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ABSTRACT
The research challenge addressed in this paper is to devise
e↵ective techniques for identifying task-based sessions, i.e.
sets of possibly non contiguous queries issued by the user of
a Web Search Engine for carrying out a given task. In order
to evaluate and compare di↵erent approaches, we built, by
means of a manual labeling process, a ground-truth where
the queries of a given query log have been grouped in tasks.
Our analysis of this ground-truth shows that users tend to
perform more than one task at the same time, since about
75% of the submitted queries involve a multi-tasking ac-
tivity. We formally define the Task-based Session Discov-
ery Problem (TSDP) as the problem of best approximating
the manually annotated tasks, and we propose several vari-
ants of well known clustering algorithms, as well as a novel
e�cient heuristic algorithm, specifically tuned for solving
the TSDP. These algorithms also exploit the collaborative
knowledge collected by Wiktionary and Wikipedia for de-
tecting query pairs that are not similar from a lexical content
point of view, but actually semantically related. The pro-
posed algorithms have been evaluated on the above ground-
truth, and are shown to perform better than state-of-the-art
approaches, because they e↵ectively take into account the
multi-tasking behavior of users.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—Clustering, Query for-
mulation, Search process

General Terms
Algorithms, Design, Experimentation

Keywords
Query log analysis, Query log session detection, Task-based
session, Query clustering, User search intent
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1. INTRODUCTION
There is a common belief that the Web is increasingly used

to simplify the accomplishment of various everyday activi-
ties. Since nowadays Web Search Engines (WSEs) are the
most important and used Web portals, such users’ behav-
iors can be revealed by analyzing and mining WSE query
logs [2, 26, 14, 8, 19, 30]. A very important piece of infor-
mation we can extract from a query log is represented by
“query sessions”, i.e. specific sets/sequences submitted by
a user while interacting with a WSE. Sessions represent the
basic unit of information for tasks like query suggestion [1],
learning to rank [23], enhancing interactions with the Web
Search Engine [34], etc.

In the literature, there are many definitions of query ses-
sions. In this paper, we are interested in identifying sessions
composed of queries issued by users having in mind a par-
ticular task/goal [31]. Unfortunately, the well-known time-
based detection methods fail in revealing such task-based
sessions, i.e., Web-mediated tasks, due to the multi-tasking
users’ behavior. Multi-tasking refers to the way users in-
teract with a WSE, by intertwining di↵erent tasks within
the same time period. Therefore, the extraction of such
task-based sessions requires to detect whether pairs of users’
queries are similar and, thus, related to the same task/goal.

The main contributions of our work are the following.
(i) We start by showing that users perform multi-tasking
search activities in the query streams issued to a WSE. This
makes it unsuitable to identify task-based sessions by only
exploiting techniques that simply split the stream of queries.
Then, we investigate three well-known clustering-based ap-
proaches and we propose a new heuristic for detecting Web-
mediated tasks. The obtained results show that the new
algorithm performs similarly to the best clustering-based
approach (i.e., weighted connected components) but it is
computationally lighter on average.
(ii) We use a query distance function, exploited by those al-
gorithms, which combines classical lexical content distance
measures, with the collaborative knowledge provided byWik-
tionary1 and Wikipedia2. This knowledge is used to enrich
the meaning of each issued query and, thus, to make more
accurate decisions during clustering.
(iii) Finally, we compare and evaluate the quality of all those
methods by exploiting a manually generated ground-truth,
i.e. a set of task-based sessions manually detected over the
queries submitted by several users.

1
http://www.wiktionary.org

2
http://www.wikipedia.org
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2. RELATED WORK
Analysis of query logs collected by most Web Search En-

gines (WSEs) has increasingly gained interest across Web
mining research community. Roughly, query logs record in-
formation about the search activities of users and so they
are a suitable source of information for understanding how
people search the Web or, in other words, the real intent
behind issued queries [30].

Previous work on session identification can be classified
into: 1) time-based, 2) content-based, and 3)mixed-heuristics,
which usually combine both 1) and 2).

1) Time-based. Usually, time-based techniques have been
adopted for their simplicity in previous research work.
Silverstein et al. [29] firstly defined a concept of “session” as
follows: two consecutive queries are part of the same session
if they are issued at most within a 5-minutes time window.
According to this definition, they found that the average
number of queries per session in the data they analyzed was
2.02. He and Göker [6] used di↵erent timeouts to split user
sessions of Excite query log, ranging from 1 to 50 minutes.
Radlinski and Joachims [23] observed that users often per-
form a sequence of queries with a similar information need,
and they referred to those sequences of reformulated queries
as query chains. Their paper presented a method for auto-
matically detecting query chains in query and click-through
logs using 30 minutes threshold for determining if two con-
secutive queries belong to the same search session.
Another definition of session, i.e. search episode, was given
by Jansen and Spink [8]. They described a session as the
period of time occurring from the first to the last recorded
time-stamp on the WSE server from a particular user in a
single day, so that session length might vary from less than
a minute to a few hours. Moreover, using the same concept
of search episode, Spink et al. [31] investigated also multi-
tasking behaviors while users interacting with a WSE.
In this paper, we show the presence of multi-tasking also
within shorter user activities.

2) Content-based. Some work suggested to exploit the
lexical content of the query themselves for determining a
possible topic shift in the stream of issued queries and, thus,
a session boundary [12, 7, 20]. To this extent, several search
patterns have been proposed by means of lexical comparison,
using di↵erent string similarity scores (e.g., Levenstein, Jac-
card, etc.). However, approaches relying only on content
features su↵er of the so-called vocabulary-mismatch prob-
lem, namely the existence of topically-related queries with-
out any shared terms. In order to overcome this issue, Shen
et al. [28] compared “expanded representation” of queries,
instead of the actual queries themselves. Each individual
expanded query was obtained by concatenating the titles
and the Web-snippets for the top 50 results provided by a
WSE for the specific query. Thus, the relatedness between
query pairs was computed using cosine similarity between
the corresponding expanded queries.

3) Mixed heuristics. Jansen et al. [9] assumed that a
new search pattern always identifies the start of a new ses-
sion. Moreover, He et al. [7] showed that statistical informa-
tion collected from query logs could be used for finding out
the probability that a search pattern actually implies a ses-
sion boundary. In particular, they extended their previous
work [6] to consider both temporal and lexical information.
Boldi et al. [1] introduced the query-flow graph as a model

for representing data collected in WSE query logs. They
exploited this model for segmenting the query stream into
sets of related information-seeking queries, leveraging on an
instance of the Asymmetric Traveling Salesman Problem.
Finally, Jones and Klinkner [11] addressed a problem that
appears to be similar to ours. In particular, they argue
that within a user’s query stream it is possible to recog-
nize particular hierarchical units, i.e., search missions, which
are in turn subdivided into disjoint search goals. A search
goal is defined as an atomic information need, resulting
in one or more queries, while a search mission is a set of
topically-related information needs, resulting in one or more
goals. Given a manually generated ground-truth, Jones and
Klinkner [11] investigated how to learn a suitable binary
classifier, which is aimed to precisely detect whether two
queries belong to the same task or not. Among various re-
sults, they realized that timeouts, whatever their lengths,
are of limited utility in predicting whether two queries be-
long to the same goal, and thus to identify session bound-
aries. Indeed, authors did not to explore how such binary
classifier could be exploited for actually segmenting users’
query streams into goals and missions.

3. THEORETICAL MODEL
A WSE query log stores queries submitted by users, along

with other information, such as userIDs, time-stamps, etc.
We denote with QL a WSE log of the queries submitted by a
set of users U = {u1, u2, . . . , uN

} during a given observation
period. Moreover, let q

i

2 QL be a generic query issued by
user u

i

, and q
i,j

2 QL be the j-th query issued by user u
i

.
The methods that extract meaningful user sessions from

QL have to analyze all the queries issued by each user u
i

.
Let S

i

be the sequence of all the queries q
i

2 QL issued by
user u

i

2 U , chronologically ordered during the period of ob-
servation recorded in the query log: S

i

= hq
i,1, qi,2, . . . , qi,Ki.

Therefore,

QL =
N[

i=1

S
i

Since users tend to issue bursts of queries for relatively
short periods of time, which are usually followed by longer
periods of inactivity, the time gap between queries plays a
significative role in detecting session boundaries. According
to [29], we detect the session boundaries by considering the
user’s inactivity periods, i.e. the time gaps between consec-
utive queries in each S

i

.

Definition 3.1 (Time-Gap Session �
i,k

). Let ⌧(q
i,j

)
bet the time at which the query q

i,j

is issued, and t
�

be the
maximum time gap threshold. The ordered set of consecutive
queries �

i,k

= hq
i,sk , . . . , qi,ek i ✓ S

i

, with s
k

< e
k

, is said to
be a time-gap session if it holds that: (i) ⌧(q

i,j+1)�⌧(q
i,j

) 
t
�

for every j, s
k

 j < e
k

, and (ii) there is no time-gap
session being a superset of �

i,k

. 2

It is worth noticing that this splitting technique makes no
restrictions on the total elapsed time between the first and
the last query of the sequence �

i,k

. Moreover, even if the
inactivity threshold is usually fixed arbitrarily, in our tests
we set t

�

= 26 minutes by analyzing the distribution of the
time gaps in the query log QL used for the experiments (see
Section 4.1).
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In this paper, we are interested in studying to which ex-
tent in such time-gap sessions we can further recognize task-
based sessions, i.e. sets of queries aimed at performing some
Web-mediated tasks. Queries within the same task-based
session do not necessarily occur consecutively in the time-
gap session �

i,k

. Indeed, we will show that a generic user
u
i

usually interleaves many di↵erent information needs and
related queries in each �

i,k

.

Definition 3.2 (Task-based Session ✓j
i,k

). Let �
i,k

be a time-gap session included in S
i

, and let ✓j
i,k

✓ �
i,k

be a task-based session, i.e., a set of (not necessarily con-
secutive) queries issued by user u

i

for performing a given
Web-mediated task. Such tasks form a disjoint partitioning
of a time-gap session. 2

We denote with ⇥
i,k

= [
j

✓j
i,k

all the task-based sessions
in a given time-gap session �

i,k

, and with ⇥ = [
i,k

⇥
i,k

the
set of all the task-based sessions in the query log QL, i.e.
the set-union of ⇥

i,k

for all users i and associated time-gap
sessions k.

The problem of finding ⇥ in a given query log can thus
be formulated as the Task-based Session Discovery Problem
(TSDP), whose goal is to find the best query partitioning
strategy ⇡ that, when used to segment each time-gap session
�
i,k

in QL, approximates the actual user task-based sessions
⇥

i,k

.

Definition 3.3 (TSDP). Given a query log QL, let
C
i,k

= {c1
i,k

, c2
i,k

, . . .} be the task-based sessions determined
by the query partitioning strategy ⇡, when applied onto �

i,k

,
i.e. ⇡(�

i,k

) = C
i,k

. Let ⇥ = [
i,k

⇥
i,k

and C
⇡

= [
i,k

C
i,k

. The
TSDP requires to find the best partitioning ⇡̄ such that

⇡̄ = argmax
⇡

⇠(⇥, C
⇡

)

where ⇠ is a given function that measures the quality of par-
titioning C

⇡

with respect to ⇥. 2

Several quality measures can be used to evaluate the ac-
curacy of a task-based session extraction, and consequently,
several ⇠ functions can be devised. In Section 6 we instanti-
ate ⇠ in terms of F-measure, Rand index and Jaccard index.

4. DATA ANALYSIS
We used the 2006 AOL query log as our testing data

set. This query log is a very large and long-term collec-
tion consisting of about 20 million of Web queries issued by
more than 657000 users over 3 months (from 03/01/2006 to
05/31/2006)3.
First of all, we removed query log records containing both
empty and “non-sense” query strings (e.g., query strings
composed of only punctuation symbols). Also, we removed
all the stop-words from each query string. Then, we run
the Porter stemming algorithm [21] for removing the most
common morphological and inflexional English endings from
the terms of each query string. Finally, the data cleaning
phase involved removing the long-term user sessions con-
taining too much queries, which were probably generated
by robots, instead of human users. Then, we considered as a
sample the 1, 000 user sessions with the highest number of
queries (top-1000).
3
http://sifaka.cs.uiuc.edu/xshen/aol_querylog.html

Hence, according to Def. 3.1, we split each user session
into several time-gap sessions. To this end, we had to de-
vise a suitable time threshold t

�

, which can be obtained by
analyzing the distribution of time gaps between all the con-
secutive query pairs in our data set. We divided all the time
gaps into several buckets, 60-seconds each. Therefore, we
analyzed the query inter-arrival times distribution, which is
revealed to be a power-law (Fig. 1(a)).

This model tightly fits user behaviors during Web search
activities, when consecutive queries issued within a short
period of time are often not independent because they are
also task-related.

More formally, given the following general form of a power-
law distribution p(x),

p(x) =
↵� 1
x
min

✓
x

x
min

◆�↵

where ↵ > 1 and x
min

is the minimum value of x from which
the law holds, we were interested in finding the value x̄,
such that two consecutive queries whose time gap is smaller
than x̄ are considered to belong to the same time-gap ses-
sion. When the underlying distribution is unknown, it makes
sense to assume a Gaussian distribution and use a thresh-
old x̄ = µ + � being equal to mean µ plus standard de-
viation �, which results in “accepting” � = 84.1% of the
samples. This is equivalent to consider the cumulative dis-
tribution P (x̄) = Pr(X  x̄) and to determine x̄, such that
P (x̄) = �. Since we know the underlying distribution, we
map the threshold � into our context as follows:

P (x̄) = C

Z
x̄

�1
p(X) dX =

↵� 1

x�↵+1
min

Z
x̄

�1
X�↵ dX =

✓
x̄

x
min

◆�↵+1

Hence, for our purpose we had to solve the following equa-
tion w.r.t. x̄:

P (x̄) =

✓
x̄

x
min

◆�↵+1

= � = 0.841 (1)

The value x
min

represents the minimum query pair time
gap and corresponds to the first interval, i.e., 60 seconds.
Therefore, we estimated ↵ = 1.58 and finally we can solve
Eq. 1 finding x̄ ' 26 minutes. This means to assume 84.1%
of consecutive query pairs are issued within 26 minutes. We
used this value, x̄, as the threshold t

�

for splitting each long-
term user session of the the query log.

4.1 Ground-truth construction
In order to approach the Task-based Session Discovery

Problem, according to our Def. 3.3, we need to find the query
partitioning strategy that best approximates the actual task-
based segmentation. Such optimal task-based partitioning
can be manually built from real WSE query log data. To
this end, we developed a Web application that helps human
assessors to manually identify the optimal task-based query
sessions from the previously prepared AOL query log, thus
producing a ground-truth that can be used for evaluating
automatic task-based session discovery methods.

Human annotators grouped together queries that they
claimed to be task-related within each time-gap session. Also,
they had chance to discard meaningless queries from those
sessions. For each manually identified task (i.e., set of task-
related queries), evaluators had to add a tag and, optionally,
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a longer description. Such data source could possibly rep-
resent a semantic knowledge base of users search goals (i.e.,
taxonomy of tasks).

Since long-term sessions in AOL query log were too long,
we only consider the first week of activities for each top-1000
user session. Finally, human evaluators were people selected
from our laboratory, but not directly involved in this work.

4.2 Ground-truth statistics
Manual annotation procedure concerned a total of 2,004

queries, from which 446 time-gap sessions were extracted au-
tomatically. A total of 139 time-gap session were discarded
as meaningless by the annotators, and therefore they were
removed from the ground-truth. Eventually, 1,424 queries
were actually clustered from 307 time-gap sessions.

Fig. 1(b) shows the distribution of time-gap session length,
using a discretization factor of 60 seconds. While there are
many session being less than 1 minute long, probably short
sessions with one or two queries, the average length of a
time-gap session is about 15 minutes. It is not infrequent
to have sessions lasting for 40 minutes. Also in this case,
the length of these sessions suggests that the interaction of
the user with the Web Search Engine is non trivial, and it is
likely to involve multi-tasking. Finally, the longest time-gap
session lasts 9207 seconds, i.e. about 2 hours and a half.

In Fig. 1(c) we report the time-gap session size distri-
bution. On average, each time-gap session contains 4.49
queries, the sessions with at most 5 queries cover slightly
more than half of the query log. The other half of the query
log contains longer sessions with high probability of having
multiple tasks being carried on in the same session.

The total number of human annotated task-based sessions
is 554, with an average of 2.57 queries per task. The distribu-
tion of the task-based sessions size is illustrated in Fig. 1(d).
The number of tasks accomplished in a time-gap session
is 1.80, see Fig. 1(e). In particular, only 162 out of 307
time-gap sessions contain one task only. We found that this
50% split between single-tasking and multi-tasking sessions
is consistent across the various users. Interestingly enough,
this shows that a good algorithm should be able to han-
dle e�ciently both single- and multi-tasking sessions. If we
consider the queries included in each task, then 1,046 out of
1,424 queries are included in multi-tasking sessions, meaning
that about 74% of the user activity is multi-tasking.

Finally, we also evaluated the degree of multi-tasking by
taking into account the number of overlapping task-based
sessions. We say that a jump occurs whenever two queries
in a manually labelled task-based session are not consecu-
tive. For instance, let � = hq1, q2, . . . , q9i be a time-gap
session and let ⇡(�) = {✓1, ✓2, ✓3} be the result of the man-
ual annotation procedure for �, where ✓1 = {q1, q2, q3, q4},
✓2 = {q5, q7}, and ✓3 = {q6, q8, q9}. In this case, the number
of jumps observed in � is 2, because there are two query pairs
(q5, q7) 2 ✓2 and (q6, q8) 2 ✓3, which are not consecutive.
The number of jumps gives a measure of the simultaneous
multi-tasking activity. We denote with j(�) the simulta-
neous multi-tasking degree of � as the ratio of task-based
sessions in � having at least one jump. In the previous ex-
ample j(�) ' 0.67, since 2 out of 3 tasks contain at least one
jump. In Fig. 1(f), we show the distribution of the multi-
tasking degree over all the time-gap sessions. Note that the
result for j(�) = 0 is omitted, because we already know that
50% of the sessions are single-tasking.

5. SESSION DISCOVERY METHODS
In this section, we address the Task-based Session Dis-

covery Problem (TSDP) introduced in Section 3 by propos-
ing and comparing several approaches and techniques. We
group the session discovery mechanisms into two broad fam-
ilies: (i) TimeSplitting-t and (ii) QueryClustering-m.
Basically, TimeSplitting-t consists of splitting each session
when the time between two query submissions is greater
than a threshold t. Besides, QueryClustering-m aims to de-
tect task-based sessions using a given clustering method m.

5.1 TimeSplitting-t (TS-t)
Intuitively, the simplest techniques for identifying sets of

task-related queries from a WSE’s log take only into account
query submission time. Time splitting techniques simply
break the stream of queries as long as the time gap between
two adjacent queries is greater than a certain threshold t.
This is based on the assumption that if two consecutive
queries are far away enough than they are also likely to be
unrelated. Note that time splitting techniques di↵er one
from each other only for the actual value of t.

According to Def. 3.1, time splitting techniques are used
for detecting time-gap sessions. In particular, we use a time
threshold t = 26 minutes for identifying time-gap sessions
of our query log (i.e., TS-26). This threshold have been
figured out from the testing data set using the methodology
described in Section 4.

Moreover, according to Def. 3.3, TSDP requires to find
the best partitioning strategy over all the time-gap sessions
available in the query log. A trivial partitioning strategy
is the one that simply consider each time-gap session as a
task-based session. In our case, this is equivalent to use only
TS-26 for addressing the TSDP. However, other partitioning
strategies might be figured out simply by applying di↵erent
time splitting techniques to each identified time-gap session.
In this regard, there are several time thresholds that have
been extensively proposed in literature [29, 6]. In this work,
we used TS-5 and TS-15, i.e., 5 and 15 minutes thresholds,
respectively.

The main drawback of time splitting methods is that they
are unable to properly deal with multi-tasking sessions, since
identified sets of task-related queries are actually composed
of temporarily ordered consecutive queries. Moreover, ac-
cording to the analysis we provided in Section 4.2, multi-
tasking sessions represent a significative sample of the total
available sessions, at least for our testing data set.

In Section 6, we compare the results provided by TS-5,
TS-15, and TS-26. Also, we show that they alone are not
suitable for identifying task-based sessions.

5.2 QueryClustering-m (QC-m)
We study three algorithms derived from well-known clus-

tering methods: QC-Means, QC-Scan, andQC-wcc. More-
over, we propose a novel algorithm as a variation of QC-

wcc, named QC-htc. All clustering algorithms have been
applied to time-gap sessions, which in turn have been pre-
liminary identified using TS-26 time splitting technique.

As for any other clustering problem, most important choices
involve both the features selected for computing the distance
function used by the algorithms and how such features might
be composed, as we show in the following.
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Figure 1: Statistics about the ground-truth data.
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5.2.1 Feature Selection

Evaluating the similarity between two queries is a very
complex issue. Most of the previous approaches are based
on distance between query lexical content [27]. The preci-
sion of those approaches results to be quite low due to the
short length of queries [29] and the lack of the contextual
information in which queries are issued [33]. Thus, some
approaches try to expand those short queries by exploiting
resulting URLs returned by WSEs [5], or the returned Web-
snippets [16], or the documents themselves [24]. Two queries
might be considered similar if they return similar results, or
similar documents. Unfortunately, it might be the case for
unrelated queries to share some results.

In our work, we propose two features and two similarity
measures for assessing the relatedness of two queries both in
terms of their lexicographical content and their semantics.

Content-based (µ
content

). Two queries that share some
common terms are likely related. Sometime, such terms may
be very similar, but not identical, due to mispelling, or di↵er-
ent prefixes/su�xes. To capture content distance between
queries, we adopt a Jaccard index on tri-grams [10]. Let
T (q) be the tri-grams resulting from the terms of query q,
we define the distance µ

jaccard

as follows:

µ
jaccard

(q1, q2) = 1� |T (q1) \ T (q2)|
|T (q1) [ T (q2)|

.

In addition, we exploit a normalized Levenstein distance
µ
levenstein

, which Jones and Klinkner [11] claimed to be
the best edit-based feature for identifying goal boundaries.
Finally, the overall content-based distance is computed as
follows:

µ
content

(q1, q2) =
(µ

jaccard

+ µ
levenstein

)
2

.

Semantic-based (µ
semantic

). We are interested in find-
ing a measure of the semantic relatedness between query
pairs. Typically, humans can easily judge the semantic re-
latedness between two terms. This human ability is backed
by their experience and knowledge, which makes it a hard
task for machines. If a machine should solve this task, it
also needs some source of knowledge. Usually, this knowl-
edge comes from: (i) large text collections (i.e., corpora) or
from (ii) semantic resources. Thus, we figured out that we
could expand each query with its “wikification”. Basically,
we exploit both Wiktionary and Wikipedia data sources for
increasing the meaningfulness of each query, trying to over-
come its lack of semantic information.
Several semantic relatedness metrics dealing with semantic
resources have been proposed in the past. They can be clas-
sified into: (i) path-based, in which knowledge is modeled
as a graph of concepts and the metrics rely on paths over
that graph [22, 13], (ii) information content-based that takes
into account the information content of a concept [25], (iii)
gloss-based, which is based on term overlaps between defi-
nitions of concepts [15], and (iv) vector-based that models
each concept as a vector of anchor links [18] or terms [4].
Following the last approach, we assume that a Wiktionary or
a Wikipedia article describes a certain concept and that the
presence of a term in a given article is an evidence of the cor-
relation between that term and that concept. Thus, we de-

scribe the wikification
�!
C (t) of a term t as its representation

in a high dimensional concept space
�!
C (t) = (c1, c2, . . . , cW ),

where W is the number of articles in our collections and
c
i

scores the relevance of the term t for the i-th article.
We measure this relevance by using the well known tf -idf
score [27].
In order to “wikify” the whole string associated with a query
q, we sum up the contribution from its terms, i.e.:

�!
C (q) =

X

t2q

�!
C (t).

Then, we compute the relatedness rel(q1, q2) between two
queries as the cosine of their corresponding concept vectors:

rel(q1, q2) =

�!
C (q1) ·

�!
C (q2)

|�!C (q1)||
�!
C (q1)|

.

Thus, the distance score µ
wikification

can be written as fol-
lows:

µ
wikification

(q1, q2) = 1� rel(q1, q2).

Of course, we use the same approach both for computing
µ
wiktionary

and µ
wikipedia

distances, taking into accountWik-
tionary and Wikipedia corpora, respectively. Finally, the
overall semantic-based distance is obtained as follows:

µ
semantic

(q1, q2) = min(µ
wiktionary

, µ
wikipedia

).

5.2.2 Distance Function

An immediate way to put together (i) the lexical content
(µ

content

) and (ii) the semantic expansion (µ
semantic

) dis-
tance is via a convex combination:

µ1 = ↵ · µ
content

+ (1� ↵) · µ
semantic

(2)

In addition, we propose a novel conditional distance func-
tion µ2 based on the following heuristic: if the content-
based distance between two queries does not exceed a certain
threshold then we can be confident that queries are also task-
related; otherwise, we look at the semantic expansion of the
queries and we compute the final distance score as the min-
imum between content-based and semantic-based distance
values.

µ2 =

⇢
µ
content

if µ
content

< t
min(µ

content

,b · µ
semantic

) otherwise. (3)

Both µ1 and µ2 relies on the estimation of some parameters,
i.e., ↵ for µ1 and t, and b for µ2. We exploited the ground-
truth for learning such parameters but here we do not show
the whole procedure we followed because it is not part of
the contributions we wanted to highlight in this work.

The rationale for introducing the conditional distance func-
tion µ2 is the following: we conjecture that if two queries are
close in term of lexical content, the semantic expansion could
be unhelpful. Vice-versa, nothing can be said when queries
do not share any common content feature (e.g., consider the
two queries “kobe bryant” and “nba”).

5.2.3 Algorithms

In the following we describe four clustering algorithms
that exploit the above functions. The first three are in-
sipired to well-known clustering algorithms, while the last
is a novel algorithm aiming at reducing the computational
cost of the clustering.
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QC-Means. QC-Means is a centroid-based algorithm and
represents a variation of the well-known K-Means [17]. We
replaced the usual K parameter, i.e. the number of clusters
to be extracted, with a ⇢ threshold that defines the maxi-
mum radius of a centroid-based cluster. This allows us to
better deal with the variance in length of the various user
sessions as well as to avoid specifying the number of final
clusters apriori.

QC-Scan. QC-Scan is the density-based DB-Scan algo-
rithm [3], specifically tailored for extracting task-based ses-
sions fromWSE query logs. The rationale for evaluating also
a variation ofDB-Scan is that centroid-based approach may
su↵er the presence of noise in query logs.

QC-wcc. QC-wcc, query clustering based on weighted
connected components, is a graph-based algorithm. Given
a time-gap based session �, it builds a complete graph G

�

=
(V,E,w), whose nodes V are the queries in �, and whose
E edges are weighted by the similarity of the correspond-
ing nodes. The weighting function w is a similarity function
w : E 7�! R 2 [0, 1] that can be easily instantiated in terms
of the distance functions µ1 or µ2, described in the previous
section (i.e., w = 1 � µ1 or w = 1 � µ2). The graph G

�

describes the similarity between any pair of queries in the
given tim-gap based session.
The rationale of QC-wcc is to drop weak edges, i.e. with
low similarity, since the corresponding queries are not re-
lated, and to build clusters on the basis of the strong edges,
i.e. with high similarity, which identify the related query
pairs. The algorithm preforms two steps. In the first step,
given the graph G

�

all the edges e 2 E whose weight is
smaller than a given threshold, that is w(e) < ⌘, are re-
moved, thus obtaining a pruned graph G0

�

. In the second
step, the connected components of G0

�

are extracted. Such
connected components identify the clusters of related queries
which are returned by the algorithm.
Note that this step could have been accomplished by adopt-
ing the classification-based method proposed by Jones and
Klinkner [11]. However, our aim was to detect task-based
sessions using heuristics that extract suitable features di-
rectly from the data we had, thus avoiding any kind of pre-
liminary step, which involves the training of a classifier.
Indeed, assuming a robust similarity function, the QC-wcc

algorithm is able to handle the multi-tasking nature of users
sessions. Groups of related queries are isolated by the prun-
ing of weak edges, and links with large similarity identify
the generalization/specialization steps of the users, as well
as restarts from a previous query when the current query-
chain is found to be unsuccessful.
The cost of QC-wcc is dominated by the construction of
the graph G

�

. Indeed, the similarity between any pair of
edges must be computed, resulting in a number of similarity
computations quadratic in the number of nodes, i.e. queries,
in the session.

QC-htc. In this section, we propose QC-htc, query clus-
tering based on head-tail components, a variation of the con-
nected components based algorithm, which does not need to
compute the full similarity graph. Since queries are submit-
ted one after the other by the user, the QC-htc algorithms
takes advantage of this sequentiality to reduce the number of
similarity computations needed by QC-wcc. The algorithm
works in two phases as follows.
The first step aims at creating an approximate fine-grained

clustering of the given time-gap session � = hq1, q2, . . . , qmi.
Every single Web-mediated task generates a sequence of
queries. Due to the multi-tasking behavior of users, multi-
ple Web-mediated tasks are carried on at the same time, and
the query log records such overlapping tasks, and the cor-
responding query sequences. As a consequence, each Web-
mediated task is observed as a set of fragments, i.e. smaller
sets of consecutive queries, and fragments of di↵erent tasks
are interleaved in the query log because of multi-tasking.
The algorithm exploits the sequentiality of user queries, and
tries to detect the above fragments, by partitioning the given
time-gap session into sequential clusters, where a sequential
cluster, denoted with c̃i, must contain only queries that oc-
cur in a row within the query log, and such that each query
is su�ciently similar to the chronologically following one.
Since we are only focussing on the similarity between one
query and the next, the detection of such sequential clusters
can be done in linear time.
The second step of the algorithm merges together those frag-
ments when they are related, trying to overcome the inter-
leaving of di↵erent tasks. Here we introduce another as-
sumption that reduces the computational cost of the algo-
rithm. We assume that a cluster of queries can be described
well by just the chronologically first and last of its queries,
respectively denoted with head(c̃i) and tail(c̃i). Therefore,
the similarity s between two clusters c̃i,c̃j is computed as:

s(c̃i, c̃j) = min
q2{head(c̃i),tail(c̃i)}
p2{head(c̃j),tail(c̃j)}

w(e(q, p))

where w weights the edge e(q, p) linking the queries p and q
on the basis of their similarity, analogously to QC-wcc.
The final clustering is produced as follows. The first cluster
c1 is initialized with the oldest sequential cluster c̃1, which is
removed from the set of sequential clusters. Then, c1 is com-
pared with any other sequential cluster c̃i (ordered chrono-
logically) by computing the similarity as above. Given a
threshold ⌘, if s(c1, c̃i) < ⌘, then c̃i is merged into c1, the
head and tail queries of c1 are updated consequently, and c̃i

is removed from the set of sequential clusters. The algorithm
continues comparing the new cluster c1 with the remaining
sequential clusters. When all the sequential clusters have
been considered, the oldest sequential cluster available is
used to build a new cluster c2.
The algorithm iterates this procedure until no more sequen-
tial clusters are left.
In the worst case, the complexity ofQC-htc is still quadratic
in the number of queries. However, there are frequent cases
in which the complexity is much smaller. We have seen that
52.8% of the time-gap bases sessions contain one task only.
In this case, it is very likely that this task is found after the
first step of the algorithm, if each query is su�ciently similar
to the next one, with a cost that is only linear in the number
of nodes. For multi-tasking sessions, the complexity in the
second step is quadratic in the number of sequential clusters
extracted. Also in this case, the cost reduction may be sig-
nificant. Suppose that the number of sequential clusters is
⇢|�|, with 0  ⇢  1, then the complexity of the algorithm
is O(⇢2|�|2). Suppose that the number of sequential clus-
ters is half the number of queries, than the algorithm is four
times cheaper than QC-wcc. Still, this is an upper bound of
the cost, since the QC-htc algorithm does not compute the
pair-wise similarities among sequential clusters in advance.
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6. EXPERIMENTS
In this section we analyze and compare the results ob-

tained with all the methods we described in Section 5 for
approaching the TSDP. Moreover, we compare our results
with the ones provided by two other methods: (i) the sim-
ple time splitting technique TS-26, which is considered as
the baseline solution and (ii) the session extraction method
based on the query-flow graph model proposed by Boldi et
al. [1], which represents the state of the art.

6.1 Measures of validity
In order to evaluate and compare all the methods we men-

tioned, we need to measure the degree of correspondence
between manually-extracted tasks of the ground-truth and
tasks produced by our algorithms. To this end, we use both
classification- and similarity-oriented measures [32]. In the
following, we thus refer to “predicted classes” as the task-
based sessions detected by a specific algorithm, whereas the
“actual classes” just correspond to the task-based sessions
of the ground-truth.
Classification-oriented approaches measure the degree to which
predicted classes correspond to actual classes and F-measure
is one of the most popular measure in this category. It com-
bines both precision and recall : precision measures the frac-
tion of a task that consists of objects of a specified class,
while recall measures the extent to which a task contains
all objects of a specified class. Thus, globally F-measure
evaluates the extent to which a task contains only objects
of a particular class and all objects of that class. Given
p(i, j), r(i, j) the precision and recall of task i with re-
spect to class j respectively, the F-measure is computed as:
F (i, j) = 2⇥p(i,j)⇥r(i,j)

p(i,j)+r(i,j) .
We have to compute F-measure for each task-based session
detected by an algorithm, where discarded queries are con-
sidered as singleton tasks (i.e., tasks containing only one
query). Finally, an overall F-measure value is computed by
a weighted average over all the tasks, by considering the size
of each task as weight.

Besides, similarity-oriented measures consider pairs of ob-
jects instead of single objects. Hence, given f00 = number of
pairs of objects having a di↵erent class and a di↵erent task,
f01 = number of pairs of objects having a di↵erent class and
the same task, f10 = number of pairs of objects having the
same class and a di↵erent task, and f11 = number of pairs of
objects having the same class and the same task, two mea-
sures are defined: (i) Rand index R = f00+f11

f00+f01+f10+f11
and

(ii) Jaccard index J = f11
f01+f10+f11

.
When computing both Rand and Jaccard index we did not
consider time-gap sessions containing only one singleton task.
Anyway, we still took into account time-gap sessions that are
composed of a single task with more than one query.

6.2 Evaluation
TimeSplitting-t. In this work, we compare three di↵er-
ent time splitting techniques: TS-5, TS-15, and TS-26,
which use 5, 15, and 26 minutes thresholds, respectively.
Tab. 1 shows the results we obtained using those techniques
on the ground-truth. The best result in terms of F-measure
was found considering the whole time-gap sessions identified
with TS-26, without additionally splitting them into shorter
time-gap sessions.
Hence, we consider TS-26 as the baseline approach for ad-

dressing the TSDP. Roughly, according to Def. 3.1 and Def. 3.2,
this is equivalent to identify task-based sessions with time-
gap sessions.

Table 1: TS-5, TS-15, and TS-26.

F-measure Rand Jaccard

TS-5 0.28 0.75 0.03
TS-15 0.28 0.71 0.08
TS-26 0.65 0.34 0.34

Query Flow Graph. In order to better evaluate our pro-
posed approaches we decided to compare them to the query-
flow graph (QFG) presented by Boldi et al. [1].
QFG has been constructed over a training segment of the
AOL top-1000 user sessions. This method uses chaining
probabilities measured by means of a machine learning method.
The initial step was to extract those features from the train-
ing log, and storing them into a compressed graph represen-
tation. In particular, we extracted 25 di↵erent features (i.e.,
time-related, session and textual features) for each pair of
queries (q, q0) that are consecutive in at least one session of
the query log.
The validity of QFG has been tested on the ground-truth
and the results we obtained are showed in Tab. 2. We found
the best values using a threshold ⌘ = 0.7. In fact, results do
not improve using a greater threshold value.
QFG significantly improved the baseline TS-26. In partic-
ular, F-measure is improved with a gain of ⇡ 16%. Further-
more, QFG gained ⇡ 52% in terms of Rand and ⇡ 15% in
terms of Jaccard.

Table 2: QFG: varying the threshold ⌘.

⌘ F-measure Rand Jaccard

QFG

0.1 0.68 0.47 0.36
0.2 0.68 0.49 0.36
0.3 0.69 0.51 0.37
0.4 0.70 0.55 0.38
0.5 0.71 0.59 0.38
0.6 0.74 0.65 0.39
0.7 0.77 0.71 0.40
0.8 0.77 0.71 0.40
0.9 0.77 0.71 0.40

QueryClustering-m. We now compare all the clustering
methods described in Section 5.2.3.
We start evaluating QC-Means algorithm using both the
distance functions µ1 and µ2. We empirically set the ra-
dius of this centroid-based algorithm to 0.4 for both distance
functions and the results are showed in Tab. 3.
Concerning µ1, the best results were obtained by using only
the content-based distance, i.e., with ↵ = 1. However, the
very best results for QC-Means were found when using µ2.
Here, we significantly improved the baseline TS-26 in terms
of F-measure (⇡ 10%) and Rand (⇡ 54%), while we lost
⇡ 21% in terms of Jaccard. Moreover, if we compare the
best QC-Means with the best QFG we can notice that QC-

Means lost ⇡ 6% for F-measure, ⇡ 33% for Jaccard but it
gained ⇡ 4% in terms of Rand.
Then, we analyzed QC-Scan algorithm, again using both
the distance functions µ1 and µ2. We used several combina-
tions of the two density-based parameters, i.e., minPts and
eps, and we found the best results with minPts = 2 and
eps = 0.4.
Tab. 4 highlights that QC-Scan provided globally better
results than QC-Means for both µ1 and µ2. Still, for µ1
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Table 3: QC-Means: µ1 vs. µ2.

QC-Means

µ1

F-measure Rand Jaccard
↵ (1� ↵)
1 0 0.71 0.73 0.26
0.5 0.5 0.68 0.70 0.14
0 1 0.68 0.70 0.13

QC-Means

µ2

F-measure Rand Jaccard
t b
0.5 4 0.72 0.74 0.27

the best results were obtained by using only content-based
distance, i.e., with ↵ = 1. However, our proposed condi-
tional function µ2 revealed a significative improvement with
respect to all measures.
Finally, it is worth noticing that QC-Scan behaved exactly
asQFG, except for the Jaccard whereQC-Scan lost ⇡ 53%.

Table 4: QC-Scan: µ1 vs. µ2.

QC-Scan

µ1

F-measure Rand Jaccard
↵ (1� ↵)
1 0 0.77 0.71 0.17
0.5 0.5 0.74 0.68 0.06
0 1 0.75 0.68 0.07

QC-Scan

µ2

F-measure Rand Jaccard
t b
0.5 4 0.77 0.71 0.19

The third algorithm we considered isQC-wcc. Tab. 5 shows
the results we found using this algorithm either with dis-
tance function µ1 and µ2 and by varying the pruning thresh-
old ⌘. In particular, concerning µ1 we only considered the
best convex combination when ↵ = 0.5.
The best results with µ1 were obtained when ⌘ = 0.2, while
even better results were found with µ2 when ⌘ = 0.3. In this
last case, the overall evaluation was significantly higher than
the baseline TS-26 but also than the state-of-the-art ap-
proach QFG. Concerning TS-26, the best QC-wcc gained
⇡ 20%, ⇡ 56%, and ⇡ 23% in terms of F-measure, Rand,
and Jaccard, respectively. Moreover, QC-wcc improved
also the results of QFG, gaining ⇡ 5% for F-measure, ⇡ 9%
for Rand, and ⇡ 10% for Jaccard.
QC-htc is the last algorithm we introduced and represents
one of the novel contribution of our work. The results we
got using this approach with both distance functions µ1 and
µ2 and by varying the pruning threshold ⌘ are showed in
Tab. 6. As for QC-wcc, regarding µ1 we only considered
the best convex combination when ↵ = 0.5. Again, the
best results with µ1 were obtained when ⌘ = 0.2, while the
global best results were found with µ2 when ⌘ = 0.3. As
the table shows, the overall results are very close to the ones
obtained with QC-wcc. In particular, QC-htc improved
TS-26 by gaining ⇡ 19%, ⇡ 56%, and ⇡ 21% in terms of F-
measure, Rand, and Jaccard, respectively. Therefore, QC-

htc provided better results than QFG and gained ⇡ 4% for
F-measure, ⇡ 9% for Rand, and ⇡ 8% for Jaccard.
Globally, Tab. 7 gives an overview and compares the best
results found with each examined approach.
Finally, Tab. 8 clearly points out the benefit of exploiting
collaborative knowledge like Wikipedia. QC-htc was able

Table 5: QC-wcc: µ1 vs. µ2 varying the threshold ⌘.

QC-wcc

µ1 (↵ = 0.5)
⌘ F-measure Rand Jaccard
0.1 0.78 0.71 0.42
0.2 0.81 0.78 0.43
0.3 0.79 0.77 0.37
0.4 0.75 0.73 0.27
0.5 0.72 0.71 0.20
0.6 0.75 0.70 0.14
0.7 0.74 0.69 0.11
0.8 0.74 0.68 0.07
0.9 0.72 0.67 0.04

QC-wcc

µ2 (t = 0.5, b = 4)
⌘ F-measure Rand Jaccard
0.1 0.67 0.45 0.33
0.2 0.78 0.71 0.42
0.3 0.81 0.78 0.44
0.4 0.81 0.78 0.41
0.5 0.80 0.77 0.37
0.6 0.78 0.75 0.32
0.7 0.75 0.73 0.23
0.8 0.71 0.70 0.15
0.9 0.69 0.68 0.08

Table 6: QC-htc: µ1 vs. µ2 varying the threshold ⌘.

QC-htc

µ1 (↵ = 0.5)
⌘ F-measure Rand Jaccard
0.1 0.78 0.72 0.41
0.2 0.80 0.78 0.41
0.3 0.78 0.76 0.35
0.4 0.75 0.73 0.25
0.5 0.73 0.70 0.18
0.6 0.75 0.70 0.13
0.7 0.74 0.69 0.10
0.8 0.74 0.68 0.06
0.9 0.72 0.67 0.03

QC-htc

µ2 (t = 0.5, b = 4)
⌘ F-measure Rand Jaccard
0.1 0.68 0.56 0.32
0.2 0.78 0.73 0.41
0.3 0.80 0.78 0.43
0.4 0.80 0.77 0.38
0.5 0.78 0.76 0.34
0.6 0.77 0.74 0.30
0.7 0.74 0.72 0.21
0.8 0.71 0.70 0.14
0.9 0.68 0.67 0.07

Table 7: Best results obtained with each method.

F-measure Rand Jaccard

TS-26 (baseline) 0.65 0.34 0.34
QFG

best

(state of the art) 0.77 0.71 0.40

QC-Means

best

0.72 0.74 0.27
QC-Scan

best

0.77 0.71 0.19
QC-wcc

best

0.81 0.78 0.44
QC-htc

best

0.80 0.78 0.43

to capture and group together two queries that are com-
pletely di↵erent from a content-based perspective, but that
are strictly semantically-related, using the function µ2. In-
deed, “Cancun” is one of the region where the “Hurricane
Wilma” impacted during the 2005 season (see the cross ref-
erence inside the corresponding Wikipedia article4). More-
over, “Los Cabos” and “Cancun” are both in Mexico despite
they are far away from each other. It might be the case,

4
http://en.wikipedia.org/wiki/Cancun
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of course with no absolute certainty, the user was looking
for the relative position of Los Cabos from Cancun just to
understand if Los Cabos was struck by the hurricane as well.

Table 8: The impact of Wikipedia: µ1 vs. µ2

QC-htc

µ1 (↵ = 1) QC-htc

µ2 (0.5, 4)
Query ID Query String Query ID Query String

63 los cabos
64 cancun

65 hurricane wilma 65 hurricane wilma
68 hurricane wilma 68 hurricane wilma

7. CONCLUSION AND FUTURE WORK
We have discussed a technique for splitting into mean-

ingful user sessions a very large, long-term log of queries
submitted to a Web Search Engine (WSE). We have for-
mally introduced the Task-based Session Discovery Prob-
lem as the problem of extracting from a stream of user’s
queries several subsequences of queries which are all related
to the same search goal, i.e., a Web-mediated task. We
have also proposed a clustering-based solution, leveraging
distance measures based on query content and semantics,
while query timestamps were used for a first pre-processing
breaking phase. In particular, we exploited both Wikipedia
and Wiktionary to infer the semantics of a query. Our novel
graph-based heuristic, QC-htc, which is a simplification of
the weighted connected components QC-wcc, significantly
outperforms other heuristics in terms of F-measure, Rand
and Jaccard index. As future work, we plan to learn a model
that describes how users compose together several tasks for
enacting more complex Web-mediated processes. Finally, we
aim at investigating how such processes or parts of them can
be recommended, devising a novel recommender system that
goes beyond the simple query suggestion of modern WSEs.
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