
CAIS: Collaborative Asynchronous Inspection of Software *

Vahid Mashayekhi

Chris Feulner

John Riedl

Department Of Computer Science

University of Minnesota

{vmash,feulner,riedl@cs. umn.edu}

Abstract

Many software engineering tasks have a synchronous

component that requires the participants to assemble

together at the same time and place. This approach is

expensive in terms of traveling, scheduling and human

resources. Existing computer tools mitigate these con-

straints by adding structure to the meeting, providing

on-line document support, and distributing the partic-

ipants over geographic boundaries. The constraint re-

mains, however, that all participants participate at the

same time

We propose relaxing the time constraint in software

engineering tasks to resolve issuee non-concurrently, in

effect reducing (and in some cases eliminating) the need

for the synchronous meeting. We hypothesize that sup-

port for aaynchrony will enable software engineering

teams to work together as effectively in different times

as in same time.

We have chosen software inspection as our candidate

software engineering task because it is well-understood,

highly-structured, and widely-practiced. We have de-

signed and developed a Collaborative Asynchronous In-

spection of Software (CAIS) meeting prototype that

supports the meeting part of inspection. CAIS allows

participants to effectively “meet” even when separated

by time zones and working schedules. We have con-

ducted a pilot study comparing the manual and CAIS

meetings and present our results and lessons learned.

Keywords: Concurrent Software Engineering, Asyn-

chrony, Software Inspection, Computer-Supported Co-

operative Work (CSCW), Collaboration, Notification.

*We gratefully acknowledge the support of the National Sci-

ence Foundation, gmnt number NSF/IRI – 9208546, and the

research funds of the Graduate School of the University of

Minnesota.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantaqe, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
MaChinQry. To copy otherwise, or to republish, requires a fee
and/ors ecific permission.
SIGSO# ’94- 12/94 New Orleans LA USA
@ 1994 ACM 0-89791-691 -3/94/0012..$3.50

1 Introduction

Humans solve hard problems by collaborating with one

another. The traditional model of collaboration requires

all participants to assemble together at the same time

and place. This approach is expensive in terms of trav-

eling, scheduling, human resources, pre-meeting prepa-

ration of material, and post-meeting recording of the re-

sults. Advances in distributed systems, networks, and

user interface technology have helped Computer Sup-

ported Cooperative Work (CSCW) become a viable al-

ternative to face-to-face meetings [4, 12, 37]. CSCW is

the study of methods for enhancing cooperation among

computer users by providing an infrastructure that ex-

plicitly supports the user interaction and sharing of in-

formation [20].

Software engineering is a domain in which support

for collaboration can be fruitfully explored. Collabora-

tion is a requirement in many software engineering tasks

including requirements analysis, design, programming,

debugging, and testing [18]. For most software engi-

neering projects, analysts, designers, implementors, and

testers must work together through an iterative process

to build a software artifact, Research has shown that

interaction among team members accounts for a signifi-

cant part of the total cost of software systems [22]. It is

our belief that more effective software engineering meth-

ods will impact the society at large through savings in

time, money, and effort. Furthermore, we anticipate

that solutions to the problems in software engineering

will also apply to collaboration in other domains.

We have chosen software inspection es our repreaen-

tative software engineering task because it is widely-

practiced and highly-structured. Software inspection

is an effective method for detecting faults in docu-

ments and code produced in software development [25].

Boehm includes software inspection in his list of the

ten most important issues for improving the quality of

software, saying, “Walkthroughs catch 60 percent of the

errors.” [5].
Software inspection has evolved from a purely cen-

tralized and paper-driven process to one that can be

21

http://crossmark.crossref.org/dialog/?doi=10.1145%2F193173.195290&domain=pdf&date_stamp=1994-12-01

performed paperless over distance [31]. In distributed

software inspection, participants can “meet” with pee
ple in other cities through workstations at their desks.

The reduced travel costs increases the feasibility of in-
spection when the development team is not in the same
location. On-line support aids the participants in docu-

ment preparation and maintenance, eliminating unnec-

essary note-taking and duplication.

In this paper, we augment our previous work

in distributing software inspection [31] to support

asynchronous collaboration of inspection participants.

Asynchronous, or non-concurrent, collaboration enables

interaction without requiring all participants to be

present at the same time. We find the concurrent partic-

ipation in software inspection to be a significant compo-

nent of the meeting cost and believe that asynchronizing

the process can help in reducing the cost.

The time required from the meeting members and

the problem of scheduling the meeting can make the

synchronous meeting the bottleneck for the inspection.

Meeting times not only depend on scheduling a confer-

ence room, but also on each member having the same

block of time open in their schedules. Relaxing the time

constraint allows the participants to work at a time of

their choosing, providing a greater degree of freedom in

their actions.

Time

Same Differemt

Place Phee

Figure 1: Time and Space Dimensions

In general, collaborative meetings can be categorized

by the two dimensions of space and time [20]. A same-

time, same-place meeting is the current board-room
type meeting where everyone congregates at a table,

using pointers, overhead projectors, and handouts as

meeting tools. A different-time, same-place environ-

ment might be a bulletin board in a publicly accessi-

ble room used for posting announcements. An exam-

ple of a same-time, different-place meeting would be

a teleconferencing system supporting audio and video,

allowing the meeting to take place with members in

different locations [35, 36]. Conceptually, a diflerrmt-

iime, diflemnt-place meeting would enable participants
to work together at the time and place of their choosing,
but other than e-mail systems, existing implementations
are scarce.

Ideally, to provide complete flexibility for the soft-

ware development teams, support for dissimilar meet-

ing modes must be available for the diverae set of

constraints, requirements, and participation styles pos-

sessed by the different inspection teams. Their meeting

tools must be able to supply as many of these meeting

modes as possible.

The software inspection process consists of two dis-

tinct meeting modes: Fault collection and inspection

meeting. These modes are denoted in Figure 1 by the

bottom and top halves of the cube. During fault collec-

tion (bottom half), individuals review the documents

independently and are not restricted by place and time

[31]. Therefore, the fault collection activity spans the

time and space axes and consists of all the parallel

planes across the bottom half of the cube. The inspec-

tion meeting process (top half), consists of all partic-

ipants discussing the correlated fault list generated by

the reviewers. Traditional centralized inspection meet-

ings cover the back left octant (same-time, same-place),

while the distributed meeting covers the back right oc-

tant (same-time, different-place) [31]. We are exploring

the potential for synchrony in the meeting phase, de-

noted by the shaded section (different-time, different-

place). Combining distributed software inspection with

an asynchronous meeting would give complete flexibility

in time and space for the software inspection process.

In addition to enhancing flexibility throughout for the

participants, asynchronous meetings may alleviate some

of the social problems that have been reported in syn-

chronous meetings [14, 26]:

Free Riding: A subset of the group might not con-

tribute to the task, relying on other members for con-

tributing ideas.

Limited Air Time: Only one person can speak at

a time, limiting the time each person can contribute.

Production Blocking: Individuals have to with-

hold their contributions until they get a chance to report

them. During the holding time, they are not producing

any new ideas and contributions, and may subsequently

forget or decide not to offer their ideas.

Serial Thread of Execution: Since ideaa are pur-
sued serially, fewer kinds of ideas may be pursued.

Asynchronous meetings might reduce these problems

by providing a structured context for the on-going meet-

ing. A history can preserve the meeting data for either

new participants to join midway, or for a new employee

to review a past meeting in order to get up to speed

on a project. Participants have an equal opportunity

for airing their views, alleviating the production block-

22

ing suffered by limited air time problem experienced in

same-time, same-place meetings.
As we study asynchrony in inspection meetings, it

could be that eliminating face-t~face meetings is nei-

ther possible nor desirable. For instance, verbal inter-

course is regarded to be critical to the task of software

inspection as currently formulated [9], and this may be

true for many types of meetings. Presently, our focus

is on technical issues in distributed and asynchronous

inspection. If our work is successful, it will make it

possible for further investigation of the social changes

introduced by an asynchronous meeting model. Our ex-

pectation is that face-to-face meetings may turn out to

be critical for team-building and for resolving partic-

ularly different issues. However, we expect that, with

suitable support, many day-to-day activities can be per-

formed completely asynchronously.

We hypothesize that support for asynchrony will en-

able software engineem”ng teams to perform most tasks

together as effectively in different-time mode as in same-

time mode.

We believe that asynchronous emulation of the in-

spection conversation structure is feasible using a struc-

tured history for discussing issues and putting forth res-

olutions, dynamic voting protocols for reaching consen-

sus, and a notification sub-system for user coordination

and awareness.

Section 2 introduces related work in collaborative sys-

tems. Section 3 presents the requirements and decisions

made in the design of our prototype. Section 4 dis-

cusses possible implementations of CAIS in Electronic

Mail, Mosaic, and Lotus Notes platforms and details our

implementation in the Suite environment. Section 5 de-

scribes the methodology, quantitative and qualitative

measurements, results, and lessons learned in our pilot

study. Section 6 concludes our paper with a summary

of the results and future work.

2 Related Work

This section focuses on application-level groupware sys-

tems. We present five classes of groupware systems:

Electronic mail and bulletin boards, collaborative an-

notators, Group Decision Support Systems (GDSS),

Computer-Assisted Software Engineering tools, and

soft ware inspectors.

Electronic Mail and Bulletin Boards: Two

widely used computer mechanisms for supporting sync-

hronous collaboration are electronic mail and bulletin

boards. These systems allow users to send messages to

groups of users. Structured use of the electronic mes-

saging systems has been shown to be an effective col-

laboration tool [28, 30, 39].
Collaborative Annotators: The Design Journal

[11] is a hypertext system designed to facilitate the cap-

ture of early design deliberations. It is implemented

using a specific method called Issue Based Information

Systems (IBIS). It uses a semi-structured issut+poaition-

argument framework to provide a team of designers sup-

port for the capture and recording of design document

discussion, creation, and commitments. The PREP Ed-

itor is a collaborative writing environment that is de
signed to provide commenting and annotation capabili-

ties [10]. The system provides a columnar structure that

provides columns of text for comments, author intent,

and the actual text being reviewed.

Group Decision Support Systems: The Min-

nesota GDSS project aims at conducting theoretical and

empirical research in Group Decision Support Systems

[19]. The work introduces the Adaptive Structuration

Theory (AST), which focuses on how technology struc-

tures are applied in interpersonal interaction and the

specific nature of appropriation patterns [15]. A multi-

user software environment named Softwar+Aided Meet-

ing Management (SAMM) serves as a vehicle for exper-

imentation. Its U-shaped conference table has a termi-

nal and keyboard for each group member to enter ideas,

comments, votes, or notes. A large screen at the front

of the room provides a shared focus for the participants

by displaying a summary of group activities.

Project Nick studies the theory of meetings and de-

fines the meeting types and classes [12]. The focus

ia on small face-to-face meetings specializing in explo-

ration activities such as brainstorming, defining d+

sign structure, anal yzing issues, and problem resolu-

tion. Meeting-aids include an electronic blackboard, in-

terconnected PCs, and recording apparatus. The Colab

experimental meeting room developed at Xerox PARC

is designed for facilitating interaction in small work-

ing groups [37]. The room is equipped with worksta-

tions linked together over a LAN, a large touch-sensitive

screen, and a stand-up keyboard. Cognoter is a Colab

tool used to prepare presentations collectively. It pro-

vides support for brainstorming, organizing, and eval-

uating. The PlexCenter Planning and Decision Sup-

port Laboratory at the University of Arizona providex

a large U-shaped conference table with 16 workstations

depressed below the table for line-of-sight considerations

[3]. A large-screen projection system displays screens of

individual participants or a compilation of screens. The

facility is used for electronic brainstorming and issue

analysis among other group activities. A newer ver-

sion of the facility called the Collaborative Management

Room, designed to accommodate larger groups, intro-

duces more recent technological advances [33].

Computer Assisted Software Engineering

(CASE) tools: Asynchrony is supported in a vari-

ety of existing CASE tools. UNIX Systems such as
Source Code Control System (SCCS) and Revision Con-

trol System (RCS) provide utility programs designed to

23

manage multiple revisions of source files, automate the

storing, retrieval, logging, identification, and merging

of versions, and maintain a history of previous versions

[40]. Apollo’s DSEE environment helps to archive pre-

vious versions of sources, control access to all versions,

document the history of each file, build programs and

individual components, rebuild programs with previ-

ously built components, build components concurrently

on distributed nodes, and manage program releases [38].

Software Inspectors: Collaborative Software In-

spection (CSI) [31] is a tool created to support dis-

tributed collaborative software inspection. CSI aut~

mates the inspection process, but its synchronous na-

ture requires participation from all participants at the

same time. ICICLE [9] is a system intended to sup-

port the complex set of tasks performed during code
inspection. Like CSI, it assists individual users in the

comment preparation phase of code inspection. The

ICICLE meeting environment is synchronous also, with

computer support aiding in making it a paperless meet-

ing. Collaborative Inspection Agent [23] (CIA) uses

ConversationBuilder [27] to develop a tool for syn-

chronous inspection of all work products at various

stages of the life cycle.

Electronic mail and bulletin boards show that asyn-

chrony is a feasible abstraction for collaboration.

Projects such as SAMM, Nick, Colab, IBIS, and Prep

demonstrate that computer support facilitates group

meetings if the participants are gathered at the same

place and time. The collaborative annotators suggest

that collaboration technology may be successfully ap-

plied to traditional domains such as writing and editing.

CASE tools, such as RCS and DSEE, assist software

engineers in working together asynchronously. The CSI

and ICICLE Software inspection tools show that soft-

ware engineering tasks, such as inspection, can benefit

from computer support.

Our prototype, Collaborative Asynchronous Inspec-

tion of Software (CAIS) asynchronizes the meeting por-

tion of software inspection. Our work extends electronic

mail and bulletin boards by structuring messaging ex-

plicitly for inspection tasks. Similarly, our work differs

from the work done in the GDSSS and collaborative

annotators in that we are examining a specific, well-

structured meeting application. We add to the existing

plethora of CASE tools by introducing an inspection

tool for participants distributed across time and space.

We build upon the work done in software inspectors by

introducing asynchrony as an abstraction for software

inspection meeting.

3 Design of CAIS

We define a software inspection meeting to consist of
a sequence of discussions. A discussion, in turn, is a

sequence of comments, terminated by vote-taking. If

the result of vote-taking is inconclusive, the sequenm of
comments is extended to accommodate more discussion

of the fault. A discussion is closed when consensus is
reached regarding that discussion. Within a discussion,

all comments are ordered. Ordering may also exist at

the discussions level, but preferably they can be held

concurrently.

CAIS aims at automating the capture of the discus-

sion comments, vote, and results so that the meeting

can be recorded and held over a period of time with-

out requiring concurrent participation of the meeting

members. CAIS achieves this goal through the cap-

ture and display of a structured history of the meeting.

Every meeting has an agenda, discussions and votes.

The CAIS meeting structure calls for the participants

to engage in an exchange of comments about a fault,

terminating this exchange by a vote. Each member can

record comments until one calls for a vote. If the vote

result is inconclusive, the exchange of comments contin-

ues with a new sequence of comments. If the vote result

is conclusive, that fault is considered to be resolved and

the participants move to another unresolved fault.

3.1 Requirements

There are several requirements that need to be trans-

ferred from a same-time, same-place type meeting to

different-time, different-place meeting. This sub-section

identifies these requirements, with an eye toward their

evolution and refinement w the result of lessons learned

in our earlier user studies.

Causal Order: Activities in a synchronous software

inspection meeting happen in a linear fashion, where

each activity has a clear predecessor and a successor.

For instance, a discussion on a fault is started by partic-

ipants contributing ideas on ways of resolving the fault.

These comments are made in a serial way, with the

participants taking turns voicing their opinion. Upon

reaching a consensus, the participants move on to the

next fault, eventually discussing all faults in a sequential

manner. Observing this sequence of events ensurea that

all participants share the same context for the meeting.

When asynchronizing the software inspection meeting,

the linear order of events during the discussion of a sin-

gle fault needs to be kept, but the discussions may be

held in parallel (though some discussions may have de-
pendencies that requires their order to be preserved).

The benefits of concurrent discussions include parallel

threads of execution, and resolving the limited air time

problem.

Structured History: An asynchronous meeting

must keep a structured history for current participants
and for later distribution and review. Our initial CAIS

implementation maintained the history in a separate

24

file, mainly intended for metrics collection and review.

A pilot teat of that implementation revealed that users
preferred to have the information about uhat was done,

who had done it, and when it was done aa part of the
application state and not to have to consult a separate

file to discover that information. In the present design

of CAIS, we ensure that every relevant occurrence has a

corresponding place in the structured history by keep-

ing track of who, what, and when. This support enables

a user to “visit” a meeting and follow the conversation

as it haa been happening, possibly over a period of days.

Train of Thought: We need to maintain the user’s

train of thought from one visit of the meeting to the

next. ‘Ikain of thought is sustained in a same-time,

same-place meeting since only one discussion takes place

at one time. In a different-time, different-place meeting,

the participants typically visit each concurrent discus-

sion to check for new comments made by others and

to add their own. An earlier implementation of CAIS

displayed all the meeting discussions (decided or und~

tided) as a large sequence within a single view, requiring

the users to visually scan the file to locate a discussion

of interest. In the present design, we have made the

new information easily distinguishable from previously

read information by displaying only the undecided dis-

cussions to the users, one discussion at a time.

Reaching a Consensus: Consensus is normally
reached by putting forth a proposal and holding a vote.

A mechanism must be provided to allow for the tak-

ing and counting of votea. In our earlier design, we

required all the participants to vote on a fault before

its status could be determined. Subsequent pilot studies

revealed that this design decision led to situations where

the meeting was tied up due to a slow participant. We

have refined the design to allow for more flexible voting

protocols, where the status of a fault can be determined

by a majority of voters concurring on a resolution, even

if some have not voted yet.

Visual Cues: Speakera often direct the attention

of meeting participants through the use of pointers

and visual cues in a same-time, same-place meeting, or

What You See Is What I See windows in a same- time,

different-place meeting, and this must be supported in

a different-time, different-place meeting also. In a pilot

study, our participants reported difficulties in correlat-

ing a fault to its place of occurrence in the document.

The lack of visual cues required the participants to scan

the target material visually to locate the fault, result-

ing in a distracting and timeconsuming process. Our

present design provides an automatic display and hi-

lighting of a fault in the source document when it is

being discussed.

Progress: In same-time, same+place meetings, par-
ticipants can easily be asked to comment or vote, and

are conscious of what is expected of them in way of

r-lVdeTakiq

Figure 2: Conversation Structure in CAIS

contribution to the meeting. Our first CAIS prototype

lacked these similar notions of deadlines or progress.

Users had to visit CAIS to find out whether any new

work was done since their last visit and had no idea

about how much of the task was left to be done. Our

current CAIS design provides participants with infor-

mation on what has been done by others since their last

visit, and what is needed from them to help contribute

towards the conclusion of the meeting.

3.2 Conversation Structure

The CAIS meeting conversation structure is composed

of three phases: Discussion of a fault until a potential

resolution is identified, putting forth the resolution aa

a proposal, and quorum-based voting on the proposal

(See Figure 2).

Annotations: CAIS borrows annotations from CSI

[31]. During the fault collection phase, annotations are

attached to the document being inspected. During the

inspection phase, the annotations are organized into a

set of discussions, with hyperlinks to lines in the original

document. The annotations help satisfy the “Visual

Cues” requirement.

Discussion: A CAIS meeting is consisted of a num-

ber of discussions. Each discussion pertains to a single

fault and is comprised of any number of comments re-

garding that fault. The participants engage in a dia-
logue in an attempt to resolve the fault. Their dialogue

is captured in a structured manner to allow each partic-

ipant pursue the line of reasoning offered by the other

participants. The CAIS discussions satisfy the “Struc-

tured History” and “Train of Thought” requirements.

Proposal: The exchange of comments during the
discussion phase ends when a participant puts forth a

proposal to the group. Fhrther discussion of the fault

25

is disallowed until the status of the proposal is deter-

mined. Similar to the discussions, the text of the pr~
posal and its status are saved as part of the history of the

fault, satisfying the “Structured History” and “’llain of
Thought” requirements.

Vote: The participants vote on the proposal. The

outcomes of their votes include accepting the proposal

as a resolution for the fault, requesting continued discus-

sion of the fault in the asynchronous meeting, abstaining

from evaluating the proposal, and aending the fault to

the synchronous meeting. Voting determines the status

of the present proposal and satisfies the “Reaching the

Consensus” requirement.

3.3 Notification Sub-system

In a same-time meeting, the participants use verbal

communication to inform one another of their individual

progress, and consequently are able to measure their col-

lective progress towards the completion of their assigned

task. Asynchronous collaboration closes this line of

communication to its users. In a different-time meeting,

computer support must provide the necessary awareness

of the participants’ activities and report on the state of

the task.

We believe a notification sub-system to be a neces-

sary component of any asynchronous collaborative en-

vironment. A notification sub-system can help by keep-

ing the users aware of the most urgent matters, reduc-

ing the information volume, processing and presenting
the information in a digestible form, and offering advice

on how to coordinate participants’ activities to better

complete the task. The not ificat ion sub-system sat is-

fies the “Progress” requirement by letting participants

know who has done what, and providing them with in-

formation on what they need to do in order to complete

their task.

The information that we report back to the user may

be one of three types (See Figure 3):

Micro signifies small detailed changes in the state

of information. Any unit of work, such as entering a
comment or registering a vote, is considered to be mi-

cro information. Micro presents the information in its

finest level of granularity and is appropriate for users

who wish to be tightly-coupled with the other users. For

instance, after a participant visits CAIS, all the other

participants receive a micro notification message that

textually details all the comments and votes recorded

by the visiting participant in that visit.

Macro compiles a series of small changes in the state

of information into a more digestible and understan+

able form. An example is a summary of user activities,

such as the number of votes registered during a CAIS
visit. Macro is a packaging of the micro information

into a shortened, summarized form. It is appropriate

CAIS

Meeting

User A

I Process/Fiiter/Generate

I
Notification

I

Micro ~ Macro ; Mets

I I I

User B User C

Figure 3: Notification Sub-System in CAIS

for users who are loosely-coupled with the other partic-

ipants and do not wish to have intimate knowledge of

every single action performed by them.

Meta provides information on the task, such as the
completion percentage, or impending deadlines. Meta

is an interpretation of the micro and macro information

in order to estimate group progress and ensure timeli-

ness in meeting deadlines. It maybe used for arranging

visitation schedules for the participants.

Our notification algorithm follows these steps: (1)

Becomes aware of the completion of an event. (2) De-

termines whether the event necessitates notification of

other users. This determination may depend on specific

knowledge of the task, ratio of the completed work to

total work, or the participants’ availability schedules.

(3) Determines user’s course of action. For instance,

one course of action may be preparation of a visitation

schedule for the user to complete the task in a timely

fashion. (4)s Send user the notification.

Our notification sub-system sends the three individ-

ual messages pertaining to micro, macro, and meta in-

formation. Users are notified baaed on either progress or

visitation: Progress notifications are sent when so many

units of work are completed by a participant, while vis-

itation notifications are triggered every time a partici-

pant visits CAIS. If a participant requests further dis-

cussion of a fault that another participant has already

voted on, the voter is notified of this request and of the

cancellation of the vote. At the closure of a meeting,

all participants are notified of the agenda of a possible

synchronous meeting.

4 Implemental ion

There exist a wealth of software infra%ructures for de

veloping CAIS [1, 2, 8, 16, 21, 27, 29, 32]. In the fol-

26

lowing subsections, we describe how four selected plat-

forms, namely Electronic Mail, Mosaic, Lotus Notes,

and Suite, can be fruitfully explored for developing

CAIS and detail our implementation in the Suite en-
vironment.

4.1 Electronic Mail

Arguably, electronic mail (email) has been the most

successful groupware system ever introduced [39]. Tra-

ditional e-mail systems are characterized by passive,

uni-directional exchange of electronic messages between

a sender and one or more receivers. Multimedia e-

mail systems augment this exchange by supporting con-

textual data, such as displaying of images and playing

of audio, but the process has remained one-way and

non-interactive [6, 7]. Computational or active e-mail

systems propose to further facilitate asynchronous col-

laboration of users by embedding programs in electronic

messages [8]. Active messages interact with the recip-

ients of the messages and take different actions based

on the recipients’ responses. Though issues of portabil-

ity, security, rind standardization remain to be resolved,

computational e-mail has several noteworthy capabili-

ties that may be used for developing CAIS:

Distribution: E-mail systems support delivery of

messages to remote users located at any place on the

Internet.

User Interface: E-mail systems provide an inter-

face to their users that supports composing, editing,

deleting, browsing, saving, and archiving of electronic

messages.

Computation: Computational e-mail systems offer

facilities for performing actions on the user’s behalf. For

instance, consider a computational message that arrives

at the receiver’s end and engages the recipient in a ques-

tion/answer dialogue to ascertain whether the user is

available for a meeting. The responses from all the re-

cipients may be sent back to the original sender, who is

in charge of scheduling a meeting time for all the people

involved.

Consider the following scenario of an inspection meet-

ing using computational e-mail: The target material is

sent to all participants, who review the material and

send back their list of faults to the producer. The pro-

ducer correlates and sends back this list to all the re-

viewers. The group then engages in an exchange of
messages, discussing each fault. At the conclusion of

each discussion of a fault, a vote template, embedded

within a computational e-mail message, may be sent to

the reviewers to capture their votes. The exchange of

messages will continue until all the faults are addressed

and their status is determined. Existing e-mail systems
should be augmented in several ways to support CAIS

meetings:

● Communication between participants must be

structured according to software inspection guide-
lines.

. The shared information must be managed in a
structured manner to aid the participants in follow-

ing the discussions and the history of the meeting.

● Group decision making must be made available in

e-mail.

Proposed active e-mail systems could be used to sup-

port these extensions for effective CAIS [8].

4.2 Mosaic

Mosaic is a networked information discovery, retrieval,

and collaboration tool [2]. It is accessible across sev-

eral platforms (X Window System, Microsoft Windows,

and Apple Macintosh), capable of supporting multiple

media, user-tracking, annotations, and document cross-

linking. Mosaic provides a number of facilities that may

be used for developing CAIS:

Distribution: Mosaic uses a client/server model of

interaction. A server sits on a machine at an Internet

site responding to queries sent by Mosaic clients from

anywhere on the Internet.

Persistence: A unit of information, also called a

document, may reside on local or remote file system.

Using a Uniform Resource Locator (URL), a document

anywhere on the network can be located. URLS can

be thought of as a networked extension to the standard

filename concept. They can describe anonymous ftp-

able files, gopher documents, news groups on UseNet,

files in a directory on a local or remote machine, or

documents written in the HyperText Markup Language.

User Interface: A graphical user interface support-

ing font and style selection, cut-and-paste editing opera-

tions, user navigation, and history tracking is provided.

A document, which can be of a variety of types includ-

ing text (plain, rich, or hypertext), audio, video, image,

or a graph, can be displayed graphically in the MOS~C

browser.

Group Annotations: A group of users, d~tributed

across the network, can collaboratively annotate a doc-

ument. (Although this support is missing from the cur-

rent version of Mosaic and is only available as part of

an earlier version of the Mosaic browser and server soft-
ware.)

Consider the following scenario of an inspection meet-

ing in Mosaic: The target material, converted into

HTML format, is available anywhere on the network

and can be loaded into a Mosaic client. The user re-

views the document and attaches group annotations to
the document. Note that the granularity of an annota-

tion is the entire document, and not lines or words of

27

the document. Other reviewers can read the group an-

notations by the first reviewer and add their own group

annotations regarding the do,cument,, The annotations

are timest amped and bear the name of the annotator to

help in building a context around the group work. There

are a number of additional capabilities that would make

Mosaic more suitable to support CAIIS:

●

●

●

Annotations need to be of a finer granularity and be

attached to a Iine or word of the document. They

also need to be anchored to the lpoint of dlscuaaion

in the document. Currently, they are either pIaced

at the bottom or top of the document). This struc-

turing allows users to read all the relevant anno-

tations about a fault before contributing their own

ideas. Fill-out forms are an extension of the Mosaic

browser that support user input and could be used

to support annotations.

Evaluation of proposals through vot~taking needs

to be added.

Users need to be notified of new annotations, and

votes made to the document.

4.3 Lotus Notes

Lotus Notes [29] manages information for a group of

people distributed across a computer network. This

management includes the ability to, collect, organize,

share, process, and customize information. Notes pro-

vides most of the capabilities required for implementing

CAIS:

Distribution: Notes is a client/server model with

the database containing the forms and documents for

user access,

Persistence: Notes automatically providea pro-

tected and persistent objects.

Consistency: Upon commit of a comment or fault in

Notes, the data is immediately available to other users

on that server, and later, at a previously determined

interval, on replicated servers. Asynchronous propaga-

tion of database updates (comments/faults) is an inte-

gral part of Notes.

Security: Access control lists and encryption provide

security at many levels of granularity in Notes. Many

different “roles” , such as Depositor, Reader, Author,

Editor, Designer, and Manager are available for assign-

ment.

User Interface: Forms provide the user interface

through which users view and edit the underlying data.

Consider the following scenario of an inspection meet-

ing in Notes: For fault collection, a form is created with

one visible field containing a single line of code of the

document under review. A view is created that displays
each one of these lines in sequence. A response docu-

ment is created for the form, so that the reviewer could

compose a document to enter a fault for that line of

code. This document, when saved, can automatically

collapse (not be vtilble in the view). During the dis-

cussion phase, a view ia created which contains all of
the unresolved faults. Another form allows the review-

ers to enter comments under the faults. This form will

have a “doclink” back to the line of code where the

fault was recorded. When a fault is resolved, a field is

checked to remove the fault and its descendants from the

view. Notea mail in conjunction with periodic macros

can handle the notification required in an asynchronous

meeting. The moderator will have a view for resolved

faults and those that need to be sent to the synchronous

meeting. Notes can easily print views and forms for the

paper documents needed for the meeting.

4.4 Suite

Suite is a software system for developing multiuser ap-

plications. A prototype of Suite has been implemented

on top of UNIX, TCP/IP, NFS, and X [17]. The Suite

object model is an extension of UNIX, allowing dis-

tributed, shared, protected, and persistent objects. The

components of Suite are:

RPC: Suite RPC allows for applications executing in

different address spaces and possibly on different hosts

to name and communicate with each other by calling

high-level remote procedures.

Persistence: Suite objects are persiatent in that

their data structures can be checkpointed onto disk and

later restored to memory.

User Interface: Suite user interface treats all ob-

jects as data that can be edited. Interaction with “ed-

itable objects” is made possible by dialogue managers

(DMs). DMs display a presentation of selected data

structures, allow users to edit the presentation in a syn-

tactically and semantically consistent fashion, and com-

municate these changes with the object. The object in

turn ensures that the other displays also update their

values.

4.4.1 CAIS Implementation

We have used the Suite software development environ-

ment [16] for developing CAIS. Suite was chosen as the

application development platform foremost because of

our success in buildlng other multi-user applications in

it, includlng CSI [31]. We use CSI for the individual re-

views and fault collection. CSI supports collaboration

of geographically distributed individuals in the inspec-

tion and provides on-line capability for recording and

correlation of faulta. The correlated faults are sent to
the asynchronous meeting, where CAIS is used for the

discussion and resolution of the collected faults.

28

4.4.2 Objects

CAIS consists of three objects that are briefly described
next (See Figure 4):

Browser Object contains the document under re
view, with each line numbered. We support hi-lighting

and automatic scrolling to a particular line of the doc-

ument to aid the users in locating the line in question.

History Log Object records and time stamps the

user activities for later analysis and review. The data

collected include the total meeting time, participants’

visitation schedules, time spent in discussions and votes,

and number of comments and votes entered.

Meeting Object provides a hierarchy of faults, dis-

cussions, and comments. This structure is based loosely

on a common meeting framework: A person introduces

a fault, any number of people comment on it, a proposal

is made to end the discussion, and a vote is taken. If

the vote is conclusive, the discussion is ended and the

next fault is introduced. Otherwise, the discussion on

the fault continues. At the conclusion of a CAIS visit

or if enough progress is made, notifications are sent to

the participants using the mail deliver,y system. These

notifications include a detailed listing of comments and

votes entered by the current participant, a summary of

all participants work in their most recent visit, and an

evaluation of how much of the total task has been com-

pleted up to this point. The notifications make each

user aware of individual and group progress.

4.4.3 Voting and Consensus

After a proposal haa been suggested, the voting process

begins. Our choice of a voting protocol in CAIS is only

one possibility in a rich voting protocol space. We have

based our decision on simplicity and repeatability of r~

suits. Each CAIS participant can vote in the following

ways:

Agree indicates that the voter agrees with suggested

proposal.

ContinueDiscussion indicates that the voter wishes

to continue the discussion on the fault.

SendToSyncMeeting indicates that the voter be-

lieves that the fault cannot be resolved in the asyn-

chronous meeting and should be sent to the synchronous

meeting.

Abstain indicates that the voter wishes to be ex-

cluded from the voting process for this particular pro-

posal.

In a sam~time, sarm+place meeting, the votes can

be counted publicly or secretly. In a different-time,

different-place meeting, users are presented with a win-

dow in which they can enter their vote. In order to

accept the proposal, the votes must be counted, and

the results are based on the consensus method used;
examplea are unanimous, majority, or user-defined. A

different-time, different-place meeting must be able to

support any combination of variables, without forcing

the participants to use one or the other and the vote
must be persistent until all have voted, consensus is
reached, or some other condition is satisfied. An addi-

tional problem that arises is that the slowest participant

holds up an entire discussion. This is eased somewhat

since all participants can attend the other discussions

while one vote is pending. If the majority vote mecha-

nism is used, the vote will end if a majority is reached,

even if not everyone has voted.

4.4.4 Implementation Decisions

During a standard face-to-face meeting, the meeting

protocol can change dynamically. Time limits may be

imposed, new members may get to vote, or the voting

method may change. This is also a desirable property

for an asynchronous meeting. The owner or meeting

manager should be allowed to dynamically change these

options baaed on their own preferences. For CAIS, sev-

eral of these properties have been fixed for the users in

order to be able to take consistent measurements for the

pilot study. These options are: (1) A majority vote in

agreement ia sufficient to end a discussion. We have de-

cided on this form of reaching agreements dynamically

to avoid having the meeting tied up by a slow partici-

pant. (2) One vote of SendToSyncMeeting ends the

discussion and puts it on the agenda for the synchronous

meeting. This is for hard problems that may be better

handled facdm-face. (3) A vote of ContinueDiscus-

sion opens the discussion of a fault again and informs

the participants who have already registered votes that

the discussion has been extended. This deckdon follows

the current face-to-face meeting model where a discus-

sion may continue ss long as participants are interested

in pursing it. (4) All faults not acted upon during the

asynchronous meeting are sent to the synchronous meet-

ing. This is also for hard problems for which time ex-

pires, and that may be better completed face-to-face.

5 Pilot Study

The primary goal of our pilot study is to assess the fea-

sibility of distributing the software inspection meeting

across time by comparing the manual inspection meet-

ings with CAIS meetings. We include both quantita-

tive measurements that include time measurements and

comment counts, and qualitative measurements that in-

clude feelings about the meetings, and usability issues.

5.1 Methodology

Our pilot study involved Computer Science graduate
students at the University of Minnesota. These stu-

29

* CbLimnt m: ahl”io

m nnolELfm#JMo~
10C4
low ~
10M
lta * ‘w.ewtlm” I* aW Fmctim that w b 4FPlIcd t.a 410 *.

lom “T4=--d” T?m m vattm antmh atu+m~ to — (r Indnths
ioto 6ffacts of tkt mmmt.im.
low

h m b “1-I* b —i- frm . qa-ution : “M x
) ;Z tothaweld,t iuithru!wcttothe avdiadab ikcawrnfrmm
[lom Cfe$atim tith ~ to th dio data muu rwtcmtQ the Vlglnd

! lW statnnf the data. Rewwnuith rwmcttotkwld - matcrirm
I 1000 Wm ourauAw wirummt = MW1OMS ac Pculbla.
[*W....
i lCOO lwfrmeurk farre.x.ww .wmista of nawflm each C?wat iw toa
; 10M
~ iwo dmica * ** folku a-d hhich nechmisn to we fcr * wemtim.
I lW
1 X00 -Aim => ml iq => Dx&ni.
) 1000
[m Ihww Policiu cwld bs :
! It@)

m b ~ ●11 S#tsn activities:

2/2/’94

Z,2a4

W/94

2r7/94

Zi2i34

15@3:LT bn06tI ● JOiniw I!wting
1323:29Lmdilln abjc& ~
lwz3:23 kills ~ — tuwt-inkuxr
15224:16 l_od$ns c&Iect: Mstay l_cs
15:24:23 I?estarina neatliw
IW24:24 RMdim * at~+
1%2*24 * %ad%lts
15r24:24 RMdim * data atrwtuw Histcm t.a file..
15:24:24 ReadimJ th data ~ tbetim to file.

VOta :lw-T1* : 2/2/94 R ImTsi
TimVAt : T61E4452

Fault : Is & -lm
Li- [K]

ms—tOwm=~

List * —:
2Lumt01 :

Iht41a-:
Ccanut:
Ikf-:
Tiaesw@
TimValue:

~e :
Wthm:
~:
%falwDw:
Tines&p:
rimvallm:

%staHdnt5
Fwlt fw Collatcr
[IN
v31A4 e-mm

lib

dents reviewed the requirements documents for two

projects under development in our collaborative sys-

tems research group. We have chosen to inspect soft-

ware requirements since requirements anal ysis is a piv-

otal, stage in the software development waterfall model

where many faults could be detected and corrected [13].

One group of students first manually inspected one re-

quirements document, and then used CAIS to inspect

the other, while the second group first used CAIS for

inspection and then manually inspected the other re-

quirements document. Each group acted ss the con-

trol for the other group on one of the two target ma-

terials. The hardware used included Sun Spare IPXS,

Sun Spare SLCS, and Sun Spare 1s. Participants used

machinea located in the laboratories within the Com-

puter Science building at the University of Minnesota

or dialed in remotely from their workplaces or homes.

Participants had different schedules and lifestyles: Part-

time students working full-time as employees in research

and financial industries, full-time students doing collab-

orative research, and full-time students in other varied

research fields.

5.2 Quantitative Measurements

The CAIS History Log provides the following metrics:

Number of faults discussed, number of comments per

person, number of votes per person, time for individ-

ual fault collection, total meeting time, and visitation

schedules.

1+1. line 3? Rates

Figure 4: CAIS Windows

5.3 Qualitative Measurements

We measure the qualitative characteristics of the prot-

type by asking the subjects to complete questionnaires

after the manual and CAIS meetings. For both meet-
ing types, we inquire about their degree of satisfaction

with the meeting experience, level of agreement with the

meeting structure, level of flexibility provided in their

participation schedule, quality of discussions, ability to

maintain their train of thought during the meeting, de-

gree of participation in the discussions, percentage of

time spent on non-task related issues, and participants’

meeting preference.

5.4 Results

This sub-section presents the results obtained from the

manual and CAIS meetings and questionnaires,

Number of Faults Discussed: Participants dis-

cussed all the faults noted during the review phase of

the manual and computer-supported meetings. More

faults were recorded, however, when participants used

CAIS. Approximately, 15% of the faults discussed in the

CAIS meetings were difficult to resolve asynchronously.

These fault were set aside for synchronous meetings that
were carried out at the conclusion of the CAIS meetings.

Our analysis of the faults shows that all the faults sent

to the synchronous meeting were categorized as “ma-

jor” by the reviewers, indicating that it maybe possible

to filter out such faults prior to the CAIS meeting and

send them to the synchronous meeting directly.

Number of Comments and Votes: The number of

comments and votes recorded were comparable between

30

the two meetings, with the producers having a larger

share of the total.

Time for Individual Fault Collection: On the av-

erage, the participants spent less than an hour in fault

collection for both meeting types. This time was spread
over a tw~day period for the computer-supported meet-

ings, and limited to a single day for the manual meet-

ings.

Total Meeting Time: The manual meetings lasted

an average of 50 minutes, with 20% spent on non-task

related activities. The CAIS meetings averaged around

66 minutes, with an un-determinable percentage of time

spent on non-task related activities. This total is de-
rived from the summation of all CAIS sessions, mea-

sured from the time a user starts up the CAIS software

until the user quits. We believe that the additional time

spent in the asynchronous meeting is due to four fac-

tors: (1) Typing is generally slower than speaking, (2)

The reading speed from the screen is about 30% slower

than the reading speed from the paper [24, 34], (3) In

asynchronous collaboration, a participant is required to

read the previous comments for each fault every time

to familiarize herself with the context of the discussion

up to that point before contributing new ideas, and (4)

Since the participants had the freedom of working from

home in a relsxed environment, they spent some time

checking e-mail, talking to family members, and the like.

This time was included as part of the reported time for

the asynchronous meetings. Further studies are needed

to understand the time requirements of asynchronous

meetings better.

Visitation Schedules: Visitation schedules ranged

from early morning to late evening times. Most partic-

ipants preferred to visit CAIS consistently around one

time period, generating a unique meeting pattern. Fig-

ure 5 plots the time of day against the number of visits

in our pilot. Mid-morning and early evening show the

highest trafllc, while early morning and late nights the

lowest ,

Post-Manual Questionnaire= Participants were

generally satisfied with the manual meeting and agreed

with its structure. Scheduling a diverse work group was

found to be a difficult task, requiring many rounds of ne-

gotiation before a common time was found. The amount

of time spent on non-task related issues was small and

limited to the exchange of pleasantries at the start and

occasional friendly remarks during the meeting.

Post-CAIS Questionnaire: Participants were gen-

erally satisfied with the CAIS experience and were not

hindered by their distribution across time. They found

the CAIS meeting structure acceptable and were able to

maintain their train of thought from one CAIS meeting

to the next. CAIS matched the participation schedule

of each individual participant, allowing them the free+
dom to meet at a time of their choosing. The notifica-

tion sub-system helped the participants in coordinating

their visits, but most participants preferred fewer and
lees detailed messages.

5.5 Lessons Learned

This sub-section describes the lessons learned in our ex-

perience with CAIS.

Increased Time Quantum: CAIS allows the meet-

ing participant as much time as they need to complete

their thoughts. In a live meeting, time can be restricted

by variables out of the participants control, such as

a meeting time limit or being cut off by another par-

ticipant. In CAIS, thoughts can be composed, edited,

deleted, and committed, while in the live meeting, time

may be cut short, and thoughts cannot be as easily

edited.

HyperText Features: An advantage to having the

target material document on-line in the CAIS meeting

from the individual fault review was the hypertext link

from the comments in the meeting to the document un-

der review. Upon selecting a fault or comment, the

browser would automatically scroll and hi-light the line

in question. Even compared to well organized handouts

for the live meeting, the hyperlinks were viewed as an

advantage.

Notification: The notification sub-system was found

to be an essential component of our asynchronous col-

laboration. The notifications were helpful to the par-

ticipants in determining whether it was appropriate for

them to visit the meeting. The micro messages went

unread by some, perhaps because the context of the in-

formation was lost since the message included only the

data entered by the previous participant, and not the

context it was addressing. The more brief and concise

macro and meta messages were the most appreciated.

The participants preferred a single bulk message cap-

turing all three types of information, with less emphasis

placed on detailed information.

CAIS As a Complement to Face-to-Face Meet-

ing: Under CAIS we were able to resolve most faults,

but some faults could not be resolved asynchronously

and were sent to the synchronous meeting. We believe

that CAIS can effectively reduce a significant portion

of the synchronous part of software inspection, but will

not replace it completely.

Participation Schedules and Styles: CAIS tai-

lored well to the participation schedules of all partic-

ipants. Our non-student group members appreciated

being able to attend meetings from their workplaces or

homes. Other than having scheduling conflicts people

are different in the manner they work. Some find it dif-

ficult to concentrate on a task for an extended period
of time and opt for brief and more frequent periods of

activity instead. Others may wish to work continuously

31

6

5

4

Number
3

of Wits

2

1

0

1234567891011 1213141516171819 ~2122 2324

Time Of Day

Figure 5: Frequency of Visits

on a task until they are satisfied with their progress.

CAIS accommodates both participation styles equally.

CAIS Versus Face-to-Face Meeting: Both re-

viewers and producers were satisfied with the CAIS ex-

perience. The structure imposed by the CAIS meeting

was deemed appropriate and effective for soft ware in-

spection. However, some participants viewed the man-

ual meetings as an easier forum to reach a conclusion for

some of the faults. Faults that were poorly-understood

had discussions that wandered and were more easily

dealt with in a face-to-face meeting. Overall, the par-

ticipants preferred CAIS over the manual meeting for

its flexibility and freedom of meeting times.

6 Conclusions

In this paper, we have introduced asynchrony as a new

abstraction in the domain of software engineering and

have applied it to a representative software engineer-
ing &k, namely software inspection. We have as~d

the feasibility of asynchrony for software inspection by

designing, developing, and conducting a pilot study of

an environment for asynchronous software inspection.

Through capture and display of a structured history

of participants’ actions, CAIS effectively supports hold-

ing inspection meetings asynchronously. CAIS supports

the different schedules and styles of the participants.

Whether members prefer to work at day or night, or

prefer to put all of their energy into one section of the
meeting, CAIS allows everyone to work as they wish.

The information management gains, coupled with the
hypertext features, are an improvement over the stan-

dard document shuffling that occurs in a paper-based

meeting.

We put forth CAIS as a complement to the fac.sto-

face meeting, and not as its substitute. Humans are nat-

urally gregarious, and asynchronous meetings take away

some of the interplay of a live meeting (jokes, raised eye-

brows, etc.). This sort of interaction might not be avail-

able to those participating in electronic meetings. By in-

troducing asynchronous meetings to the workplace, just

as introducing other types of groupware, our work cul-

ture and organization will change. Additional research

is needed to understand the effects of the new meeting

model on organizations.

We suggest a rich set of problems for future work,

based on our experience with CAIS:

Roles: Our current implementation of CAIS does not

support the notion of roles, as prescribed by Humphrey

[25]. An inspection could assign one of three roles to the
participants: Moderator, reviewer, or producer. One

application of roles is in the process of group decision

making, where the moderator may decide to send a

fault to a synchronous meeting after a prolonged asyn-

chronous discussion of the fault has not resulted in con-

sensus amongst participants.

Threaded Comments: CAIS maintains a strict or-

dering of comments in a discussion by timestamping
each comment and keeping the comment~ in the order

of their capture on the time axis. However, indepen-
dent of its temporal ordering, a comment can be placed

after the comment that caused it to happen, indicating

a causal relation between the two. For instance, if a

participant reads a comment and wishes to respond to
it, the reply comment should be placed after the com-

ment the caused it to be recorded, and not at the end

29

of the comment list as the temporal ordering would dic-

tate. An improvement to our present design is addition

of threads to CAIS discussions to better capture the

causal ordering of comments, and not merely their tem-

poral ordering.

Inspection Applied to Other Phases of Soft-

ware Development Waterfall Model: Our efforts

this far have included inspection of documents during

the requirements and coding phases of their develop-

ment. Further work is needed in inspecting design docu-

ments, such as flow charts and CAD drawings, to better

understand the inspection process as applied to other

phases of software development waterfall model. We

suspect that applying inspection to an earlier phase will

prevent the propagation of errors to later phases and

will cause a reduction in total development costs.

A Guideline for CAIS Usage: Our pilot studies

revealed that approximately 15% of the total faults were

difficult to resolve asynchronously and were set aside

for a synchronous meeting. Perhaps a set of guidelines

could be developed to assist in distinguishing and filter-

ing out such faults prior to the asynchronous meeting.

Our preliminary analysis suggests that the category of

a fault and the number of messages to be good indi-

cators of such faults. All the faults that were sent to

the synchronous meeting were categorized as “major”

by the reviewers and involved five or six rounds of mes-

sages, without bringing the reviewers any closer to a

consensus.

User Studies: We have focused on comparing asyn-

chronized, computer-augmented inspection with face

t-face, paper-based inspection in an effort to study

CAIS’S feasibility when compared to traditional inspec-

tion. A more challenging experiment would be to com-

pare and contrast asynchronized inspection with other

computer-augmented inspection meeting modes.

Acknowledgements

We thank our software engineering collaborators, Janet

Drake and Wei-Tek Tsai, for our many valuable discus-

sions of this topic. We thank members of the FLECSE

research group at the University of Minnesota for their

participation in our pilot study. Finally, we wish to

express our gratitude to anonymous referees for their

insightful comments and suggestions.

References

[1] S.R. Ahuja, J. EnsOr, and D. Horn. The Rapport

multimedia conferencing system. In Proceedings of

Conference on Ofice Information Systems, March

1988.

[2] Marc Andreesen. NCSA Mosaic technical sum-

mary. Technical report, University of Illinois, May

1993.

[3] L.M. Applegate, B.R. Konsynski, and J.F. Nun&

maker. A group decision support system for idea

generation and issue analysis in organization plan-

ning. In Proceedings of the First Conference on

Computer-Supported Cooperative Work, pages 16-

34. ACM, December 1986.

[4] Sara A. Bly, Steve R. Harrison, and Susan Irwin.

Media spaces: Bringing people together in a video,

audio, and computing environment. Communica-

tions of The ACM, 36(1):2847, Jan 1993.

[5] B. Boehm. Industrial software metrics top 10 list.

In IEEE Software, September 1987.

[6] N. Borenstein and N. Freed. MIME: Multi-purpose

Internet Mail Extensions. RFC 1521.

[7] N. Borenstein and C. Thyberg. Power, ease of

use, and cooperative work in a practical multime-

dia message system. International Journal of Man-

Machine Studies, April 1991.

[8] Nathaniel Borenstein. Computational mail as net-

work infrastructure for Computer-Supported Co-

operative Work. In (%.C W 92 Proceedings, pages

67–74, November 1992.

[9] L. Brothers, V. Sembugamoorthy, and M. Miller.

ICICLE: Groupware for code inspection. In Pro-

ceedings of Computer Supported Cooperative Work,

pages 169-181, October 1990.

[10] T. Cavalier, R. Chandhok, J. Morris, D. Kaufer,

and C. Neuwirth. A visual design for collaborative

work: Columns for commenting and annotation. In

Proceedings of HICSS ’24 IEEE, 1990.

[11] J. Conklin and M. Begeman. gIBIS: A hyper-

text tools for exploratory policy discussion. ACM

7Fansactions on O@ce Information Systems, 6(4),

October 1988.

[12] P. Cook, C. Ellis, M. Graf, G. Rein, and T. Smith.

Project Nick: Meeting augmentation and analysis.

ACM llansactions on O&ce Information Systems,

5(2), April 1987.

[13] Alan M. Davis. Software Requirements: Analysis

and Specification. Prentice Hall, 1990.

[14] A.R. Dennis, J.S. Valacich, and J.F. Nunarnaker

Jr. An experimental investigation of the effect of

group size in an electronic meeting environment.

IEEE Thnsactions on Systems, Man and Cyber-

netics, 20, 1990.

33

[15] Gerardine DeSanctis, Marshall Scott Poole, and

Gary W. Dickson. Interpretive analysis of team

use of group technologies. Journal of Organiza-

tional Computing, 3(1):1–29, 1993.

[16] P. Dewan and R. Choudhary. Flexible user inter-

face coupling in a collaborative system. Proceedings

of the ACM CHI’S 91 Conference, April 1991.

[17] P. Dewan and E. Vasilik. An object model for

conventional operating systems. Usenix Comput-

ing Systems, December 1990.

[18] Prasun Dewan and John Rledl. Toward computer-

supported concurrent software engineering. IEEE

Computer, Jan 93.

[19] Gary Dickson, Marshall Scott Poole, and Gerardine

I)eSanctis. An Overview of the GDSS Research

Project and the SAMM System, chapter 9, pages

163-179. Van Nostrand Reinhold, 1992.

[20] C. Ellis, S. Gibbs, and G. Reh. Groupware: Some

issues and experiences. Communications of the

ACM, pages 39-56, January 1991.

[21] H.C. Forsdick and R.H. Thomas. The design of Di-

amond: A distributed multimedia document sys-

tem. Technical report, TR number 5402, Bolt Be-

ranek and Newman Inc., October 1982.

[22] G. Forte and R.J. Norman. A self- assessment by

the software engineering community. Communica-

tions of the ACM, 35(4):28-32, April 1992.

[23] John W. Gintell and Gerard Memmi. CIA: Col-

laborative Inspection Agent experience: Building

a CSCW application for software engineering. In

Workshop on CSCW Tools, October 1992.

[24] J.D. Gould and N. Grischkowsky. Doing the same

work with hard copy and with cathode ray tube

(CRT) computer terminals. In Human Factors,

pages 323-337. ACM, 1984.

[25] W.S. Humphrey. Managing the Software Process.

Addison Wesley, 1989.

[26] C.M. Hymes and G. Olson. Unblocking brainstorm-

ing through the use of a simple group editor. In

CSCW 92 Proceedings, 1992.

[27] Simon M. Kaplan, William J. Tolone, Douglas P.

Bogia, and Celsina Bignoli. Flexible, active support

for collaborative work with ConversationBuilder.

In CSC W 92 proceedings, November 1992.

[29] Lotus Development Corporation. Lotus iVotes: The

Groupware Standani, release 3 edition, 1993.

[30] T. Malone, K. Grant, F. Furback, S. Brobst, and

M. Cohen. Intelligent information-sharing systems.

CACM, 30(5):390-402, May 1987.

[31] Vahid Mashayekhi, Janet Drake, Wei-Tek Tsai,

and John Riedl. Distributed collaborative software

inspection. IEEE Software, pages 66–75, Septem-

ber 1993.

[32] C.M. Neuwirth, D.S. Kaufer, R. Chandhok, and

J .H. Morris. Issues in the design of computer-

supported for co-authroing and commenting. In

Proceedings of the Third Conference on Computer-

Supported Cooperative Work, pages 183-195. Asso-

ciation for Computing Machinery, 1990.

[33] J.F. Nunarnaker, A.R. Dennis, J.F. George, W.B.

Martz, J.S. Valacich, and D.R. Vogel. GroupSys-

tems, chapter 8, pages 143–162. Van Nostrand

Reinhold, 1992.

[34] P.Wright and A. Lickorish. Proof-reading texts on

screen and paper. Behavior and Information Tech-

nology, 2(3):227–235, July-September 1983.

[35] John Riedl, Vahid Mashayekhi, Jim Schnepf, Mark

Claypool, and Dan Frankowski. Suitesound: A sys-

tem for distributed collaborative multimedia. IEEE

Ihansactions on Knowledge and Data Engineering,

pages 600–610, August 1993.

[36] S. Sakata. Development and evaluation of an In-

house multimedia desktop conference. IEEE jour-

nal on selected areas in communications, April 1990.

[37] M. Stefik, G. Foster, D.G. Bobrow, K. Kahn,

S. Lanning, and L. Suchman. Beyond the chalk-

board: Computer support for collaboration and

problem solving in meetings. Communications of

the ACM, 30(1):3247, January 1987.

[38] Apollo Systems. Introduction to the DSEE envi-

ronment. User Reference Manual.

[39] J.M. Tazelaar. In depth groupware. Byte Magazine,

December 1988.

[40] Walter F. Tichy. RCS - A system for version con-

trol. Software Practice and Experience, 15(7) :637–

654, July 1985.

[28] K.Y. Lai and T.W. Malone. Object lens: A

spreadsheet for cooperative work. In Proceedings

of 1988 Conference on Computer Supported Coop-

erative Work, 1988.

34

