf (A) such that the l-prefixes of τ and τ ′l are equal.
For each l > 0, let us fix a final run n 7→ G′

l,n of A on τ ′l . For each 0 ≤ k ≤ l, let
Gl,k denote the restriction of the run n 7→ G′

l,n to nodes n of length k.
Consider the tree consisting of the empty sequence and all sequences Gl,0 · Gl,1 ·

· · · Gl,k for l > 0 and 0 ≤ k ≤ l. Without loss of generality, each register value
in each G′

l,n labels some node of τ ′l on the path from the root to n, so the tree is
finitely branching. By König’s Lemma, it has an infinite path H0 · H1 · · · · . For
each 0 ≤ k, Hk is a mapping from the nodes of τ of length k to configurations of
A. It remains to observe that n 7→ H|n|(n) is a final run of A on τ .

Example 2.4. By recursion on k ≥ 1, we shall define ATRA1 Bk with alphabet
{b1, . . . , bk, ∗}. As well as being interesting examples of ATRA1, the Bk will be used
in the nonelementarity part of the proof of Theorem 4.1.
Let B1 be the automaton depicted in Figure 1. It has three states, where q is

initial, and q′′ is final. We have δ(q, b1, p) = q′(0, 6 ↓) ∧ q′′(1, 6 ↓) and δ(q′, b1, p) =
q′′(0, 6 ↓) ∧ q′′(1, 6 ↓) for both p ∈ {tt ,ff }, and the transition function gives ⊥ in all

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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q

q′

q′′
b1

0, 6 ↓

b1 0, 6 ↓

1, 6 ↓

1, 6 ↓

Fig. 1. Defining B1

other cases. (Recalling that the initial thread’s register value is the root node’s
datum, the formula δ(q, b1,ff ) is in fact irrelevant.) Observe that B1 safety-accepts
exactly data trees that have two nonleaf nodes, the root and its left-hand child,
and both are labelled by letter b1.
For each k ≥ 1, Bk+1 is defined so that it safety-accepts a data tree over

{b1, . . . , bk+1, ∗} iff:

(i) the root node is labelled by bk+1, its left-hand child is labelled by bk+1, and its
right-hand child is a leaf;

(ii) for each node n labelled by bk+1, which is not the root, the left-hand child of
n is labelled by ∗ and its both children are labelled by bk+1, and the right-hand
subtree at n is safety-accepted by Bk;

(iii) whenever a node n, which is not the root, and a descendant n′ of n are labelled
by bk+1, we have that their data labels are distinct, and that the datum at n
equals the datum at some node which is labelled by bk and which is in the right-
hand subtree at n′.

By Proposition 2.2(b), it suffices to define automata for (i)–(iii) separately. Ex-
pressing (i) and (ii) is straightforward, and an automaton for (iii) is depicted in
Figure 2. It has four states, where q0 is initial, and q1 and q2 are final. For all
letters a and Booleans p, we have δ(q0, a, p) = q1(0, 6 ↓), so initially the automa-
ton moves to the left-hand child of the root and changes the state to q1. From
q1, if the current node is labelled by ∗, the automaton moves to both children:
δ(q1, ∗, p) = q1(0, 6 ↓) ∧ q1(1, 6 ↓) for both p. Also from q1, if the current node n is
labelled by bk+1, the automaton both moves to the left-hand child without chang-
ing the state, and moves to the left-hand child with storing the datum at n in the
register and changing the state to q2: δ(q1, bk+1, p) = q1(0, 6 ↓) ∧ q2(0, ↓) for both p.
From q2, the behaviour for ∗ is analogous to that from q1, but if the current node’s
letter is bk+1 and its datum is distinct from the datum in the register, the automa-
ton both moves to the left-hand child without changing the state and moves to the
right-hand child with changing the state to q3: δ(q2, bk+1,ff ) = q2(0, 6 ↓) ∧ q3(1, 6 ↓).
The remainder of Figure 2 is interpreted similarly, and in cases not depicted, the
transition function gives ⊥. Since the mode of acceptance is safety, the automaton
in fact expresses:

(iii’) whenever a node n, which is not the root, and a descendant n′ of n are labelled
by bk+1, we have that their data labels are distinct, and that either the datum
at n equals the datum at some node which is labelled by bk and which is in the
right-hand subtree at n′, or that subtree is infinite.

Let 2 ⇑ 0 = 1, and 2 ⇑ k = 22⇑(k−1) for k ≥ 1. By induction on k ≥ 1, the safety
language of Bk has the following two properties. In particular, in the presence of
(i) and (ii), we have that (iii) and (iii’) are equivalent.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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q0 q1
0, 6 ↓

∗0, 6 ↓ 1, 6 ↓

q2
bk+1

0, 6 ↓

0, ↓

∗0, 6 ↓ 1, 6 ↓

q3
bk+1, 6=

0, 6 ↓

1, 6 ↓

∗

0, 6 ↓ ∗

1, 6 ↓

⊤
bk,=

bk, 6= 0, 6 ↓

Fig. 2. Defining Bk+1

—for every τ safety-accepted by Bk, every downward sequence which is from the
left-hand child of the root and which consists of nodes labelled by bk is of length
at most 2 ⇑ (k − 1), so τ is finite and has at most 2 ⇑ k nodes labelled by bk;

—for some τ safety-accepted by Bk, the nodes labelled by bk other than the root
form a full binary tree of height 2 ⇑ (k − 1) (after removing the nodes labelled
by ∗), so there are 2 ⇑ k nodes labelled by bk, and moreover the data at those
nodes are mutually distinct.

Finally, we observe that for computing Bk, space logarithmic in k suffices.

2.3 Faulty Tree Counter Automata

In Section 3, we shall establish decidability of nonemptiness of forward alternating
tree 1-register automata over finite data trees, by translating them to automata
which have natural-valued counters with increments, decrements and zero-tests.
The translation will eliminate conjunctive branchings, by having configurations of
the former automata (which are finite sets of threads) correspond to pairs of states
and counter valuations, so the latter automata will be only nondeterministic. Also,
data will be abstracted in the translation, so the counter automata will run on finite
trees (without data).
The feature that will make nonemptiness of the counter automata decidable (on

finite trees) is that they will be faulty, in the sense that one or more counters
can erroneously increase at any time. The key insight is that such faults do not
affect the translation’s preservation of nonemptiness: they in fact correspond to
introductions of “junk” threads in runs of ATRA1 (cf. Remark 2.1).
For clarity of the correspondence between the finitary languages of ATRA1 and

the languages of their translations, the counter automata will have ε-transitions.
We now define the counter automata, and show their nonemptiness decidable.

Automata. An incrementing tree counter automaton (shortly, ITCA) C, which is
forward and with ε-transitions, is a tuple 〈Σ, Q, qI , F, k, δ〉 such that:

—Σ is a finite alphabet and Q is a finite set of states;

—qI ∈ Q is the initial state and F ⊆ Q are the final states;

—k ∈ N is the number of counters;

—δ ⊆ (Q × Σ × L × Q × Q) ∪ (Q × {ε} × L × Q) is a transition relation, where
L = {inc, dec, ifz} × {1, . . . , k} is the instruction set.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Runs and Languages. A counter valuation is a mapping from {1, . . . , k} to N.
For counter valuations v and v′, we write:

v ≤ v′ iff v(c) ≤ v′(c) for all c

v
〈inc,c〉
−−−−→√ v′ iff v′ = v[c 7→ v(c) + 1]

v
〈dec,c〉
−−−−→√ v′ iff v′ = v[c 7→ v(c)− 1]

v
〈ifz,c〉
−−−−→√ v′ iff v(c) = 0 and v′ = v

v
l
→ v′ iff v ≤ v√

l
→√ v′√ ≤ v′ for some v√, v′√

A configuration of C is a pair 〈q, v〉, where q is a state and v is a counter valuation.
To define runs, we first specify that a block is a nonempty finite sequence of

configurations obtainable by performing ε-transitions, i.e. for every two adjacent
configurations 〈qi, vi〉 and 〈qi+1, vi+1〉 in a block, there exists l with 〈qi, ε, l, qi+1〉 ∈ δ

and vi
l
→ vi+1.

Now, a run of C on a finite tree 〈N,Σ,Λ〉 is a mapping n 7→ Bn from the nodes
to blocks such that:

—〈qI ,0〉 is the first configuration in Bε;

—for each nonleaf n, there exists l with 〈q,Λ(n), l, r0, r1〉 ∈ δ, v
l
→ w0 and v

l
→ w1,

where 〈q, v〉 is the last configuration in Bn, and 〈r0, w0〉 and 〈r1, w1〉 are the first
configurations in Bn·0 and Bn·1 (respectively).

We regard such a run accepting iff, for each leaf n, the state of the last configu-
ration in Bn is final. The language L(C) is the set of all finite trees with alphabet
Σ on which C has an accepting run.

Decidability of Nonemptiness. We remark that, since nonemptiness of increment-
ing counter automata over words is not primitive recursive [Demri and Lazić 2009,
Theorem 2.9(b)], the same is true of nonemptiness of ITCA.

Theorem 2.5. Nonemptiness of ITCA is decidable.

Proof. Consider an ITCA C = 〈Σ, Q, qI , F, k, δ〉.
For counter valuations v and v′, and an instruction l, we say that v under l yields

v′ lazily and write v
l
→♭ v

′ iff either v
l
→√ v′ (i.e., there are no incrementing errors),

or l is of the form 〈dec, c〉, v(c) = 0 and v′ = v (i.e., 0 is erroneously decremented
to 0). Observe that:

(*) Whenever v ≤ w and w
l
→ w′, there exists v′ such that v

l
→♭ v

′ and v′ ≤ w′.

To reduce the nonemptiness problem for C to a reachability problem, let a level
of C be a finite set of configurations. For levels G and G′ of C, let us write G → G′

iff G′ can be obtained from G as follows:

—each 〈q, v〉 ∈ G with q /∈ F is replaced either by the two configurations that some
firable transition 〈q, a, l, r0, r1〉 yields lazily, or by the one configuration that some
firable transition 〈q, ε, l, r〉 yields lazily;

—each 〈q, v〉 ∈ G with q ∈ F is removed.
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Performing transitions of C lazily ensures that, for every level G, the set {G′ :
G → G′} of all its successors is finite. The latter set is also computable. By the
definition of accepting runs and (*), we have that C is nonempty iff the empty level
is reachable from the initial level {〈qI ,0〉}.
For configurations 〈q, v〉 and 〈r, w〉, let 〈q, v〉 ≤ 〈r, w〉 iff q = r and v ≤ w. Now,

let � be the quasi-ordering obtained by lifting ≤ to levels: G � H iff, for each
〈q, v〉 ∈ G, there exists 〈r, w〉 ∈ H such that 〈q, v〉 ≤ 〈r, w〉. By Higman’s Lemma
[Higman 1952], � is a well-quasi-ordering, i.e., for every infinite sequence G0,G1, . . .,
there exist i < j such that Gi � Gj . Observe that, in the terminology of Finkel and
Schnoebelen [2001], � is strongly downward-compatible with →: whenever G � H
and H → H′, there exists G′ such that G → G′ and G′ � H′. Also, � is decidable.
Since G � ∅ iff G = ∅, we have reduced nonemptiness of C to the subcovering

problem for downward well-structured transition systems with reflexive (which is
weaker than strong) compatibility, computable successor sets and decidable order-
ing. The latter is decidable by [Finkel and Schnoebelen 2001, Theorem 5.5].

3. DECIDABILITY OVER FINITE DATA TREES

Theorem 3.1. Nonemptiness of ATRA1 over finite data trees is decidable and
not primitive recursive.

Proof. By considering data words as data trees (e.g., by using only left-hand
children starting from the root), the lower bound follows from non-primitive recur-
siveness of nonemptiness of one-way co-nondeterministic (i.e., with only conjunctive
branching) automata with 1 register over finite data words [Demri and Lazić 2009,
Theorem 5.2].
We shall establish decidability by reducing to nonemptiness of ITCA, which is

decidable by Theorem 2.5. More specifically, by extending to trees the translation in
the proof of [Demri and Lazić 2009, Theorem 4.4], which is from one-way alternating
automata with 1 register on finite data words to incrementing counter automata
on finite words, we shall show that, for each ATRA1 A, an ITCA CA with the
same alphabet and such that L(CA) = {tree(τ) : τ ∈ Lf in(A)}, is computable (in
polynomial space).
LetA = 〈Σ, Q, qI , F, δ〉. For a configurationG ofA and a datumD, let the bundle

of D in G be the set of all states that are paired with D, i.e. {q : 〈q,D〉 ∈ G}. The
computation of CA with the properties above is based on the following abstraction of
configurations of A by mappings from P(Q) \ {∅} to N. The abstract configuration
G counts, for each nonempty S ⊆ Q, the number of data whose bundles equal S:

G(S) = |{D : {q : 〈q,D〉 ∈ G} = S}|

Thus, two configurations have the same abstraction iff they are equal up to a
bijective renaming of data. For 1 ≤ i ≤ G(S) and q ∈ S, we shall call pairs 〈S, i〉
abstract data and triples 〈q, S, i〉 abstract threads.
For abstract configurations v, w0 and w1, letters a, and sets of states Q= with

either v(Q=) > 0 or Q= = ∅, we shall define transitions v →Q=

a w0, w1, and show
that they are bisimilar to transitions G →E

a H0, H1 such that v = G, w0 = H0,
w1 = H1 and Q= = {q : 〈q, E〉 ∈ G}. The sets Q= can hence be thought of as
abstractions of the data E. The abstract transitions will then give us a notion of
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abstract run of A on a finite tree (without data), where the sets Q= are guessed at
every step. By the bisimilarity, we shall have that:

(I) A has an accepting abstract run on a finite tree t with alphabet Σ iff it has an
accepting run on some data tree τ such that t = tree(τ).

In other words, we shall have reduced the question of whether Lf in(A) is nonempty,
i.e. whether there exists a finite tree with alphabet Σ, a data labelling of its nonleaf
nodes, and an accepting run of A on the resulting data tree, to whether there
exists a finite tree and an accepting abstract run of A on it. It will then remain to
show how to compute (in polynomial space) an ITCA CA which guesses and checks
accepting abstract runs of A, so that:

(II) CA has an accepting run on a finite tree t with alphabet Σ iffA has an accepting
abstract run on t.

To begin delivering our promises, we now define transitions from abstract con-
figurations v for letters a and sets of states Q= with either v(Q=) > 0 or Q= = ∅
to abstract configurations w0 and w1, essentially by reformulating the definition of
concrete transitions (cf. Section 2.2) in terms of abstract threads. For each abstract
datum 〈S, i〉 of v and both d ∈ {0, 1}, the abstract threads whose abstract datum

is 〈S, i〉 will contribute two sets of states to such a transition: R′(S, i)↓d, for which

the automaton’s register is updated, and R′(S, i)6 ↓d , for which the automaton’s reg-
ister is not updated. If Q= is nonempty, we take 〈Q=, 1〉 to represent the datum
abstracted by Q=, i.e. with which the register is updated, so states in the union of
the set R′(Q=, 1)

6 ↓
d and all the sets R′(S, i)↓d will be associated to the same abstract

datum of wd. Formally, let v →Q=

a w0, w1 mean that, for each abstract datum 〈S, i〉

of v, there exist sets of states R′(S, i)↓0, R
′(S, i)6 ↓0 , R

′(S, i)↓1, R
′(S, i)6 ↓1 such that:

(i) for each abstract thread 〈q, S, i〉 of v, there exist

R↓
0, R

6 ↓
0 , R

↓
1, R

6 ↓
1 |= δ(q, a, 〈S, i〉 = 〈Q=, 1〉)

which satisfy R?
d ⊆ R′(S, i)?d for both d ∈ {0, 1} and ? ∈ {↓, 6 ↓};

(ii) for both d ∈ {0, 1} and each nonempty S′ ⊆ Q, we have

|{〈S, i〉 : 〈S, i〉 6= 〈Q=, 1〉 ∧ R′(S, i)6 ↓d = S′}|+

{
1, if R=

d = S′

0, otherwise

}
≤ wd(S

′)

for some R=
d ⊇ R′(Q=, 1)

6 ↓
d ∪

⋃
1≤i≤v(S) R

′(S, i)↓d.

It is straightforward to check the following two-part correspondence between the
abstract transitions just defined and concrete transitions:

(IIIa) Whenever G →E
a H0, H1, we have v →Q=

a w0, w1, where v = G, w0 = H0,
w1 = H1 and Q= = {q : 〈q, E〉 ∈ G}.

(IIIb) Whenever G = v and v →Q=

a w0, w1, there exist E, H0 and H1 such that
G →E

a H0, H1, w0 = H0, w1 = H1 and Q= = {q : 〈q, E〉 ∈ G}.

Let α be a bijection between the abstract data of v and the data that occur in
G, which is bundle preserving (i.e., whenever α〈S, i〉 = D, we have that S is the
bundle of D in G), and if Q= is nonempty then α〈Q=, 1〉 = E.
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—To show (IIIa), for each abstract datum 〈S, i〉 of v and both d ∈ {0, 1}, take

R′(S, i)↓d and R=
d to be the bundle of E in Hd, and take R′(S, i)6 ↓d to be the

bundle of α〈S, i〉 in Hd.

—For (IIIb), if Q= is empty then take E to be an arbitrary datum which does not
occur in G, pick the same quadruples for the threads in G as for the corresponding
(via α) abstract threads of v, and for both d ∈ {0, 1}, obtain Hd from wd by
replacing each set of abstract data 〈S′, 1〉, . . . , 〈S′, wd(S

′)〉 with: the data α〈S, i〉

such that 〈S, i〉 6= 〈Q=, 1〉 and R′(S, i)6 ↓d = S′, the datum E if R=
d = S′, and fresh

further data if the inequality in (ii) is strict.

Composing abstract transitions gives us abstract runs of A. Such a run on a
finite tree 〈N,Σ,Λ〉 is a mapping n 7→ vn from the nodes to abstract configurations

such that, for each nonleaf n, there exists Q= with vn →Q=

Λ(n) vn·0, vn·1, and if n is

the root then qI ∈ Q=. Defining the run to be accepting iff vn(S) = 0 for all leaves
n and all S 6⊆ F , we have (I) above by (IIIa) and (IIIb).
We are now ready to define CA, as an ITCA that performs the steps (1)–(9)

below. States of CA are used for control and for storing a, Q=, root (initially tt),

S, R′↓
0, R

′ 6 ↓
0 , R

′↓
1, R

′ 6 ↓
1 , q, R

↓
0, R

6 ↓
0 , R

↓
1, R

6 ↓
1 , d, ? and R=

d . There are 2
|Q|− 1 counters

in the array c, and 2|Q|4 counters in the array c′. The steps are implemented by
ε-transitions, except for the a-transition in (4). The choices are nondeterministic.
If a choice in (3.2) is impossible, or a check in (2), (3.2) or (5) fails, then CA blocks.
The steps (1)–(9) guess and check an accepting abstract run of A on a finite tree.

The counter array c is used to store abstract configurations, and the counter array
c′ is auxiliary. The initial condition in the definition of abstract runs is checked
in (2), the final condition in (8), and steps (3)–(7) are essentially a reformulation
of the definition of abstract transitions. This particular reformulation is tailored
for a development in the proof of Theorem 4.1, and is based on observing that the
quadruples of sets R′(S, i)↓0, R

′(S, i)6 ↓0 , R
′(S, i)↓1, R

′(S, i)6 ↓1 for abstract data 〈S, i〉 6=
〈Q=, 1〉 do not need to be stored simultaneously, i.e. that it suffices to store numbers
of such identical quadruples, which is done using the counter array c′.

(1) Choose a ∈ Σ, and Q= with either c[Q=] > 0 or Q= = ∅.

(2) If root = tt , then check that qI ∈ Q= and set root := ff .

(3) For each nonempty S ⊆ Q, while c[S] > 0 do:

(3.1) choose R′↓
0, R

′ 6 ↓
0 , R

′↓
1, R

′ 6 ↓
1 ⊆ Q;

(3.2) for each q ∈ S, choose R↓
0, R

6 ↓
0 , R

↓
1, R

6 ↓
1 |= δ(q, a, 〈S, c[S]〉 = 〈Q=, 1〉), and

check that R?
d ⊆ R′?

d for both d ∈ {0, 1} and ? ∈ {↓, 6 ↓};

(3.3) decrement c[S], and if 〈S, c[S]〉 = 〈Q=, 0〉, then choose R=
d ⊇ R′↓

d ∪ R′ 6 ↓
d

for both d ∈ {0, 1}, else increment c′[R′↓
0, R

′ 6 ↓
0 , R

′↓
1, R

′ 6 ↓
1 ].

(4) Perform an a-transition, forking with d := 0 and d := 1.

(5) Check that R=
d ⊇

⋃
{R′↓

d : c′[R′↓
0, R

′ 6 ↓
0 , R

′↓
1, R

′ 6 ↓
1 ] > 0}, and increment c[R=

d ].

(6) Transfer each c′[R′↓
0, R

′ 6 ↓
0 , R

′↓
1, R

′ 6 ↓
1 ] with nonempty R′ 6 ↓

d to c[R′ 6 ↓
d ].

(7) Reset (i.e. decrement until 0) each c′[R′↓
0, R

′ 6 ↓
0 , R

′↓
1, R

′ 6 ↓
1 ] with empty R′ 6 ↓

d .

(8) If c[S] = 0 whenever S 6⊆ F , then pass through a final state.

(9) Repeat from (1).
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Since CA is an ITCA, its runs may contain arbitrary errors that increase one
or more counters. Nevertheless, between executions of steps (3)–(7) by CA and
abstract transitions of A, we have the following two-part correspondence. It shows
that the possibly erroneous executions of (3)–(7) match the abstract transitions with
the slack allowed by their definition, which in turn match the concrete transitions
with their possible introductions of junk threads (cf. (IIIa), (IIIb) and Remark 2.1).

(IVa) Whenever v →Q=

a w0, w1, we have that CA can perform steps (3)–(7) be-
ginning with any configuration such that each c[S] has value v(S) and each

c′[R′↓
0, R

′ 6 ↓
0 , R

′↓
1, R

′ 6 ↓
1 ] has value 0, so that for both forks d ∈ {0, 1} in (4),

the ending configuration is such that each c[S] has value wd(S) and each

c′[R′↓
0, R

′ 6 ↓
0 , R

′↓
1, R

′ 6 ↓
1 ] has value 0.

(IVb) Whenever CA can perform steps (3)–(7) beginning with a configuration such
that a and Q= are as in (1) and each c[S] has value v(S), so that for both
forks d ∈ {0, 1} in (4), the ending configuration is such that each c[S] has
value wd(S), we have v →Q=

a w0, w1.

—In proving (IVa), we can choose where incrementing errors occur. For each iter-
ation of (3.1)–(3.3), let the quadruple chosen in (3.1) be

R′(S, c[S])↓0, R
′(S, c[S])6 ↓0 , R

′(S, c[S])↓1, R
′(S, c[S])6 ↓1

so that (3.2) can succeed by (i) in the definition of abstract transitions. It remains
to match by incrementing errors, say at the end of (7), any differences between
the two sides of the inequalities in (ii).

—To obtain (IVb), let R′(S, i)↓0, R
′(S, i)6 ↓0 , R

′(S, i)↓1, R
′(S, i)6 ↓1 for each abstract da-

tum 〈S, i〉 of v be the quadruple chosen in the last performance of (3.1) with
i = c[S] (due to incrementing errors, there may be more than one). Step (3.2)

ensures that (i) is satisfied. Since at the end of (3), each c′[R′↓
0, R

′ 6 ↓
0 , R

′↓
1, R

′ 6 ↓
1 ]

has value at least

|{〈S, i〉 : 〈S, i〉 6= 〈Q=, 1〉 ∧ ∀d, ?(R′(S, i)?d = R′?
d)}|

steps (5) and (6) ensure that (ii) is satisfied.

Now, we have (II) above. The ‘if’ direction follows by (IVa), and the ‘only if’
direction by (IVb) once we observe that, without loss of generality, we can consider
only runs of CA that do not contain incrementing errors on the array c outside of
steps (3)–(7) except before the first performance of (1).
To conclude that polynomial space suffices for computing CA, we observe that

each of its state variables is either from a fixed finite set, or an element of Σ,
or an element or subset of Q, and that deciding satisfaction of transition formulae
δ(q, a, 〈S, c[S]〉 = 〈Q=, 1〉) in step (3.2) amounts to evaluating Boolean formulae.

We remark that, in the opposite direction to the translation in the proof of
Theorem 3.1, by extending the proof of [Demri and Lazić 2009, Theorem 5.2] to
trees, for each ITCA C, an ATRA1 AC is computable in logarithmic space such
that Lf in(AC) consists of encodings of accepting runs of C. Moreover, similarly
as on words, the two translations can be extended to infinite trees, where ATRA1

are equipped with weak acceptance and ITCA with Büchi acceptance. Instead of
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decidable and not primitive recursive as on finite trees, nonemptiness for those two
classes of automata can then be shown co-r.e.-complete.

4. SAFETY AUTOMATA

We now show decidability of nonemptiness of forward alternating tree 1-register
automata with safety acceptance over finite or infinite data trees. More precisely,
since the class of safety ATRA1 is not closed under complement, but is closed
under intersection and union (cf. Proposition 2.2(b)), we show decidability of the
inclusion problem, which implies decidability of nonemptiness of Boolean combi-
nations of safety ATRA1. However, already for the subproblems of nonemptiness
and nonuniversality, we obtain non-elementary and non-primitive recursive lower
bounds (respectively).

Theorem 4.1. For safety ATRA1, inclusion is decidable, nonemptiness is not
elementary, and nonuniversality is not primitive recursive.

Proof. Showing that the inclusion problem is decidable will involve extending:

—the proof of Proposition 2.2 to obtain an intersection of a safety and a co-safety
ATRA1, which can be seen as a weak parity ATRA1 with 2 priorities;

—the proof of Theorem 3.1 to obtain an ITCA with a more powerful set of instruc-
tions and no cycles of ε-transitions, which can also be seen as having weak parity
acceptance with 2 priorities;

—the proof of Theorem 2.5 to obtain decidability of nonemptiness of such ITCA.

To maintain focus, we shall avoid introducing the extended notions in general, but
concentrate on what is necessary for this part of the proof.
Suppose A1 = 〈Σ, Q1, q

1
I , F1, δ1〉 and A2 = 〈Σ, Q2, q

2
I , F2, δ2〉 are ATRA1, where

we need to determine whether Lsaf(A1) is a subset of Lsaf (A2). By the proof of
Proposition 2.2(b), that amounts to emptiness of the intersection of Lsaf (A1) and
Lcos(A2), where A2 = 〈Σ, Q2, q

2
I , F2, δ2〉 is the dual automaton to A2. Assuming

that Q1 and Q2 are disjoint, and do not contain q∩I , let

A∩ = 〈Σ, {q∩I } ∪Q1 ∪Q2, q
∩
I , F1 ∪ F2, δ∩〉

be the automaton for the intersection of A1 and A2:

δ∩(q, a, p) =





δ(q1I , a, p) ∧ δ(q2I , a, p), if q = q∩I
δ1(q, a, p), if q ∈ Q1

δ2(q, a, p), if q ∈ Q2

We then have:

(*) A data tree τ with alphabet Σ is safety-accepted by A1 and co-safety-accepted
by A2 iff A∩ has a run on τ which is final and Q2-finite, i.e. there exists l such
that the configuration at each node of length at least l contains no threads with
states from Q2.

Before proceeding, let incrementing tree counter automata with nondeterminis-
tic transfers (shortly, ITCANT ) be defined as ITCA (cf. Section 2.3), except that
〈ifz, c〉 instructions are replaced by 〈transf, c, C〉 for counters c and sets of coun-
ters C. Such an instruction is equivalent to a loop which executes while c is nonzero,
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and in each iteration, decrements c and increments some counter in C. However, in
presence of incrementing errors, the loop may not terminate, whereas 〈transf, c, C〉
instructions are considered atomic. The effect of 〈transf, c, C〉 is therefore to trans-
fer the value of c to the counters in C, among which it is split nondeterministically.
In particular, 〈ifz, c〉 instructions can be reintroduced as 〈transf, c, ∅〉.
Now, steps (1)–(9) in the proof of Theorem 3.1 can be implemented by an IT-

CANT which uses nondeterministic transfers instead of the loops in (3), (6) and (7),
and whose transition relation therefore contains no cycles of ε-transitions. More
specifically, each reset in (7) can be implemented as a transfer to a new auxil-
iary counter c′′, (6) already consists of transfers to single counters, and (3) can be
replaced by the following two steps:

(3a) If Q= 6= ∅, then decrement c[Q=] and choose R=
0 , R

=
1 ⊆ Q such that, for each

q ∈ Q=, there exist R↓
0, R

6 ↓
0 , R

↓
1, R

6 ↓
1 |= δ(q, a, tt) with R=

d ⊇ R↓
d ∪R 6 ↓

d for both
d ∈ {0, 1}.

(3b) Transfer each c[S] nondeterministically to the set of all c′[R′↓
0, R

′ 6 ↓
0 , R

′↓
1, R

′ 6 ↓
1 ]

such that, for each q ∈ S, there exist R↓
0, R

6 ↓
0 , R

↓
1, R

6 ↓
1 |= δ(q, a,ff ) with R?

d ⊆

R′?
d for both d ∈ {0, 1} and ? ∈ {↓, 6 ↓}.

Let C∩ be such an ITCANT for A∩, which in addition performs the following step
between (7) and (8), where prop is a state variable, initially ff :

(7 1
2 ) If c[S] = 0 whenever S ∩Q2 6= ∅, then set prop := tt .

As in the proof of Theorem 3.1, we have that C∩ is computable from A∩, and
therefore from A1 and A2, in polynomial space. Also, A∩ satisfies (IIIa) and (IIIb),
and A∩ and C∩ satisfy (IVa) and (IVb). Recalling that C∩ contains no cycles of
ε-transitions, we infer the following from (*) above, where the notion of transitions
between levels of C∩ is as in the proof of Theorem 2.5, and P denotes the set of all
states of C∩ in which prop has value tt :

(**) Lsaf (A1) is a subset of Lsaf (A2) iff there does not exist an infinite sequence
of transitions G0 → G1 → · · · which is from the initial level of C∩ and such
that some Gi contains only states from P .

To conclude decidability of inclusion, we show that, given an ITCANT C∩ and
a set P of its states, existence of an infinite sequence of transitions as in (**) is
decidable. For a set G of levels of C∩, we write ↑G to denote its upward closure
with respect to �: the set of all H for which there exists G ∈ G with G � H. We
say that G is upwards closed iff G = ↑G, and we say that H is a basis for G iff
G = ↑H. As in the proof of Theorem 2.5, we have that successor sets with re-
spect to → are computable, � is a well-quasi-ordering, � is strongly (in particular,
reflexively) downward-compatible with →, and � is decidable. Hence, by [Finkel
and Schnoebelen 2001, Proposition 5.4], a finite basis GR of the upward closure of
the set of all levels reachable from the initial level is computable. By the strong
downward compatibility, the set of all levels from which there exists an infinite se-
quence of transitions is downwards closed, so its complement is upwards closed. We
claim that a finite basis GT of the latter set is computable. With that assumption,
since a finite basis GN of the set of all levels that contain some state not from P is
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certainly computable, we are done because there does not exist an infinite sequence
of transitions as in (**) iff ↑GR is a subset of the union of ↑GT and ↑GN .
It remains to establish the claim. For a finite set G′ of levels of C∩, let

K(G′) = 1 + max
G′∈G′

max
〈q,v〉∈G′

∑

c∈{1,...,k}
v(c)

where k is the number of counters of C∩. Let also Pred∀(G′) be the upwards-closed
set consisting of all G such that, whenever G → G′, we have G′ ∈ ↑G′. Observe
that, whenever G ∈ Pred∀(G′), there exists G† ∈ Pred∀(G′) such that G† � G and,
for each 〈q, v〉 ∈ G† and c ∈ {1, . . . , k}, v(c) ≤ K(G′). Hence, a finite basis of
Pred∀(G′) is computable, so the following is an effective procedure:

(i) Begin with GT := ∅.

(ii) Let H be a finite basis of Pred∀(GT ).

(iii) If H 6⊆ ↑GT , then set GT := GT ∪H and repeat from (ii), else terminate.

Since � is a well-quasi-ordering, the procedure terminates and computes a basis of
the set of all levels from which every sequence of transitions is finite, as required.
We shall establish that nonemptiness of safety ATRA1 is not elementary by a two-

stage reduction, which separates dealing with the inability of one-way alternating
1-register automata to detect incrementing errors in encodings of computations of
counter machines, from ensuring acceptance only of encodings of computations in
which counters are bounded by a tower of exponentiations. More precisely, we shall
use the following problem as intermediary. The notation 2 ⇑ m is as in Example 2.4.

(***) Given a deterministic counter machine C and m ≥ 1 in unary, does C have
a computation which possibly contains incrementing errors, in which every
counter value is at most 2 ⇑ m, and which is either halting or infinite?

Such a machine is a tuple 〈Q, qI , qH , k, δ〉 where: Q is a finite set of states, qI is
the initial state, qH is the halting state, k ∈ N is the number of counters, and
δ : Q \ {qH} → {1, . . . , k} × (Q ∪ Q2) is a transition function. Thus, from a
state q 6= qH , either δ(q) is of the form 〈c, q′〉, which means that the machine
increments c and goes to q′, or δ(q) is of the form 〈c, q′, q′′〉, which means that, if
c is zero, then the machine goes to q′, else it decrements c and goes to q′′. More
precisely, a configuration is a state together with a counter valuation, and we write
〈q, v〉 → 〈q′, v′〉 iff, for some v√ ≥ v and v′√ ≤ v′,

—either δ(q) = 〈c, q′〉 and v′√ = v√[c 7→ v√(c) + 1],

—or δ(q) = 〈c, q′, q′′〉, v√(c) = 0 and v′√ = v√,

—or δ(q) = 〈c, q′′, q′〉 and v′√ = v√[c 7→ v√(c)− 1].

We say that the transition is error-free iff the above holds with v√ = v and v′√ = v′.

A computation is a sequence 〈q0, v0〉 → 〈q1, v1〉 → · · · such that q0 = qI and v = 0.
To show that (***) is not elementary, we reduce from the problem of whether a

deterministic 2-counter machine of size m has an error-free halting computation of
length at most 2 ⇑ m. Given such a machine C whose counters are c1 and c2, let
Ĉ be a deterministic machine with counters c1, c2, c1, c2, c

†, c′, c′′ and c′′′, which
performs the following and then halts:
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c′ := m; inc(ci);
while c′ > 0
{ dec(c′); while ci > 0 { dec(ci); inc(c

′′) }; inc(ci);
while c′′ > 0
{ dec(c′′); while ci > 0 { dec(ci); inc(c

′′′) };
while c′′′ > 0 { dec(c′′′); inc(ci); inc(ci) } } }

Fig. 3. Computing 2 ⇑ m

(I) For both i ∈ {1, 2}, set ci to 2 ⇑ m by executing the pseudo-code in Figure 3.
The loops over c′, c′′ and c′′′ implement ci := 2 ⇑ c′, ci := 2c

′′

and ci := 2×c′′′

(respectively).

(II) Simulate C using c1 and c2, and after each step:

—increment c†;
—if ci has been incremented, then decrement ci;

—if ci has been decremented, then increment ci;

—if C has halted, then go to (III).

(III) For both i ∈ {1, 2}, transfer ci to ci.

Observe that Ĉ is computable in space logarithmic in m. If C has an error-free
halting computation of length at most 2 ⇑ m, running Ĉ without errors indeed halts
and does not involve counter values greater than 2 ⇑ m. For the converse, suppose
Ĉ has a computation which possibly contains incrementing errors, in which every
counter value is at most 2 ⇑ m, and which is either halting or infinite. By the
construction of Ĉ and the boundedness of counter values, the computation cannot
be infinite, so it is halting. Since c1 and c2 were set to 2 ⇑ m by stage (I), and since
stage (III) terminated, the halting computation of C in stage (II) must have been
error-free and it is certainly of length at most 2 ⇑ m.
To reduce from (***) to nonemptiness of safety ATRA1, consider a deterministic

counter machine C = 〈Q, qI , qH , k, δ〉 and m ≥ 1. We can assume that q′ 6= q′′

whenever δ(q) = 〈c, q′, q′′〉. By the proof of [Demri and Lazić 2009, Theorem 5.2],
which uses essentially the same encoding of computations of counter machines into
data words as in the proof of [Bojańczyk et al. 2006, Theorem 14], we have that
an ATRA1 AC with alphabet Q is computable in space logarithmic in |C|, such
that it safety-accepts a data tree τ iff the left-most path in τ (i.e., the sequence of
nodes obtained by starting from the root and repeatedly taking the left-hand child)
satisfies the following:

—the letter of the first node is qI , and either the letter of the last nonleaf node is
qH or the sequence is infinite;

—for all letters q and q′ of two consecutive nodes n and n′ (respectively),

—either δ(q) is of the form 〈c, q′〉 and we say that n is c-decrementing,

—or δ(q) is of the form 〈c, q′, q′′〉 and we say that n is c-zero-testing,

—or δ(q) is of the form 〈c, q′′, q′〉 and we say that n is c-decrementing;

—for each counter c, no two c-incrementing nodes are labelled by the same datum,
no two c-decrementing nodes are labelled by the same datum, and whenever a c-
incrementing node n is followed by a c-zero-testing node n′, then a c-decrementing
node with the same datum as n must occur between n and n′.
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Hence, by taking the left-most paths in data trees that are safety-accepted by AC
and erasing data, we obtain exactly the sequences of states of halting or infinite
computations of C which possibly contain incrementing errors. Assuming that b1,
. . . , bm, ∗ are not in Q, to restrict further to computations of C in which every
counter value is at most 2 ⇑ m, it suffices to strengthen AC to obtain a safety
ATRA1 A2⇑m

C with alphabet Q ∪ {b1, . . . , bm, ∗} which requires that:

—whenever a node n in the left-most path is c-incrementing, then the automaton
Bm from Example 2.4 safety-accepts the right-hand subtree at n;

—whenever a node n in the left-most path is c-incrementing, n′ is either n or
a subsequent c-incrementing node, and no c-decrementing node with the same
datum as n occurs between n and n′, then the right-hand subtree at n′ contains
a node with letter bm and the same datum as n.

Finally, that nonuniversality of safety ATRA1 is not primitive recursive follows
from the same lower bound for nonuniversality of safety one-way alternating au-
tomata with 1 register over data words [Lazić 2006].

5. XPATH SATISFIABILITY

In this section, we first describe how XML documents and DTDs can be represented
by data trees and tree automata. We then introduce a forward fragment of XPath,
and a safety subfragment. By translating XPath queries to forward alternating
tree 1-register automata, and applying results from Sections 3 and 4, we obtain
decidability of satisfiablity for forward XPath on finite documents and for safety
forward XPath on finite or infinite documents.

XML Trees. Suppose Σ is a finite set of element types, Σ′ is a finite set of
attribute names, and Σ and Σ′ are disjoint. An XML document [Bray et al. 1998]
is an unranked ordered tree whose every node n is labelled by some type(n) ∈ Σ
and by a datum for each element of some atts(n) ⊆ Σ′. Motivated by processing
of XML streams (cf., e.g., [Olteanu et al. 2004]), we do not restrict our attention
to finite XML documents.
Concerning the data in XML documents, we shall consider only the equality pred-

icate between data labels. Equality comparisons with constants are straightforward
to encode using additional attribute names. Therefore, similarly as Bojańczyk et al.
[2009], we represent an XML document by a data tree with alphabet Σ∪Σ′, where
each node n is represented by a sequence of 1 + |atts(n)| nodes: the first node
is labelled by type(n), the labels of the following nodes enumerate atts(n), the
children of the last node represent the first child and the next sibling of n (if any),
and for each preceding node in the sequence, its left-hand child is the next node
and its right-hand child is a leaf. We say that such a data tree is an XML tree.
Following Benedikt et al. [2008] and Bojańczyk et al. [2009], we assume without

loss of generality that document type definitions (DTDs) [Bray et al. 1998] are
given as regular tree languages. More precisely, we consider a DTD to be a forward
nondeterministic tree automaton T with alphabet Σ∪Σ′ and without ε-transitions.
Such automata can be defined by omitting counters and ε-transitions from ITCA
(cf. Section 2.3). Infinite trees are processed in safety mode, i.e. the condition that
an infinite run of T has to satisfy to be accepting is the same as for finite runs: for
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τ, n, n′ |= ε
def
⇔ n = n′

τ, n, n′ |= {▽,△,⊲,⊳}
def
⇔ n{▽̂, △̂, ⊲̂, ⊳̂}n′

τ, n, n′ |= {▽∗,△∗,⊲∗,⊳∗}
def
⇔ n{▽̂∗, △̂

∗

, ⊲̂
∗

, ⊳̂
∗

}n′

τ, n, n′ |= p1/p2
def
⇔ there exists n′′ such that

τ, n, n′′ |= p1 and τ, n′′, n′ |= p2

τ, n, n′ |= p1 ∪ p2
def
⇔ τ, n, n′ |= p1 or τ, n, n′ |= p2

τ, n, n′ |= p[u]
def
⇔ τ, n, n′ |= p and τ, n′ |= u

τ, n |= p?
def
⇔ there exists n′ such that τ, n, n′ |= p

τ, n |= a
def
⇔ Λ(n) = a

τ, n |= p1/@a′1 ⊲⊳ p2/@a′2
def
⇔ there exist n1, k1, n2, k2 such that

τ, n, n1 |= p1, k1 ≤ |atts(n1)|,Λ(n1 · 0k1) = a′1,

τ, n, n2 |= p2, k2 ≤ |atts(n2)|,Λ(n2 · 0k2) = a′2,

∆(n1 · 0k1) ⊲⊳ ∆(n2 · 0k2)

Fig. 4. Semantics of Queries and Qualifiers

each leaf n, the state of the configuration at n is final. An XML tree τ as above is
regarded to satisfy T iff T accepts tree(τ).

Fragments of XPath. The fragment of XPath [Clark and DeRose 1999] below
contains all operators commonly found in practice and was considered in [Benedikt
et al. 2008; Geerts and Fan 2005]. The grammars of queries p and qualifiers u are
mutually recursive. The element types a and attribute names a′ range over Σ and
Σ′, respectively.

p ::= ε |▽ |△ |⊲ |⊳ |▽∗ |△∗ |⊲∗ |⊳∗ | p/p | p ∪ p | p[u]

u ::= ¬u |u ∧ u | p? | a | p/@a′ = p/@a′ | p/@a′ 6= p/@a′

We say that a query or qualifier is forward iff:

—it does not contain △, ⊳, △∗ or ⊳∗;

—for every subqualifier of the form p1/@a′1 ⊲⊳ p2/@a′2, we have that p1 = ε and
that p2 is of the form ε or ▽/p′2 or ⊲/p′2.

A safety (resp., co-safety) query or qualifier is one in which each occurence of ▽,
▽

∗ or ⊲
∗ is under an odd (resp., even) number of negations. Since infinite XML

documents may contain infinite siblinghoods, ▽, ▽∗ and ⊲
∗ are exactly the queries

that may require existence of a node which can be unboundedly far.
The semantics of queries and qualifiers is standard (cf., e.g., [Geerts and Fan

2005]). We write the satisfaction relations as τ, n, n′ |= p and τ, n |= u, where τ is
an XML tree 〈N,Σ∪Σ′,Λ,∆〉, and n and n′ are Σ-labelled nodes. The definition is
recursive over the grammars of queries and qualifiers, and can be found in Figure 4.
We omit the Boolean cases, and we write ▽̂, △̂, ⊲̂ and ⊳̂ for the relations between
Σ-labelled nodes that correspond to the child, parent, next-sibling and previous-
sibling relations (respectively) in the document that τ represents.
We say that τ satisfies p iff τ, ε, n′ |= p for some n′.
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Example 5.1. Suppose a′1, a
′
2 ∈ Σ′. The forward query pa′

1
,a′

2
= ⊲

∗/▽∗[ε/@a′1 =

(▽/▽∗)/@a′2] is satisfied by Σ-labelled nodes n0 and n1 iff n0⊲̂
∗
▽̂

∗n1 and there
exists n2 such that n1▽̂

+n2 and the value of attribute a′1 at n1 is equal to the value
of attribute a′2 at n2. Hence, the safety forward query ε[¬(pa′

1
,a′

2
?)] is satisfied by

an XML tree over Σ and Σ′ (whose root may have younger siblings) iff the value of
a′1 at a node is never equal to the value of a′2 at a descendant.

Suppose a query p and a DTD T are over the same element types and attribute
names. We say that p is satisfiable relative to T iff there exists an XML tree which
satisfies p and T . Finitary satisfiability restricts to finite XML trees.

Complexity of Satisfiability. Let us regard a forward qualifier u over element
types Σ and attribute names Σ′ as finitely equivalent to an ATRA1 A with alphabet
Σ ∪ Σ′ iff, for every finite XML tree τ over Σ and Σ′, and Σ-labelled node n, we
have τ, n |= u iff A accepts the subtree of τ rooted at n. For safety (resp., co-safety)
u, safety (resp., co-safety) equivalence is defined by also considering infinite XML
trees and safety (resp., co-safety) acceptance by A.
To formalise the corresponding notions for queries, we introduce the following

kind of automata “with holes”. Query automata are defined in the same way as
ATRA1 (cf. Section 2.2), except that:

—transition formulae may contain a new atomic formula H;

—no path in the successor graph from the initial state to a state q such that H

occurs in some transition formula at q may contain an update edge.

The vertices of the successor graph are all states, there is an edge from q to r iff
r(0, ↓), r(0, 6 ↓), r(1, ↓) or r(1, 6 ↓) occurs in some transition formula at q, and such
an edge is called update iff r(0, ↓) or r(1, ↓) occurs in some transition formula at q.
To define a run of a query automaton on a data tree τ with the same alphabet

and with respect to a set of nodes N ′, we augment the definition of runs of ATRA1

so that whenever a transition formula is evaluated at a node n, each occurence of
H is treated as ⊤ if n ∈ N ′, and as ⊥ if n /∈ N ′. Acceptance of a finite data tree,
safety acceptance, and co-safety acceptance, all with respect to a set of nodes for
interpreting H, are then defined as for ATRA1.
For a query automaton A and an ATRA1 or query automaton A′ with the same

alphabet and initial states qI and q′I (respectively), we define the substitution of A′

for the hole in A by forming a disjoint union of A and A′, taking qI as the initial
state, and substituting each occurence of H in each transition formula δ(q, a, b) of A
by δ(q′I , a, b). Observe that the unreachability in A of H from qI by a path with an
update edge means that the composite automaton transmits initial register values
to A′ without changes.
Now, we say that a forward query p over element types Σ and attribute names

Σ′ is finitely equivalent to a query automaton B with alphabet Σ∪Σ′ iff, for every
finite XML tree τ over Σ and Σ′, Σ-labelled node n, and set N ′ of Σ-labelled
nodes, we have τ, n, n′ |= p for some n′ ∈ N ′ iff B accepts the subtree of τ rooted
at n with respect to N ′. For safety (resp., co-safety) p, safety (resp., co-safety)
equivalence is defined by also considering infinite XML trees and safety (resp., co-
safety) acceptance by B.
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q0 q1
0, 6 ↓

Σ′ \ {a′1} 0, 6 ↓

q2
a′1 0, ↓

Σ′

0, 6 ↓
HΣ

q3
Σ 0, 6 ↓

Σ′ 0, 6 ↓

Σ′1, 6 ↓

Σ

1, 6 ↓

q′0 q′1
0, 6 ↓

Σ′ \ {a′2} 0, 6 ↓

⊤
a′2,=

Fig. 5. Defining AΣ,Σ′

ε/@a′

1
=(▽/p)/@a′

2

Theorem 5.2. For each forward query p (resp., forward qualifier u) over Σ and
Σ′, a finitely equivalent query automaton BΣ,Σ′

p (resp., ATRA1 AΣ,Σ′

u ) is computable

in logarithmic space. If p (resp., u) is safety, then it is safety equivalent to BΣ,Σ′

p

(resp., AΣ,Σ′

u ).

Proof. The translations are defined recursively over the grammars of queries
and qualifiers:

—BΣ,Σ′

ε , BΣ,Σ′

▽ , BΣ,Σ′

⊲ , BΣ,Σ′

▽∗ , BΣ,Σ′

⊲∗ and AΣ,Σ′

a are straightforward to define;

—BΣ,Σ′

p∪p′ is formed from BΣ,Σ′

p and BΣ,Σ′

p′ by disjunctive disjoint union, AΣ,Σ′

¬u is

formed from AΣ,Σ′

u by dualisation, and AΣ,Σ′

u∧u′ is formed from AΣ,Σ′

u and AΣ,Σ′

u′

by conjunctive disjoint union (cf. the proof of Proposition 2.2);

—to obtain BΣ,Σ′

p/p′ , we substitute BΣ,Σ′

p′ for the hole in BΣ,Σ′

p ;

—to obtain BΣ,Σ′

p[u] , we substitute a conjunctive disjoint union of BΣ,Σ′

ε and AΣ,Σ′

u

for the hole in BΣ,Σ′

p ;

—AΣ,Σ′

p? is formed from BΣ,Σ′

p by substituting ⊤ for H;

—an automaton for ε/@a′1 = (▽/p)/@a′2 is formed by substituting the second
automaton depicted in Figure 5 (cf. Example 2.4 for depicting conventions) for
the hole in BΣ,Σ′

p , and substituting the result for the hole in the first automaton
depicted in Figure 5;

—the remaining cases in the grammar of qualifiers are handled similarly.

The required equivalences, as well as that if p (resp., u) is co-safety then it is co-
safety equivalent to BΣ,Σ′

p (resp., AΣ,Σ′

u ), are shown simultaneously by induction.

Theorem 5.3. (a) For forward XPath and arbitrary DTDs, satisfiability over
finite XML trees is decidable.
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(b) For safety forward XPath and arbitrary DTDs, satisfiability over finite or infi-
nite XML trees is decidable.

Proof. Given a forward query p and a DTD T over element types Σ and at-

tribute names Σ′, by Theorem 5.2, an ATRA1 A
Σ,Σ′

p? is computable, which is finitely

equivalent to the qualifier p?. We can then compute an ITCA C(AΣ,Σ′

p? ) as in the
proof of Theorem 3.1, which recognises exactly trees obtained by erasing data from
finite XML trees that satisfy p. To conclude (a), we observe that ITCA are closed
(in logarithmic space) under intersections with forward nondeterministic tree au-
tomata, and apply Theorem 2.5.

For (b), supposing that p is safety, by Theorem 5.2 again, an ATRA1 AΣ,Σ′

p? is
computable, which is safety equivalent to the qualifier p?. Applying the proof of

Theorem 4.1 to AΣ,Σ′

p? and an ATRA1 whose safety language is empty, we can com-

pute an ITCANT C′(AΣ,Σ′

p? ), which contains no cycles of ε-transitions and recognises
exactly trees obtained by erasing data from finite or infinite XML trees that satisfy
p. It remains to observe that ITCANT with no cycles of ε-transitions are closed
(in logarithmic space) under intersections with forward nondeterministic tree au-
tomata, and to recall that their nonemptiness was shown decidable also in the proof
of Theorem 4.1.

We remark that, by the proof of [Demri and Lazić 2009, Theorem 5.2], finitary
satisfiability for forward XPath with DTDs is not primitive recursive, even without
sibling axes (i.e., ⊲ and ⊲

∗).

6. CONCLUDING REMARKS

It would be interesting to know more about the complexities of nonemptiness for
safety ATRA1 and satisfiability for safety forward XPath with DTDs. By Theo-
rem 4.1, the former is decidable and not elementary, and by Theorem 5.3(b), the
latter is decidable.
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