N

HAL

open science

Negotiating and delegating obligations

Meriam Ben Ghorbel, Frédéric Cuppens, Nora Cuppens-Boulahia

» To cite this version:

Meriam Ben Ghorbel, Frédéric Cuppens, Nora Cuppens-Boulahia. Negotiating and delegating obliga-
tions. MEDES 2010: international Conference on Management of Emergent Digital EcoSystems, Oct

2010, Bangkok, Thailand. hal-00527576

HAL Id: hal-00527576
https://hal.science/hal-00527576
Submitted on 19 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00527576
https://hal.archives-ouvertes.fr

Negotiating and Delegating Obligations

Meriam _ Frédéric Cuppens Nora Cuppens-Boulahia
Ben-Ghorbel-Talbi Institut TELECOM/Telecom Institut TELECOM/Telecom
Institut TELECOM/Telecom Bretagne Bretagne
Bretagne 2 rue de la Chataigneraie, 2 rue de la Chataigneraie,

2 rue de la Chéataigneraie,
35576 Cesson Sévigné
Cedex, France
meriam.benghorbel @telecom-
bretagne.eu

ABSTRACT

In this paper, we describe a security model where users are
allowed to control their obligations partially or totally, de-
pending on the security policy. The main motivation of our
work is to design more flexible systems that take into ac-
count users’ requirements in order to avoid obligation viola-
tions and therefore sanctions. In our model, users are able
to negotiate or delegate their obligations in the case of in-
capacity to fulfill them. This is an important aspect to be
considered, since it is common that, at work or in everyday
life, a user may need to negotiate the fulfillment of a given
obligation, or also need the help of others to perform a task
on his/her behalf. This may be due to several reasons such
as absence, vacation, conflict of interest, lack of time, of re-
source, of competence or simply for the sake of efficiency. In
our model, we propose an approach to deal with the negoti-
ation and the delegation of obligations based on the concept
of contexts.

Categories and Subject Descriptors

D.4.6 [OPERATING SYSTEMS]: Security and Protec-
tion—Access controls

General Terms
Security

Keywords
Obligations, Delegation, Context, The OrBAC model

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MEDES’10 October 26-29, 2010, Bangkok, Thailand

Copyright 2010 ACM 978-1-4503-0047-6/10/10 ...$10.00.

35576 Cesson Sévigné
Cedex, France
frederic.cuppens@telecom-
bretagne.eu

35576 Cesson Sévigné
Cedex, France
SWID
80 avenue des Buttes de
Coesmes, 35700 Rennes,
France
nora.cuppens@telecom-
bretagne.eu

Obligations [6, 15, 16] are an important means to specify
security control, in particular usage control [19, 20]. Obliga-
tions must not be violated and must be fulfilled by a fixed
deadline, otherwise sanctions are inflicted upon users. Puni-
tive sanctions may correspond to the activation of new se-
curity rules such as prohibitions or new obligations. This
means that when users fail to fulfill their obligations, they
may have their privileges revoked or a more costly obliga-
tions may be prescribed. Sanctions are necessary in order to
keep the system compliant with its security policy, but, in
some cases, users are not able to fulfill their obligations. For
instance, in the case of their absence, if they have another
obligation that is conflictual or if they do not have sufficient
resource, competence or time to fulfill the requested task.
This requires the security models to be more flexible in or-
der to allow users to manage their own obligations to avoid
inevitable violations and unjust sanctions. Our main mo-
tivation is to propose a system that guarantees that users
have sufficient means to fulfill their obligations by their self
or by others. This is important to ensure the correct be-
havior of the system and thus its security, especially when
obligations are related to sensitive data, to security tasks or
to the availability of services.

For this purpose, we first propose the concept of obligation
negotiation. In our model, authorized users are able to ne-
gotiate their obligation revision with the responsible entity,
called authority, in order to obtain its consent. Negotia-
tion may concern different aspects of the obligation such as
the task, the sanction or also the deadline. For instance, in
a conference program committee a reviewer can negotiate
with the PC Chair the revision deadline in order to extend
it. But, negotiation is not always possible or authorized.
For instance, governmental obligations such as the payment
of tax or traffic offense fine are mandatory and in the case
of violation, can impose heavy financial burdens. Therefore,
we also propose the use of obligation delegation [10, 18, 23,
3]. For instance, when a user is not available, he/she can
delegate the payment of his/her traffic offense fine or elec-
tricity bill to another user. Note that in this case one can
only delegate the obligation to pay, but not the responsi-
bility and the sanction related to it, e.g. to pay a higher
bill or to go to jail. In other cases, users can delegate the
obligation and also the responsibility related to it. For this

reason, we propose to distinguish between these two notions
as we suggested in [3]. Moreover, we argue that the consent
of the user who will receive the delegation (called the del-
egatee) must be required, except for some situations where
there are power relationships. To this end, we propose a del-
egation protocol to allow users to negotiate the delegation of
obligations and responsibilities. We propose to manage con-
sent requirement using the concept of pre-obligations [5, 13],
i.e. the delegation is allowed only if the user has requested
and obtained the consent. We also introduce the concept of
obligation pre-notification in order to inform users that their
obligations will be activated or violated. This allows users
to know their obligations (and obligations that are delegated
to them) in order to fulfill them on time, to negotiate or also
to delegate them.

This paper is organized as follows. In section 2, we start
with the system description. We give the main concepts of
our model and how we use contexts to deal with the obliga-
tion activation and violation. In section 3, we introduce the
concept of notification of obligation and violation. Then, in
section 4 we discuss obligation negotiation and we present
our negotiation protocol. We give in section 5 our delegation
protocol and we introduce the concept of dynamic consent
and pre-obligations. In section 6, we present related work.
Finally, concluding remarks and future work are made in
section 7.

2. SYSTEM DESCRIPTION

We are based on a highly structured RBAC model called
OrBAC [11]. This model provides means to specify the secu-
rity policy at the organization level that is independently of
the implementation of this policy. Thus, instead of modeling
the policy by using the concrete concepts of subject, action
and object, the OrBAC model suggests reasoning with the
roles that subjects, actions or objects play in the organiza-
tion. The role of a subject is simply called a role, whereas
the role of an action is called an activity and the role of an
object is called a view. Moreover, the concept of context is
explicitly introduced in OrBAC, which actually provides our
model with high flexibility and expressiveness. More details
about the OrBAC model and the motivation for using it to
deal with delegation are given in [4]. We give hereafter the
basic concepts that are required in this paper.

2.1 Basic predicates

In OrBAC, there are eight basic sets of entities: Org (a set
of organizations), S (a set of subjects), A (a set of actions),
O (a set of objects), R (a set of roles), A (a set of activities),
V (aset of views) and C' (a set of contexts). In the following
we give the basic OrBAC built-in predicates:

e Empower is a predicate over domains Org x S x R.
If org is an organization, s a subject and r a role,
Empower(org, s,r) means that org empowers s in r.

e Use is a predicate over domains Org x O x V. If org
is an organization, o is an object and v is a view, then
Use(org, o,v) means that org uses o in v.

e Consider is a predicate over domains Org x A x A. If
org is an organization, « is an action and a is an activ-
ity, then Consider(org,a,a) means that org considers
that action a implements activity a.

e Hold is a predicate over domains Org x S x Ax O x C.
If org is an organization, s a subject, a an action, o
an object and ¢ a context, Hold(org, s, a,0,c) means
that within organization org, context ¢ holds between
s, a and o.

e Permission is a predicate over domains Orgs x Rs x
Aq x V, x C, where Orgs = OrgU S,Rs = RUS, A, =
AUA and V, = VUO. More precisely, if auth is an
organization or a subject, g is a role or a subject, t is
a view or an object, p is an activity or an action and
c is a context, then Permission(auth,g,p,t,c) means
that auth grants permission to g to perform p on t in
context c.

e Obligation is a predicate over domains Orgs x Rs x Ag X
V, x C x C. More precisely, if auth is an organization
or a subject, g is a role or a subject, ¢t is a view or
an object, p is an activity or an action and ci, c2 are
contexts, then Obligation(auth, g, p,t,c1,c2) means that
g is obliged to auth to perform p on ¢t when context ci
is activated and before the activation of context cs.

e Concrete predicates Is-Permitted and Is-Obliged are
predicates over domains S x A x O. These predicates
enable to specify permissions, prohibitions and obliga-
tions at the concrete level, which are based on sub-
jects, actions and objects. A concrete predicate is de-
rived from an abstract one when the associated context
holds. More details are given in section 2.4.

o Is-Fulfilled and Is-Violated are predicates over do-
mains S x A x O. If s is a subject, a is an action
and o is an object, then Is-Fulfilled(s,a,0) (resp. Is-
Violated(s, a, 0)) means that, subject s has fulfilled (resp.
violated) the obligation to perform action a on object
0. When the predicate Is-Violated is derived, a sanc-
tion is imposed. This generally corresponds to the
activation of new security rules (e.g. prohibitions or
obligations).

2.2 Obligations as duty objects

The administration model is based on an object-oriented
approach [4]. Thus users having administrative privileges do
not manipulate privileges directly (i.e. Permission, Prohibi-
tion and Obligation), but instead use (i.e. create, update or
delete) objects having a specific semantics and belonging to
specific views, called administrative views. Each object has
an identifier that uniquely identifies the object and a set of
attributes to describe it.

The view Norm is used to specify and manage users’ priv-
ileges. Therefore, objects belonging to this view may have
three types: license, ban or duty; and according to this
type the existence of an object in this view is interpreted as
a Permission, a Prohibition or an Obligation, respectively.
In [4], it is shown how to model license objets and how to
use them to manage delegation of permissions. Duty ob-
jects have the following attributes: Awuth: entity that im-
poses the duty, Obligatee: subject to which the obligation
is assigned, Task: action that must be executed, Target:
object on which the duty applies, Context: specific condi-
tions that must be satisfied to activate the obligation and
Context_Violation: specific conditions that represent the

obligation deadline. There is the following rule to derive
obligations from duty objects!:

Obligation(Auth, R, A, V, Ctz, CtzV):-
Use(Org, D,norm), Type(D, duty), Auth(D, Auth),
Obligatee(D, R), Task(D, A), Target(D,V),
Context(D, Ctz), Context_Violation(D, CtzV').

When the attribute obligatee is a role we need an addi-
tional rule to derive obligations that apply to subjects:

Obligation(Auth, S, A,0,C,Cv) :-
Obligation(Auth, R, A,0,C,Cy),
Use(Auth, R, role), Empower(Auth, S, R).

Note that the attribute Auth can be an organization (e.g.
a government, a hospital), or a subject. Thus, obligations
can be imposed by a moral or a physical authority, respec-
tively.

2.3 Group Obligations

The OrBAC model introduces the concept of group obli-
gations [14]. It allows the expression of obligations which
apply to a group of subjects (role) that share the related
responsibility, or/and to a group of actions (activity) or ob-
jects (view) that express a set of alternative operations for
the fulfillment of the obligation. A group obligation is spec-
ified using a new context Ctx_g called group context:

Obligation(Auth, R, A, V, Ctx, Ctz_v, Ctz_g).

where Ctr_g is an obligation group context defined as fol-
lows: groupContext(Qe, Qe, Qe), Q is one of the quantifiers
{V,3} and e is an element of {a, s, 0}.

An obligation is called group obligation when its group
context contains the quantifier 3, otherwise it is a regular
obligation, i.e. an obligation for every subject empowered in
the obligation’s role to take every action considered in the
obligation’s activity on every object used in the obligation’s
view. An example of a group obligation is that “one of the
meeting participants must submit a meeting report”:

Obligation(Auth, meeting_member, submit, report,
end_meeting, deadline_report, groupContext(Jo, Ja, Is)).

where contexts end_meeting and deadline_report are acti-
vation and violation contexts, and groupContext(Jo, Ja, Is)
means that meeting_member is a set of users that share the
obligation to submit a report.

In the rest of this paper, we omit the group context in the
case of regular obligations.

2.4 Obligations and Contexts

In our model, we are based on contextual security rules,
this means that, the security rule does not apply statically

ITo express rules and facts, we shall actually use a prolog-
like notation. Terms starting with a capital letter, such as
Subject, correspond to variables and terms starting with a
lower case letter, such as peter, correspond to constants
2There are two other similar rules to respectively interpret
duties when the attribute Task is an activity and the at-
tribute T'arget is a view.

but its activation may depend on contextual conditions (ex-
amples of context may be Night, Working-Hours or Ur-
gency). Contexts are classified into five types: the Temporal
context that depends on the time at which the subject is re-
questing for an access to the system, the Spatial context
that depends on the subject location, the User-declared
context that depends on the subject objective (or purpose),
the Prerequisite context that depends on characteristics
that join the subject, the action and the object, the Provisi-
onal context that depends on previous actions the subject
has performed in the system. There is also a context called
Nominal that is always active for any subject, action and
object.

Conditions that must be satisfied to derive that a context
is active are modeled by a logical rule called context defi-
nition. In our model, it is possible to define a state-based
context using derivation rules as follows:

Hold(Org, S, A, O, Ctx):-
pl(Xl), e ,pn(Xn).

This means that context C'tz holds in organization Org for
subject S, action A and object O if a sequence of conditions
denoted by the predicates p1(X1), ..., pn(Xn) is true.

In addition, it is possible to define an event-based con-
text [12] using ECA event definition [1] to take into account
the dynamic activation of obligations:

Hold(Auth, S, A, O, Ctz) after a(X)
ifpl(X1)7 R 7pn(Xn)

This is an event definition proposition meaning that con-
text Ctx holds between Auth, S, A and O if the conditions
p1(X1), ..., pn(Xn) are true in the state following the exe-
cution of the action a(X).

We can also combine these elementary contexts to define
new composed contexts by using conjunction, disjunction
and negation operators: &, @ and = This means that if
c1 and c2 are two contexts, then c; & co2 is a conjunctive
context, c1 @ cz is a disjunctive context and ¢ is a negative
context.

The notion of context is very useful in our model and
allows us to specify dynamic security policy. In this section,
we are interesting in contexts used to deal with obligations,
namely event-based contexts. State-based contexts are used
to deal with permissions and prohibitions.

Obligation Activation. Actual obligations are derived
for some subject, action and object when the obligation con-
text holds:

Hold(Auth, S, A, O, C)
initiates Is_Obliged(S, A, O)
if Obligation(Auth, S, A, O,C,CtzV)

This is an active rule proposition meaning that the acti-
vation of the obligation context C' between Auth, S, A and
O triggers the derivation of a concrete obligation for subject
S to fulfill action A on object O. When the obligation is
fulfilled the predicate Is_Fulfilled is derived and the corre-
sponding actual obligation is removed from the policy.

Obligation Violation. When the violation context is
active and the obligation is not yet fulfilled, we need to derive
a violation:

Hold(Auth, S, A,O,CtzV)
initiates Violation(S, A, O)
if Obligation(Auth, S, A, O, C, CtxV'), 1s_Obliged(S, A, O)

This is an active rule proposition meaning that the activa-
tion of the violation context CtxV between Auth, S, A and
O triggers the derivation of a violation for S if the concrete
obligation is not yet fulfilled.

3. NOTIFICATION CONTEXT

In this section, we introduce the concept of the pre-notifi-
cation of obligation activation and violation. This means
that, in addition to the notification sent to users when their
obligations are activated or violated, we propose to pre-
notify users that they must perform an obligation before
some activation/violation context associated with the obli-
gation occurs. In fact, users may not know their obliga-
tions and even if it is the case, they may not know when
these obligations will be activated and/or violated. There-
fore, pre-notification enables users to understand and to be
aware of their duties, i.e. in which time, condition or after
which action their obligations are activated and violated.

In our model, we deal with notification and pre-notification
similarly using notification predicates as follows:

e Notifyow is a predicate over domains Orgs x S x A x
O x C x C. If auth is an organization or a subject,
s is a subject, a is an action, o is an object, ¢ and
¢’ are contexts, then Notifyoy (auth, s,a,o,c,c¢’) means
that user s is notified (or pre-notified) that his/her
obligation is active (or will be activated) in context ¢
and must be fulfilled before the activation of context
c.

e Notifyyio is a predicate over domains Orgs x S x A x
O x C. If auth is an organization or a subject, s is
a subject, a is an action, o is an object and ¢ is a
context, then Notifyy ;o (auth, s, a,o,c) means that s is
notified (or pre-notified) that he/she has violated (or
will violate) his/her obligation in context c.

To define pre-notification, we need to specify when the
activation and the violation of an obligation must be pre-
notified. For this purpose, we define a new type of context
that we call notification context and we denote C™. Thus,
each context ¢ can be associated with its notification con-
text ¢~ which defines when users must be notified of the
activation of c¢. This is specified as follows:

e notifContext is a predicate over domains C x C. If ¢
and ¢~ are contexts, then notifContext(c, ¢™) means
that ¢~ is the notification context of c.

For instance, the spatial context entering room r can be
notified when the user is close to room 7:

noti f Context(entering_Room(r), closeT'o_Room(r)).

Or, the temporal context day d can be notified one day
before:

noti fContext(day(d), day(d — 1)).

Therefore, activation and violation contexts can be asso-
ciated with notification contexts in order to specify when

obligation activation and violation are pre-notified. Obvi-
ously, the security administrator will define the notification
context only if it is necessary. For instance, if users must
be notified before a given time interval in order to fulfill the
requested task successfully (e.g. to attend a meeting) or
before/after performing a given action to be aware of their
future obligations (e.g. to accept a contract). Otherwise,
pre-notification is not required and users are only notified
when the activation or violation of an obligation occurs.
We define now these two rules to derive notification and
pre-notification for obligation activation and violation:

Hold(Auth, S, A,0,C")
initiates Notifyow (Auth, S, A, O, C, Ov)
if Obligation(Auth, S, A, O, C, Cv),noti f Context(C,C")

Hold(Auth, S, A, O, CY)

initiates Notifyvio(Auth, S, A,O,Cy)

if Obligation(Auth, S, A, O, C,Cv), Is_Obliged(S, A, O),
noti fContext(Cv,CY)

This means that when context C™ or C{; holds, then users
are pre-notified that their obligation will be activated or
violated in a given context C' or Cy, respectively. By default,
the notification context takes the value of it’s corresponding
context. Thus, users are also notified when the obligation is
activated and violated (i.e. when context C' and Cy holds,
respectively).

4. NEGOTIATING OBLIGATIONS

Users must be able to manage their obligations if they
do not have sufficient resource, competence or time to fulfill
the requested task or for the sake of efficiency. This is also
useful in the case of conflicts between obligations, since an
obligation can be modified (delayed or cancelled) in order to
solve the conflict, as suggested in [9]. In [16] authors propose
the concept of accountability that says that obligations are
assigned only when users are able to fulfill them, i.e. users
have sufficient privileges and resource to carry out the re-
quested task. But, we argue that this is not sufficient to
take into account users’ requirements because the system is
not always aware of their capabilities and/or availabilities.
For instance, in the case of a conference reviewing system, a
reviewer that is obliged to submit a paper review in a given
deadline, has necessary sufficient privileges and resource to
perform this obligation. But, he/she may need to delegate
the paper review to a more expert colleague, or also to ne-
gotiate a deadline extension with the PC Chair.

In this section, we describe how users can negotiate their
obligations with the responsible entity in order to adapt
them, e.g. to extend the obligation violation context or the
obligation activation, or also to reduce the task. For this
purpose, we define two types of obligations: contractual and
organizational, according to whether the obligation is nego-
tiable or not, respectively.

To take into account the obligation type, we add an addi-
tional attribute to the duty objects, called Ctx_Nego: the
negotiation context that specifies in which conditions users
are allowed to negotiate their duties. In the case of organi-
zational obligations this context is not specified. Otherwise,
a permission to negotiate the obligation is derived for the
obligatee as follows:

Permission(Auth, S, negotiate, D, Cx) :-
Use(Org, D,norm), Type(D, duty), Auth(D, Auth),
Obligatee(D, S), Ctz_Nego(D, Cy).

This means that obligatee S is allowed to negotiate duty
D with authority Auth when context C'n holds. Using this
context the administrator may specify complex negotiation
conditions such that users are allowed to negotiate only some
of the duty attributes, e.g. the violation or the activation
context, or also users are allowed to negotiate their obliga-
tions only before their violation.

Before presenting how users negotiate their obligations
with the authority in favor of whom the duty is contracted,
we first introduce the built-in predicates that are used in
agent communication.

e Request is a predicate over domains S x S x A x O.
This predicate is used when subject s requests another
subject s’ to perform action a on object o.

e Approve, Disapprove are predicates over domains S x
Sx AxO. Approve(s,s’,a,o) (resp. Disapprove (s, s,
a,0)) is used when subject s approves (resp. disap-
proves) the request of subject s’ to perform action a
on object o.

e Counter_Proposal is a predicate over domains S x
S x Ax O x0. Counter_Proposal(s,s’,a,o,0') is used
when a subject s negotiates the request of subject s
to perform a on o and proposes object o’ as a counter
proposal.

For the sake of simplicity, we only focus here on obliga-
tions associated with physical entity, namely when the au-
thority is a subject, and not an organization. Negotiating
with moral entity involves more sophisticated concepts and
will be discussed in future work. Indeed, when the authority
is an organization, such as the government, we need to spec-
ify the physical entities in charge of the negotiation, and also
the entities in charge of the sanction in the case of violation.
In addition, it is possible to negotiate obligations between
two moral entities, i.e. the obligatee is also an organization,
such as a hospital. In this case, we have to specify the physi-
cal entities in charge of the negotiation between the hospital
and the government.

The Negotiation Protocol. Negotiation can be estab-
lished between an obligatee (U) and the authority (U’) in
order to adapt the obligation before or after its activation/
violation (see Fig.1). The obligatee U can send a negotia-
tion request to the authority U’ in order to negotiate duty
D as follows:

Request(U,U’, negotiate, D).
The authority U’ can approve or disapprove the proposed

duty, or further negotiate the obligation by sending a counter-

proposal with another duty D'

Approve(U’, U, negotiate, D).
Disapprove(U’, U, negotiate, D).
Counter_Proposal(U’, U, negotiate, D, D’).

The obligatee U in turn, can approve, disapprove or re-
negotiate the duty. Note that, using the duty objects it is

possible to negotiate all obligation attributes. This means
that authorized users can request to modify the task, the
target, the activation context or/and the violation context.
We may also negotiate the sanction associated with the obli-
gation, but this aspect is not addressed in this paper.

The Obligatee U The Authority U'

,’,,,,,,B%qy?,sw!!,r1<%99!i;a}9’,'?,,9‘1 ,,,,,,,,,, R

< Approve(U', U, negotiate, D, D) ____ 1

Figure 1: The Negotiation Protocol

Note that we specify the negotiation protocol using the
security policy. This means that the protocol is established
between the obligatee U and the authority U’ only if the
obligatee has the permission to negotiate duty D and the
negotiation context (Cn) holds (step (1) in Fig. 1):

Is_Permitted(U, negotiate, D).

The authority U’ is obliged to answer to the negotiation
request, and also the obligatee U must reply to the authority
if he/she sends a counter_proposal (step (2) in Fig. 1). This
is defined in our model by the following rule:

Obligation(auth, any_subject, answer, duty, receive_Req,
answer_Deadline, groupContext(Vs, Vo, 3a)).

where any_Subject is a role in which all authorized users
are empowered and answer is an activity which contains
the actions { Approve, Disapprove, Counter_ Proposal}. As
described in section 2.3, this is a group obligation, since users
must take one of the actions considered in activity Answer.
Context receive_Req is defined as follows:

Hold(Auth, S, Act, D, receive_Req)
after Request(_, S, Act, D)

Intuitively, this rule means that when a user receives a re-
quest, he/she is obliged to answer before a given deadline
called here answer_deadline and that can be defined by the
administrator. Similarly, users are obliged to answer when
receiving a counter proposal (step (2’) in Fig. 1). If the
negotiation succeeds the authority U’ is obliged to modify
the duty according to the negotiated attributes (step (3) in
Fig. 1). This is defined by the following obligation:

Obligation(auth, any_Subject, modi fy, duty,
nego_Approval, approval_Deadline).

where context approval_Deadline is a deadline fixed by the
administrator to modify the negotiated duty and context
nego_Approval is defined as follows:

Hold(Auth, S, Act, D, nego_Approval)
after Approve(S,_, Act, D)

5. DELEGATING OBLIGATIONS

Besides negotiation, users can delegate their obligations.
Obviously, they must have the permission to delegate and
in some cases they must have the agreement of the user who
receives this delegation, i.e. the delegatee. More details
about how to manage the delegation of obligations are given
in [3] (namely, which users are allowed to delegate which
obligations, to whom and in which context).

In our model, we distinguish between the delegation of an
obligation to do some tasks and the delegation of the respon-
sibility related to this obligation. As mentioned in [10], “in
real life, the notion of obligation appears to include both in-
terpretations, e.g. someone else may pay a traffic-offence fine
for you, but may not go to jail for you”. For this purpose,
we specify three types of delegation according to whether
the obligation is shared with full or limited responsibility
or transferred [3]. We will further discuss the delegation of
responsibility in future work.

Shared obligation with full responsibility. In this
case the user, also called grantor, delegates his/her obli-
gation and also the responsibility of this obligation to the
delegatee. This means that, the grantor and the delegatee
are obliged to perform the same task for the same author-
ity. This can be defined in our model as a group obligation
which applies to both the grantor and the delegatee:

Obligation(auth, delega, a, 0, Cact, Cv,
groupContext(Jo, Ja, 3s)).

where delegg is a set of users containing the grantor and the
delegatee, and groupContext(o,Ja,Is) means that users
in delege share the obligation to fulfill action a on object o
when context ca.¢ holds and before the violation context cy
holds.

Shared obligation with limited responsibility. In
this case the delegatee shares the obligation with the grantor,
but does not share the responsibility with him/her. This
means that the delegatee is obliged to the grantor and not
to the original authority. The grantor remains obliged to
the original authority:

Obligation(grantor, obligatee, a, 0, Cact,cv).
Obligation(auth, grantor, a, o0, Cact,cv).

Transfer. When the grantor transfers his/her obligation
then he/she is neither obliged nor responsible for this obli-
gation. Therefore, it is not allowed to transfer a limited
responsibility like in delegation (i.e. only the delegatee is
obliged to the original authority).

Note that the type of the delegated obligation may change
according to the delegation type. When an organizational
or contractual obligation is delegated with full responsibility
or transferred, then its type is unchanged. But, if an orga-
nizational obligation is delegated with limited responsibility
then we consider that the type of the delegated obligation
is contractual and not organizational, because it is a new
obligation created and managed by the grantor.

Delegation Notification. When a delegation is per-
formed successfully the user who receives this delegation

(i.e. the delegatee) must be informed that he/she has new
obligations and responsibilities. For this purpose, we use
the notification context C~. Indeed, we can specify that
the notification context of the obligation activation holds for
the obligatee when the obligation is delegated to him/her.
Thus, an Obligation_Notification will be derived to him/her
as specified in section 3:

Hold(Auth, S, A,0,C™)

after Create(G, D, norm_delegation)

if Auth(D, Auth), Grantor(D, G), Obligatee(D, S),
Task(D, A), Target(D,O), Context(D,C),
NotifContext(C,C™)

where Norm_delegation is a sub-view of the Norm view de-
fined to manage the delegation of obligations. Objects be-
longing to this view (i.e. duties) have the same attributes
and semantics as duty objects belonging to the Norm view.
They also have an additional attribute called grantor: sub-
ject who delegates the duty. Do not confuse attribute grantor
with attribute authority, the grantor is the subject who del-
egates his/her obligation and the authority is the subject in
favor of whom the duty is contracted. In [3] it is shown how
to model duty objects.

As mentioned earlier, after the delegation of contractual
obligations, the delegatee, in turn, can negotiate the obli-
gation with the authority (which is the grantor in the case
of delegation with limited responsibility) using the negotia-
tion protocol. But before this, a delegation protocol can be
established between the grantor and the delegatee in order
to negotiate his/her consent. We investigate hereafter this
protocol and how the consent can be requested dynamically.

5.1 The Delegation Protocol

In our model, we distinguish between two forms of delega-
tion: bilateral agreement delegation (with delegatee’s con-
sent) and unilateral agreement (without consent request).
In fact, according to the relationships between the grantor
and the delegatee, the consent of this latter may be required
or not to perform the delegation of obligation. We consider
that there are two basic types of relationships: power re-
lationships where one user is a subservient of another user
and peer relationships where neither user is subservient to
another user. In this case, the grantor is obliged to request
the consent of the delegatee before delegating the obligation
and/or the responsibility. To this end he/she must send a
consent request: Request(U,U’, consent, D).
where D is the duty that the grantor U wants to delegate
to the delegatee U’.

On receiving this request U’ must send a response. He/she
can approve, disapprove or negotiate the delegation: Approve
(U', U, consent, D), Disapprove(U’, U, consent, D), Counter
_Proposal(U’, U, consent, D, D").

Note that similarly to the negotiation protocol, the delega-
tee can negotiate all the attributes of the delegated duty, i.e.
the task, the target, the activation context and the violation
context. But also, he/she can negotiate the responsibility,
this means that he/she can negotiate the authority value to
specify that the obligation is shared with limited or with full
responsibility. This protocol can be established, between a
grantor and a delegatee in two cases: (1) in the case of peer
relationships, the grantor is allowed to delegate a duty only
if he/she requests the consent of the delegatee, or (2) in

the case of power relationships, the grantor is allowed to
delegate a duty but can choose to request the delegatee’s
consent. In the next section, we present the first case and
we discuss how we can deal with consent dynamically using
the concept of pre-obligation contexts.

5.2 Dynamic Consent : Discussion

In the case of peer relationships, the grantor is obliged to
get the consent of the delegatee before delegating to him/her
the duty. For this purpose, we specify the following contex-
tual rule:

Permission(org, any_Subject, delegate, norm_delegation,
obligatee_approval).

where obligatee_approval is a state-based context defined as
follows:

Hold(Org, S, delegate, D, obligatee_approval):-
Approve(S’, S, D), Grantor(D, S), Obligatee(D, S").

This means that user S is allowed to delegate obligation
D if the delegatee S’ has approved this delegation. This as-
sumes that consent is approved before requesting delegation.
In order to manage the consent dynamically, i.e. when the
delegation is requested, we use the notion of pre-obligation
contexts denoted C*. This kind of context [13] is evaluated
dynamically when the access is requested, in order to check
if there is an unfulfilled pre-obligation actions that must be
taken by the user before allowing the access. Thus, accord-
ing to the context definition, pre-obligations are derived to
the user. The fulfillment of these pre-obligations will acti-
vate the context. Therefore, to deal with the consent dy-
namically we can specify that context obligatee_approval is
a dynamic context as follows:

Permission(org, any_Subject, delegate, norm_delegation,
obligatee_approval™).

But, here the dynamic context definition must take into
account that the action that must be fulfilled to activate the
context does not concern the user who requests the delega-
tion (i.e. the grantor), but the delegatee that must send an
Approve. In this case, we may specify that the grantor must
request the delegatee consent in order to activate the dy-
namic context. Therefore, context obligatee_approval™ will
activate a pre-obligation for grantor S to request the consent
of the delegatee S’ to delegate obligation D as follows:

Obligation(S’, S, req_consent, D, immediate, Cy,).

where context immediate is activated immediately after the
delegation request and C, is the violation context that can
be specified in the dynamic context definition. Context
obligatee_approval™ will be activated when grantor S re-
quests the consent of the delegatee S’ and S’ sends his/her
approval.

The concept of dynamic consent can also be used to spec-
ify other situations involving obligation delegation, such as
the consent of the obligation authority. For instance, to
delegate the review of a given paper to his/her assistant,
the professor must request, in addition to the consent of
the assistant, the consent of the authority of this obliga-
tion, i.e. the PC chair. Similarly as above, we can define

pre-obligation contexts to deal with these situations. How
dynamic contexts are defined and managed will be further
discussed in future work.

6. RELATED WORK

In the literature [6, 15, 19, 20], many studies have been
done on the modeling of obligations and some of them have
considered the delegation of obligations, such as [10, 18, 23].
But, none of them have covered the topics discussed in this
paper. To the best of our knowledge, neither the negotiation
of obligations, the obligation pre-notification, nor the dele-
gation negotiation have been addressed in role-based access
control models. Negotiation has been studied in the case of
collective obligations, such as in [7], where authors propose
a negotiation protocol in which users propose a deal in order
to distribute their collective tasks together with their associ-
ated sanctions. This is different from our protocol since our
alm is to adapt individual obligations to the users’ require-
ments and constraints. But, this is an interesting issue and
we plan to further investigate it in our model, more precisely
in the case of the delegation of group obligations.

In [16] authors propose the concept of accountability: “a
system is said to be in an accountable state if all users
have sufficient authorizations to carry out their obligations
so long as every other user carries out his/her obligation”.
They also define an algorithm to determine which obliga-
tions will cause a system to become unaccountable. But, as
we mentioned above, this is not sufficient to take into ac-
count users’ requirements because the system is not always
aware of their capabilities and/or availabilities. Moreover,
they only define the accountability state but, they do not
describe how obligations are managed to maintain this ac-
countability, i.e. how the system adjust the obligations that
cause the unaccountability. In our model, we give users some
means to adjust their obligations using negotiation, delega-
tion or transfer. In addition, the concept of obligation and
violation notification can be a solution to help the system
to adjust obligations and to keep the accountability state.
For instance, when the system determines that an obliga-
tion will not be fulfilled, then instead of leaving the system
to decide, a notification can be sent to the concerned user.
In this case, we can add an additional information about the
incapacity of the user to carry out the obligation, in order
to incite him/her to adjust it.

The concept of consent has been explored in the context
of privacy, like in [5, 21, 22, 2], and more precisely in health-
care systems when the patient consent is required to get an
access to his/her medical and personal information. In [5]
authors have dealt with consent as in our model, i.e. using
pre-obligations. But to do so, they associate an obligation to
each permission rule, whereas, we simply use pre-obligation
contexts. In [21] it is suggested to delegate the consent to
another user. This means that a patient can allow a doctor
to further disclose his/her health data. We do not consider
this aspect in this paper, but the issue of the propagation
of delegation is discussed in [4], and it is possible to inte-
grate this approach with our model to deal with consent
propagation. In [22] the authors have proposed two types
of consent: implicit consent with explicit deny policy and
implicit deny with explicit consent policy. In this paper we
have considered the second consent type. To deal with the
first one, it is possible to specify that, for some situations
(e.g. urgency), the consent context is always active. Thus,

the pre-obligation to request the consent will not be acti-
vated.

7. CONCLUSION

This paper has proposed a decentralized obligation man-
agement system where users are allowed to modify their du-
ties according to their requirements. For this purpose, they
can negotiate the obligation directly with the responsible
entity (the authority), or negotiate its delegation with an-
other user. Our main motivation has been to propose a
more flexible access control model by considering the users
requirements. Since, users can violate their obligations due
to factors they do not always control, such as the existence
of conflictual obligation, lack of time, of resource or of au-
thorizations. These negotiations and delegations are carried
out only under the security policy. Thus, the security ad-
ministrator can control the propagation of duties by specify-
ing which obligation is negotiable or/and delegatable and in
which contexts (e.g. to whom, when, where, the consent is
required or not, etc.). Negotiation and delegation succeeds
only if the consent of the corresponding user is obtained.
Thus, also users can control obligations that they are respon-
sible for and obligations they receive by delegation. We have
also introduced the concept of dynamic consent using con-
texts that dynamically activate a pre-obligation to request
the consent, if it is not yet requested. Finally, we have pro-
posed a new type of context, called notification context, in
order to deal with the obligation notification. Notifications
are sent to users before the activation or/and the violation
of their obligations, or also when an obligation is delegated
to them. This allows them to be aware of their duties.

In this paper, we have considered that consent is not per-
sistent in time, therefore, users must request the consent
each time it is required. As future work, it is possible to
study persistent consent and more precisely the context of
this kind of consent [17]. This means that users should be
able to give their consent only for a given period of time or
for a given purpose. In addition, they must be able to revoke
their consent if they want. It is also possible to explore the
concept of the delegation of consent as suggested in [21] and
its revocation. We are confident that, using our delegation
and revocation model, presented in [4], it is possible to deal
with these concepts. Another future work will be to consider
negotiation between moral authority and to include sanction
negotiation. This needs to study the different types of re-
sponsibility [8] and to specify the physical entities in charge
of the negotiation and of the sanction. In addition, we will
further discuss the delegation of responsibility and we will
address this issue in the context of the delegation of group
obligations.

8. ACKNOWLEDGMENTS

This research has been supported by the ANR 07 SESUR
FLUOR project.

9. REFERENCES

[1] C. Baral, J. Lobo, and G. Trajcevski. Formal
Characterizations of Active Databases: Part II. In
DOOD, 1997.

[2] M. Y. Becker and P. Sewell. Cassandra: Flexible Trust
Management, Applied to Electronic Health Records.
In CSFW, 2004.

[3] M. Ben-Ghorbel-Talbi, F. Cuppens, and
N. Cuppens-Boulahia. An Extended Role-Based
Access Control Model for Delegating Obligations. In
TrustBus, 2009.

[4] M. Ben-Ghorbel-Talbi, F. Cuppens,

N. Cuppens-Boulahia, and A. Bouhoula. A Delegation
Model for Extended RBAC. 1JIS, 9:3, 2010.

[5] E. Bertino, C. Brodie, S. Calo, L. Cranor, C.-M.
Karat, J. Karat, N. Li, D. Lin, J. Lobo, Q. Ni, P. Rao,
and X. Wang. Analysis of Privacy and Security
Policies. IBM Systems Journal, 2009.

[6] C. Bettini, S. Jajodia, X. Wang, and D. Wijesekera.
Obligation Monitoring in Policy Management. In
POLICY, 2002.

[7] G. Boella and L. W. N. van der Torre. Negotiating the
Distribution of Obligations with Sanctions among
Autonomous Agents. In ECAI 2004.

[8] L. Cholvy, F. Cuppens, and C. Saurel. Towards a
Logical Formalization of Responsibility. In Conference
on Artificial Intelligence and Law, 1997.

[9] J. Chomickiand and J. Lobo. Monitors for
History-Based Policies. In POLICY, 2001.

[10] J. Cole, J. Derrick, Z. Milosevicand, and K. Raymond.
Author Obliged to Submit Paper before 4 July:
Policies in an Enterprise Specification. In POLICY,
2001.

[11] F. Cuppens and N. Cuppens-Boulahia. Modeling
Contextual Security Policies. IJIS, 7(4), 2008.

[12] Y. El-Rakaiby, F. Cuppens, and N. Cuppens-Boulahia.
From State-based to Event-based Contextual Security
Policies. In CMMSE, 2009.

[13] Y. El-Rakaiby, F. Cuppens, and N. Cuppens-Boulahia.
From Contextual Permission to Dynamic
Pre-Obligation. In ARES, 2010.

[14] Y. El-Rakaiby, N. Cuppens-Boulahia, and F. Cuppens.
Formalization and Management of Group Obligations.
In POLICY, 2009.

[15] P. Gama and P. Ferreira. Obligation Policies: An
Enforcement Platform. In POLICY, 2005.

[16] K. Irwin, T. Yu, and W. H. Winsborough. On the
Modeling and Analysis of Obligations. In CCS, 2006.

[17] M. C. Mont, S. Pearson, G. Kounga, Y. Shen, and
P. Bramhall. On the Management of Consent and
Revocation in Enterprises: Setting the Context.
Technical report, HP Laboratories, 2009.

[18] O. Pacheco and F. Santos. Delegation in a Role-Based
Organization. In DEON’, 2004.

[19] J. Park and R. Sandhu. The UCON 4pc Usage
Control Model. TISSEC, 7(1), 2004.

[20] A. Pretschner, M. Hilty, and Basin. Distributed Usage
Control. Communications of the ACM, 2006.

[21] C. Ruan, V. Varadharajan, and Y. Zhang. Delegatable
Authorization Program and Its Application. In SAM,
2003.

[22] G. Russello, C. Dong, and N. Dulay. Consent-Based
Workflows for Healthcare Management. In POLICY,
2008.

[23] A. Schaad and J. D. Moffett. Delegation of
Obligations. In POLICY, 2002.

