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ABSTRACT

This paper investigates the problem of approximating con-
junctive queries without self-joins on probabilistic databases
by lower and upper bounds that can be computed more ef-
ficiently. We study this problem via an indirection: Given a
propositional formula Φ, find formulas in a more restricted
language that are greatest lower bound and least upper
bound, respectively, of Φ. We study bounds in the languages
of read-once formulas, where every variable occurs at most
once, and of read-once formulas in disjunctive normal form.

We show equivalences of syntactic and model-theoretic
characterisations of optimal bounds for unate formulas, and
present algorithms that can enumerate them with polyno-
mial delay. Such bounds can be computed by queries ex-
pressed using first-order queries extended with transitive
closure and a special choice construct.

Besides probabilistic databases, these results can also ben-
efit the problem of approximate query evaluation in rela-
tional databases, since the bounds expressed by queries can
be computed in polynomial combined complexity.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Query Pro-
cessing

General Terms

Algorithms, Languages, Theory

Keywords

Probabilistic database, Query approximation

1. INTRODUCTION
Approximate query evaluation is preferred over exact query

evaluation in cases when the exact evaluation is too expen-
sive and quick approximate answers are favoured over de-
layed exact answers. This paper investigates the problem
of query approximation through the glasses of propositional
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formula approximation. Formulas and queries are intimately
connected in the following way: Given an input database
where every tuple is annotated by a distinct variable, each
tuple t in the query answer is annotated by a formula over
the input tuples that contributed to t.

We seek bounds expressible in restricted classes of propo-
sitional formulas that are model-based, optimal, efficiently
computable, and allow for efficient probability computation,
in case they are defined over random variables. Bounds are
defined semantically based on the set of models (or satisfying
assignments) of formulas. The set of models of a formula is
included in the set of models of any of its upper bounds and
includes the set of models of any of its lower bounds. Lower
and upper bounds are optimal with respect to a language if
there are no other lower and upper bounds, respectively, in
that language whose sets of models are closer to the set of
models of the formula to approximate.

In this paper, bounds are expressed in the languages of
read-once formulas or of its intersection with the language
of formulas in disjunctive normal form (DNF). Read-once
formulas are propositional formulas where every variable oc-
curs at most once, that is, they are in 1-Occurrence Form.
We denote this class by 1OF. The DNF restriction of 1OF
is denoted here by independent DNF, or iDNF for short.

The proposed approximation framework is relevant to data-
base scenarios that can benefit from optimal and efficient
approximation of query evaluation. We discuss three such
scenarios: approximate probability computation in proba-
bilistic databases, approximation of provenance information
and explanations in provenance databases, and approximate
query evaluation in relational databases.

Scenario 1: Probabilistic Databases

Our main motivation for this work comes from probabilistic
databases. The problem of query evaluation in probabilis-
tic databases has received tremendous attention in recent
years, a fairly recent survey was compiled by Dalvi, Ré, and
Suciu [2]. This problem is known to be #P-hard already
for simple conjunctive queries and restricted probabilistic
databases. One particularly promising evaluation strategy
for hard queries is to consider approximate evaluation.

Consider so-called tuple-independent probabilistic data-
bases, where each tuple is associated with a distinct Boolean
random variable. By query evaluation techniques reminis-
cent of conditioned tables [14], propositional formulas called
lineage can be computed along with the query answers and
may subsequently be used to compute answer probabilities.
Figure 1 shows the lineage of three queries evaluated on a
probabilistic database. The lineages of positive queries are



R A
x1 1
x2 2
x3 3

S A B
y1 1 1
y2 1 2
y3 2 1
y4 2 2
y5 3 3
y6 3 4

T B
z1 1
z2 2
z3 3
z4 4

Query Q1:-R(A), S(A,B), T (B) has lineage

Φ1 =x1y1z1 ∨ x1y2z2 ∨ x2y3z1 ∨ x2y4z2 ∨ x3y5z3 ∨ x3y6z4.

Query Q2:-R(A), S(A
′, B), T (B),A ≤ A′ has lineage

Φ2 =x1y1z1 ∨ x1y2z2 ∨ x1y3z1 ∨ x1y4z2 ∨ x1y5z3 ∨ x1y6z4∨

x2y3z1 ∨ x2y4z2 ∨ x2y5z3 ∨ x2y6z4 ∨ x3y5z3 ∨ x3y6z4.

Query Q3:-R(A), S(A,B) has lineage

Φ3 =x1y1 ∨ x1y2 ∨ x2y3 ∨ x2y4 ∨ x3y5 ∨ x3y6

=x1(y1 ∨ y2) ∨ x2(y3 ∨ y4) ∨ x3(y5 ∨ y6).

Figure 1: Relations R, S, T annotated with variables
from disjoint sets V1 = {x1, . . . , x3}, V2 = {y1, . . . , x6},
V3 = {z1, . . . , z4}, respectively. Lineages Φ1 to Φ3 of
four queries Q1 to Q3 evaluated on this database.

unate DNF formulas. A key contribution of the this work is
an approach that can efficiently derive optimal lower bounds
ΦL and upper bounds ΦU in tractable languages such as
iDNF or 1OF for any unate DNF formula Φ. Moreover, we
can lift this result to the query level by showing how lineage
bounds can be computed by queries.

LetM and P be functions that map formulas to their sets
of models and to their probabilities, respectively. Model-
based bounds imply probability-based bounds for any prob-
ability distribution over the Boolean random variables:

Proposition 1. Let Φ, ΦL, and ΦU be formulas. Then,

M(ΦL) ⊆M(Φ) ⊆M(ΦU )⇒ P (ΦL) ≤ P (Φ) ≤ P (ΦU ).

We devise algorithms that can enumerate optimal bounds
efficiently. Such bounds cannot lead, however, to approx-
imations with arbitrary precision, since exact probability
computation is #P-hard already for unate bipartite DNF
formulas. Efficiently computable bounds can be neverthe-
less very useful in conjunction with known procedures that
incrementally decompose the input formula Φ into subfor-
mulas and compute bounds on P (Φ) based on bounds of
these subformulas [19, 7]. This is repeated until the desired
precision is reached. Efficient computation of good probabil-
ity bounds for intermediate decomposition steps is essential
to the effectiveness of such techniques.

The closest in spirit to our approach is a technique devel-
oped independently by Gatterbauer, Abhay, and Suciu [9].
Their technique computes upper bounds for probabilities of
conjunctive queries without self-joins. These bounds are not
model-based, and in particular not optimal. Although the
query lineage is used to compute the upper bounds, the in-
terpretation of this lineage is non-standard: Each literal is
interpreted as being a unique variable.

Scenario 2: Provenance Databases

Our work is applicable to the approximation of provenance
information in the answers to queries on databases with an-
notations. Similarly to the probabilistic case, query lineage
encodes symbolically all possible explanations for the exis-
tence of a tuple in the query answer in terms of combina-

tions of the input tuples. Lineage bounds can then represent
coarser, more compact, and efficiently computable explana-
tions of the query answer. Lower bounds are correct but
possibly incomplete explanations, while upper bounds are
complete but potentially incorrect explanations in the follow-
ing sense: Every explanation for a lower bound is necessarily
an explanation for the answer; however, there may exist ex-
planations for the answer that are not explanations for the
lower bound. The situation for upper bounds is symmetric.

Scenario 3: Relational Databases

Existing work on approximate query answering in relational
databases considers the use of synopses (histograms, join
synopses, and wavelets) to speed-up the evaluation of aggre-
gate queries with the goal of quickly reporting the leading
digits of the answers. A survey of these synopsis-based tech-
niques is given by Garofalakis and Gibbons [8]. Their focus
is not on deriving optimal bounds within a given language.

Given a query Q in a language QL, the approximation
problem we consider in the relational setting is to com-
pute two queries QL and QU in a language QL′ such that
QL(D) ⊆ Q(D) ⊆ QU (D) for any relational database D and
the computational complexity for QL′ is lower than for QL.

When applied to relational databases, our approximation
approach comes with the following twist. We can derive
queries QL and QU such that their answers can be repre-
sented compactly as a 1OF or iDNF expression over tuples.
Such answer representations can be computed in polynomial
combined complexity and allow for the enumeration of (pos-
sibly exponentially many) answers with polynomial delay.

Contributions

The main contributions of this paper are as follows:

• We introduce a query approximation framework based
on novel results on model-based optimal approxima-
tion of unate formulas. We investigate two languages
to express lower and upper bounds: read-once formu-
las and their DNF restrictions.

• We give syntactic characterisations of optimal lower
and upper bounds in iDNF and 1OF, as well as algo-
rithms that can enumerate such bounds for unate DNF
formulas with polynomial delay.

• We show that the computation of model-based bounds
on the lineage of conjunctive queries without self-joins
is expressible using queries that can be evaluated with
polynomial combined complexity using iDNF or 1OF
representations of the query answers.

Due to lack of space, the proofs of the statements made
in this paper are given in an extended technical report [6].

2. PRELIMINARIES
We use the language of propositional formulas over a finite

set of Boolean variables with its standard interpretation.
Syntax of Formulas. We assume the standard syntactic
notions of variables, constants 1 (true) and 0 (false), liter-
als, and (propositional) formulas constructed by combining
literals or constants using the logical connectives ∨ and ∧.
In this paper, we consider unate formulas, i.e. formulas in
which all literals are positive. A clause is a conjunction of
literals. A formula in disjunctive normal form (DNF) is a
disjunction of clauses. At the syntactic level, we see clauses



as sets of literals and DNF formulas as sets of clauses. This
explains set notations such as ⊆ on clauses and formulas.
Consequently, Φ ⊆ Ψ means that Φ consists of a subset of
the clauses or literals of Ψ, if Φ and Ψ are DNF formulas
or clauses, respectively. The constants 0 and 1 are special
sets such that 1 is contained in any set and 0 contains any
set. Two clauses are (syntactically) independent if their vari-
able sets are disjoint. We use vars(Φ) to denote the set of
variables of a formula Φ.

Definition 1. Let (V1, . . . , Vk) be a tuple of disjoint sets of
variables. A formula Φ is k-partite over (V1, . . . , Vk) if each
clause in Φ has the form v1 ∧ · · · ∧ vk, where vi ∈ Vi for all
1 ≤ i ≤ k. The projection Φi,j of Φ is a formula obtained
from Φ by removing all literals not in Vi or Vj . ✷

Example 1. Figure 1 shows 3-partite unate DNF formulas
Φ1 and Φ2 over the tuple of disjoint variable sets (V1, V2, V3).
Formula Φ3 is a 2-partite over (V1, V2). ✷

The graph of a formula Φ, denoted by G(Φ), has one node
for each distinct variable in Φ, and one edge (x, y) for each
pair of literals x, y that appear together in a clause of Φ. For
k-partite formulas, we use a more specific representation.

Definition 2. Let Φ be a k-partite formula over V1, . . . , Vk.
The bipartite graph Bi,j = (Vi, Vj , Eij) of projection Φi,j of
Φ has an edge (x, y) for each clause xy ∈ Φi,j . The set of
projection graphs of Φ is B(Φ) =

⋃

{Bi,j | 1 ≤ i < j ≤ k}. ✷

For a given k-partite formula with n variables and m
clauses, its graph has n nodes and O(m · k2) edges. Fig-
ure 2 depicts the graphs of the formulas from Figure 1.
Semantics of Formulas. We assume the standard seman-
tic notion of satisfying assignments, also called models, of a
formula. LetM be a function mapping formulas to their sets
of models. Given two formulas Φ and Ψ over the same vari-
ables, Φ is semantically contained in Ψ, denoted by Φ |= Ψ,
if M(Φ) ⊆ M(Ψ). We also say that Φ implies Ψ. Equiva-
lence is two-way containment.
Linking Semantics and Syntax. Given two clauses ϕ
and ψ, it holds that ϕ |= ψ if and only if ϕ ⊇ ψ. For DNF
formulas, we will use the following key result:

Lemma 1. [22] Let Φ and Ψ be two DNF formulas. Then

Φ |= Ψ iff ∀ϕ ∈ Φ ∃ψ ∈ Ψ : ϕ |= ψ.✷

A unate DNF formula Φ is reducible if there exist clauses
ϕ, ψ ∈ Φ that satisfy ϕ |= ψ, and irreducible otherwise. In
the former case, ϕ is redundant in Φ and can be removed.

Queries on Annotated and Probabilistic Databases.
We consider conjunctive queries without self-joins expressed
using Datalog syntax. By default, equi-joins are the only
type of joins allowed in such queries. Figure 1 shows three
Boolean queries. Query Q1 has two query variables A and
B that express joins between R, S, and T . Query Q2 uses
an inequality join A ≤ A′.

An annotated database is a relational database, where
each tuple is annotated by a propositional formula, some-
times called lineage. If all formulas in an annotated database
are pairwise independent, then the database is called tuple-
independent. Such annotated databases have been exten-
sively studied in the context of provenance in databases,
incomplete databases [14], probabilistic databases, and in a
unifying framework by Green et al. [12].

The evaluation of queries on annotated databases follows
standard query evaluation in relational databases, with the
addition that the annotations of the input tuples are prop-
agated to the answer tuples they contributed to. The anno-
tation of a distinct tuple created (a) by a join of two input
tuples is the conjunction of the annotations of these input
tuples, and (b) by a projection or union is the disjunction
of the annotations of the input tuples. By construction, the
lineage of a conjunctive query without self-joins and with
k relation symbols is thus a unate k-partite DNF formula
defined over variable sets (V1, . . . , Vk), with one variable set
Vi per relation symbol.

In probabilistic databases, the lineage is defined over ran-
dom variables and can be used to compute the probabil-
ities of tuples in the answers to queries: Given a tuple t
in the answer to query Q with lineage Φ, the probability
of t is equal to the probability P (Φ) that a random valua-
tion of the variables in Φ satisfies Φ. Computing P (Φ) is a
#P-hard problem for conjunctive queries, though there are
known classes of queries for which the problem is in polyno-
mial time, e.g. [3]. We next recall such a tractable class.

For a query variable A in a query Q, we denote by s(A)
the set of relation symbols in Q that mention A.

Definition 3. A conjunctive query Q is hierarchical if for
any two non-head query variables A and B, either s(A) ∩
s(B) = ∅, or s(A) ⊆ s(B), or s(A) ⊃ s(B). ✷

In the class of conjunctive queries without self-joins, the
hierarchical queries are the only tractable queries [3].

Example 2. Consider the queries from Figure 1. Query
Q1 is not hierarchical since s(A) = {R,S}, s(B) = {S, T}.
Query Q3 is hierarchical, since s(B) ⊂ s(A) and A and B are
the only query variables. Query Q2 has an inequality join;
there are extensions of the hierarchical property to cope with
inequality joins [18]. ✷

Assumptions and conventions. Unless explicitly stated
otherwise, we assume formulas to be unate and irreducible by
default. For arbitrary formulas Φ, set-based notions like ϕ ∈
Φ or x ∈ ϕ are thus with respect to the unique irreducible
model-equivalent DNF formula of Φ. If a unate formula
is given in DNF, computing the irreducible equivalent DNF
can be done in polynomial time. Turning formulas into DNF
representations has exponential overhead in worst-case.

Lowercase Latin letters denote variable symbols, capital
Latin letters denote query variables, and uppercase (lower-
case) Greek letters denote formulas (clauses).

3. FORMULA APPROXIMATION
The core problem investigated in this paper is: Given a

formula Φ from a propositional language, find formulas from
a more restrictive language that approximate Φ.

Definition 4. Let L′ and L be languages of propositional
formulas such that L′ ⊂ L and Φ ∈ L. Formulas ΦL,ΦU ∈
L′ are lower and upper bounds for Φ with respect to L′, if
M(ΦL) ⊆M(Φ) andM(Φ) ⊆M(ΦU ) respectively.

If in addition there are no formulas Φ′

L,Φ
′

U ∈ L
′ such that

M(ΦL) ⊂M(Φ′

L) ⊆M(Φ) andM(Φ) ⊆M(Φ′

U ) ⊂M(ΦU ),

then ΦL is a greatest lower bound (GLB) and ΦU is a least
upper bound (LUB) for Φ with respect to L′. ✷



The notions GLB and LUB provide an intuitive semantic
characterisation of optimal bounds. We consider languages
L′ such that (i) we can efficiently find optimal bounds in L′,
and (ii) L′ allows for efficient key computational tasks such
as probability computation. The first language L′, called
one-occurrence form (1OF), is that of formulas in which
every variable occurs at most once, and of formulas that
are equivalent to formulas in which every variable occurs
at most once. The second language L′, called independent
DNF (iDNF), is the intersection of 1OF and DNF.

Example 3. The formula x1y1 ∨ x1y2 is in DNF, but not
in iDNF, since the two clauses have the variable x1 in com-
mon. This formula and its equivalent x1(y1∨y2) are in 1OF.
Formula Φ3 from Figure 1 is in 1OF. ✷

The 1OF language has a long history and many names,
such as read-once functions [10], fanout-free functions, or
non-repeating trees [21], and also many applications includ-
ing logic synthesis and circuit design [21] and probabilistic
databases [17]. Problems such as satisfiability, model count-
ing, and probability computation are hard for general propo-
sitional formulas are tractable for 1OFs. The 10F property
is decidable in polynomial time for DNF formulas. Further-
more, the equivalent (syntactic) 1OF can be found in poly-
nomial time and is unique up to commutativity of the binary
connectives [21]. The 1OF language is particularly relevant
in the context of probabilistic databases, since the lineage
of any tractable relational algebra query without repeating
symbols on tuple-independent probabilistic databases is in
1OF and its probability can be computed using relational
query plans [17, 7].

Languages beyond 1OF lose tractability. It is NP-hard to
decide if a given unate formula admits an equivalent formula
where every variable occurs at most twice (read-twice for-
mulas) [5]; this is still open in case of input DNF formulas.
In case of formulas where every variable occurs at most four
times, model counting (and hence probability computation)
is already #P-hard [26]. A different direction is to consider
complete languages, i.e. languages that can represent any
propositional formula either directly or in a formalism that
preserves its models, and that still allow for efficient prob-
ability computation. A prime example of such languages
is the family of Binary Decision Diagrams, including OB-
DDs, FBDDs, and d-DNNFs [4]. Such languages allow for
several equivalent representations of the same input formula
but with an exponential gap between their sizes. Finding a
minimal representation for an input formula is NP-hard [16].

Remark 1. There is a solid body of work on approximat-
ing various computational tasks on propositional formulas.
Exact and approximate approaches to model counting, which
are also relevant to probabilistic databases, are surveyed by
Gomes et al. [11]. These approaches however do not consider
the approximation of propositional formulas by formulas in
a more restrictive language, as done here. The closest in
spirit to our work is that by Selman on approximating CNF
theories by model-based lower and upper bound conjunc-
tions of Horn clauses [23]. The languages iDNF and 1OF
are incomparable to conjunctions of Horn clauses. ✷

Before we discuss optimal iDNF and 1OF approximations,
we give a syntactic characterisation of (not necessarily op-
timal) lower and upper bound formulas for arbitrary unate
formulas: All bounds for a given unate formula Φ can be
defined by simple syntactic manipulations of Φ.

Proposition 2. Let Φ, ΦL, and ΦU be unate formulas.

• ΦL is a lower bound of Φ if and only if ΦL can be ob-
tained by removing clauses from Φ or by adding literals
to its clauses. Removing all clauses results in the lower
bound 0.

• ΦU is an upper bound of Φ if and only if ΦU can be
obtained by adding clauses to Φ or by removing literals
from its clauses. Removing all literals from a clause
results in the upper bound 1. ✷

These syntactic manipulations necessarily lead to lower
and upper bounds. Indeed, by removing clauses from a for-
mula we reduce its set of models. By adding variables to
clauses, we further constrain their satisfiability and hence
reduce the set of models. In both cases, one obtains formu-
las that are lower bounds. The inverse manipulations lead
to upper bounds. More importantly, Proposition 2 states
that all bounds can be gained in this way, a fact that fol-
lows from Lemma 1. Section 4 shows that it is not necessary
to add literals to clauses in order to find optimal iDNF lower
bounds, while removing variables can be required in order
to get to optimal iDNF upper bounds. Section 5 shows how
to obtain optimal 1OF bounds that can be constructed by
solely removing or adding clauses.

Example 4. Neither formula Φ1 nor Φ2 from Figure 1 are
in iDNF. The following iDNF formulas are lower and upper
bounds for Φ1 (several others are possible):

ΦL = x1y1z1∨x2y4z2∨x3y5z3, ΦU = z1∨x1y2∨x2y4z2∨x3.

Indeed, ΦL is a lower bound since it is a subset of Φ. Each
clause in Φ implies at least one clause of ΦU , hence ΦU is an
upper bound. A closer inspection reveals that each clause
in ΦU can be obtained by dropping literals from clauses in
Φ. As we will show in Section 4, the bounds ΦL and ΦU are
already optimal for iDNF. They are, however, not optimal
for 1OF, since they can be improved as follows:

Φ′

L = x1y1z1 ∨ x2y4z2 ∨ x3(y5z3 ∨ y6z4).

Φ′

U = (y1 ∨ y3)z1 ∨ (x1y2 ∨ x2y4)z2 ∨ x3(y5z3 ∨ y6z4).✷

4. OPTIMAL IDNF APPROXIMATIONS
We characterise syntactically the optimal iDNF bounds

for unate formulas, and give algorithms that find such bounds.

4.1 iDNF Greatest Lower Bounds
Our main tool used to find optimal iDNF lower bounds is

the syntactic notion of maximal lower bounds.

Definition 5. Let Φ be a unate formula. An iDNF formula
ΦL is called amaximal lower bound (MLB) for Φ if it satisfies
the following conditions:

1. (Lower bound) ΦL contains a subset of the clauses of
Φ: ΦL ⊆ Φ;

2. (Maximality) ΦL cannot be further extended: There is
no clause ϕ ∈ Φ such that vars(ϕ) ∩ vars(ΦL) = ∅. ✷

The first criterion ensures that ΦL is indeed an iDNF lower
bound. The maximality property enforces that it is a maxi-
mal lower bound. An MLB for a formula Φ is thus a maximal
set of pairwise independent clauses of Φ.



Example 5. The MLBs for formula Φ1 from Figure 1 are:

x1y1z1 ∨ x2y4z2 ∨ x3y5z3, x1y1z1 ∨ x2y4z2 ∨ x3y6z4

x1y2z2 ∨ x2y3z1 ∨ x3y5z3, x1y2z2 ∨ x2y3z1 ∨ x3y6z4 ✷

With respect to the iDNF language, the maximal lower
bounds correspond precisely to the greatest lower bounds.
This is particularly important, since MLB is a syntactic no-
tion defined in terms of sets of clauses, and GLB is a seman-
tic notion defined in terms of sets of models.

Theorem 1. Let Φ be a unate formula. An iDNF for-
mula ΦL is a maximal lower bound for Φ if and only if ΦL

is a greatest lower bound for Φ.

The implication GLB ⇒ MLB holds since if any of the two
MLB conditions fail, then we cannot obtain a GLB. For the
other direction, it can be shown that no strict upper bound
Φ′

L for ΦL is a lower bound for Φ. The latter case has two
sub-cases: There is a clause ϕ ∈ Φ that is in Φ′

L and either
is or is not in ΦL. In the first sub-case, ϕ necessarily shares
variables with one clause in ϕL ∈ ΦL, and, according to
Lemma 1, it must be contained in ϕL. But then, ϕ must be
ϕL, otherwise ΦL can be further extended and hence is no
MLB. The second sub-case follows similarly.

The syntactic definition of MLBs suggests an algorithm for
enumerating all GLBs by recursively constructing all maxi-
mal subsets of non-conflicting clauses of Φ. This algorithm
may need time exponential in the number of clauses of Φ.
The following proposition shows that this is necessarily so:

Proposition 3. The unate DNF formula

Φ = (x1y1 ∨ x1y2) ∨ · · · ∨ (xny2n−1 ∨ xny2n)

has 2n clauses and 2n iDNF GLBs. Any formula containing
either xiy2i−1 or xiy2i for all i ≤ n is an iDNF GLB of Φ.✷

Since there can be exponentially many GLBs that are by
definition incomparable with respect to their model sets, it
may be desirable to find “the best” GLB for a formula ac-
cording to different criteria. Possible rankings of GLBs are
on the number of clauses or, an arguably more useful crite-
rion, on their probabilities, provided they are defined over
random variables. Additionally, it can be useful to have an
enumeration of all GLBs with polynomial delay [15], which
means that the time before finding the first GLB, as well
as the time between every two consecutive GLBs, is polyno-
mial only in the input size, and not in the number of GLBs.
We obtain results for ranking and enumerating GLBs by
exploiting the following correspondence between MLBs and
independent sets in graphs.

Definition 6. Let Φ be a DNF formula. The clause-de-
pendency graph of Φ is a graph G = (Φ, E), where nodes are
clauses of Φ, and edges represent pairs of dependent clauses:

E = {(ϕ,ψ) | ϕ,ψ ∈ Φ and vars(ϕ) ∩ vars(ψ) 6= ∅}.✷

Lemma 2. Let Φ be a unate DNF formula. A formula
ΦL ⊆ Φ is an iDNF greatest lower bound for Φ if and only
if the clause-dependency graph of ΦL is a maximal indepen-
dent set in the clause-dependency graph of Φ.

A similar equivalence can be established between maximum
weighted independent sets and iDNF greatest lower bounds
with maximum probability. Therefore, known results for
independent sets, such as enumeration of maximal indepen-
dent sets with polynomial delay [25, 15], immediately carry
over to the case of iDNF greatest lower bounds.

MUB (Unate formula Φ, iDNF upper bound ΦU )

outputs all iDNF MUBs of Φ

Φ0 ← {ϕu ∈ ΦU : ϕu has no critical witness in Φ}
mergeCandidates←

{

(ϕu, w, ϕ
′

u) | w ∈ Φ;ϕu, ϕ
′

u ∈ Φ0;

w is witness of ϕu and ϕ′

u

}

if Φ0 6= ∅ then
// Remove clauses without crit. witness
foreach ϕu ∈ Φ0 do MUB

(

Φ,ΦU \ {ϕu}
)

// Merge clauses without critical witness
foreach (ϕu, w, ϕ

′

u) ∈ mergeCandidates do
MUB

(

Φ, (ΦU \ {ϕu, ϕ
′

u}) ∪ {{ϕu ∪ ϕ
′

u}}
)

else
V ← vars(Φ) \ vars(ΦU )
Extend ΦU by variables in V in every possible way
without altering the witness relations
Output ΦU

Algorithm 1: Finding all MUBs of a unate for-
mula Φ. Initial call MUB(Φ,

⋃

v∈vars(Φ){{v}}).

Corollary 1 (Lemma 2,[25, 15]). The set of all iDNF
greatest lower bounds for a unate DNF formula can be enu-
merated with polynomial delay. ✷

Since finding a maximum independent set is NP-hard, we
cannot efficiently enumerate the maximal independent sets,
or equivalently the iDNF GLBs, in decreasing order of their
size or probabilities.

Proposition 4. Enumerating the iDNF greatest lower bo-
unds of a unate DNF formula in decreasing order of the
number of their clauses or their probabilities is NP-hard. ✷

Although we cannot efficiently obtain the iDNF GLB with
maximum probability, a constant-factor approximation can
be obtained for input unate k-partite DNF formulas.

Proposition 5. Let Φ be a k-partite unate DNF formula.
There exists a polynomial time algorithm that constructs an
iDNF greatest lower bound ΦL for Φ such that P (Φopt

L ) ≤
k · P (ΦL), where Φopt

L is the iDNF greatest lower bound for
Φ with the highest probability amongst all of Φ’s iDNF great-
est lower bounds. ✷

The algorithm constructs ΦL by iterating over Φ’s clauses
in decreasing order of their probabilities and greedily select-
ing a maximal set of pairwise independent clauses. ΦL thus
contains the first clause ϕ1 in the order, then the next clause
independent of ϕ1, and so on. In the construction of an up-
per bound for P (Φopt

L ), we use the fact that the maximum
number of its pairwise independent clauses in Φ and hence
in Φopt

L is bounded by k · |ΦL|.

4.2 iDNF Least Upper Bounds
Similar to the case of iDNF greatest lower bounds, we give

a syntactic characterisation of iDNF least upper bounds for
unate DNF formulas. We introduce a few necessary notions.

Definition 7. Let Φ and Ψ be formulas. A clause ϕ ∈ Φ
is a witness for a clause ψ ∈ Ψ if ϕ |= ψ. We also say that
ψ has the witness ϕ. If in addition there is no clause ψ′ ∈ Ψ
with ψ 6= ψ′ and ϕ |= ψ′, then ϕ is a critical witness for ψ.
We then also say that ψ has the critical witness ϕ. ✷



Example 6. Consider formula Φ1 from Figure 1 and the
formula Ψ = x1y1 ∨x2 ∨ z2 ∨x1y6. Clause x1y1 ∈ Ψ has the
critical witness x1y1z1 ∈ Φ1, clause x2y4z2 is a non-critical
witness for x2 and z2 ∈ Ψ, and finally clause x1y6 ∈ Ψ has
no witness in Φ1. ✷

Definition 8. Let Φ and Ψ be formulas. The bipartite
witness graph ΓΦ,Ψ = (V, V ′, E) from Φ to Ψ is defined as
follows: V is the set of clauses of Φ, V ′ is the set of clauses
of Ψ, and there is a directed edge (ϕ,ψ) ∈ E from a clause
ϕ ∈ Φ to a clause ψ ∈ Ψ if ϕ |= ψ. ✷

A witness graph ΓΦ,Ψ shows which clauses of Φ imply which
clauses of Ψ. The set of clauses with incoming edges thus
represent an upper bound for the set of clauses with outgoing
edges. A node ϕ ∈ V is then a witness for all nodes ψ ∈ V ′

with (ϕ,ψ) ∈ E, and it is a critical witness for a node ψ ∈ V ′

if (ϕ,ψ) ∈ E and there is no other node in V that is a witness
for ψ. The following figure shows the connected nodes in the
witness graph for formulas Φ1,Ψ from Example 6.

x1y1z1

x2y4z2

x1y1

x2

z2

critical

We are now ready to present our main syntactic tool for
finding upper bounds.

Definition 9. Let Φ be a unate formula. An iDNF formula
ΦU is a minimal upper bound (MUB) for Φ if it satisfies the
following conditions:

1. (Upper bound) Every ϕ ∈ Φ is a witness for some
clauses in ΦU ;

2. (Maximality) There is no clause ϕu ∈ ΦU that can be
extended by a variable from vars(Φ) while preserving
condition (1) and keeping ΦU in iDNF;

3. (Irreducibility) Every clause ϕu ∈ ΦU has some critical
witnesses in Φ. ✷

Following Lemma 1, the first condition ensures that Φ |=
ΦU . The second condition ensures that we cannot obtain
an iDNF refinement of ΦU which is still an upper bound for
Φ by making clauses in ΦU more specific (thus narrowing
the set of models of ΦU ). The third condition states that
all clauses in ΦU are necessary, and dropping any of them
would lead to clauses in Φ violating Lemma 1.

This syntactic characterisation of upper bounds precisely
matches the semantic notion of least upper bounds:

Theorem 2. Let Φ be a unate formula. An iDNF for-
mula ΦU is a minimal upper bound for Φ if and only if ΦU

is a least upper bound for Φ. ✷

The implication LUB ⇒ MUB holds since, if any of the
three MUB conditions fail, we cannot obtain an LUB. The
other direction uses the fact that any difference between an
MUB ΦU for Φ and a potentially better upper bound Φ′

U

consists of having a clause ϕ′

u ∈ Φ′

U strictly containing (syn-
tactically) a clause ϕ ∈ ΦU . A case analysis on a variable
x ∈ ϕ′

u and x 6∈ ϕu shows that ΦU does not satisfy the syn-
tactic characterisation of an MUB: Either the irreducibility
condition fails, or a clause in ΦU may be expanded by x to
obtain a smaller bound.

PolyMUB (Unate formula Φ, iDNF upper bound ΦU )

outputs iDNF MUBs of Φ

Φ0 ← {ϕu ∈ ΦU : ϕu has no critical witness in Φ}
mergeCandidates←

{

(ϕu, w, ϕ
′

u) | w ∈ Φ;ϕu, ϕ
′

u ∈ Φ0;

w is witness of ϕu and ϕ′

u

}

if Φ0 6= ∅ then
foreach (ϕu, w, ϕ

′

u) ∈ mergeCandidates do
foreach v ∈ ϕu do

foreach v′ ∈ ϕ′

u do Av,v′ ← 1;Av′,v ← 1

if ∀v ∈ vars(ϕu),∀v
′ ∈ vars(ϕ′

u) : Av,v′ = 0
then MUB

(

Φ, (ΦU \ {ϕu, ϕ
′

u}) ∪ {{ϕu ∪ ϕ
′

u}}
)

else
Output ΦU

Algorithm 2: Enumerating a subset of all MUBs
of a formula Φ with polynomial delay. Initial call
PolyMUB(Φ,

⋃

v∈vars(Φ){{v}}). The algorithm as-

sumes the existence of a global variable A such
that for each pair of variables v, v′ ∈ vars(Φ), Av,v′

is a boolean flag. Initially, Av,v′ = 0 for all v, v′.

Algorithm 1 constructs MUBs for a formula Φ by start-
ing with a pessimistic upper bound ΦU =

⋃

v∈vars(Φ){{v}}

and refining it recursively: In every recursion step, witness
graphs are constructed for the current upper bound ΦU and
each tighter bound representing a refinement of it obtained
by merging or removing clauses in ΦU . The set mergeCan-
didates contains pairs of clauses of ΦU together with their
common witness that may be merged without violating the
upper bound condition. Every bound produced by the algo-
rithm is indeed an MUB: The upper bound criterion is triv-
ially satisfied by the initial pessimistic bound and remains
satisfied, because only non-critical clauses are merged or re-
moved. The base case of the recursion is reached whenever
all clauses in ΦU have at least one critical witness (irre-
ducibility), i.e., Φ0 = ∅ in the algorithm. Every bound is
then expanded to satisfy the maximality property.

Example 7. The formula Φ1
1,u = x1y1∨y2∨x2y3z1∨y4z2∨

x3y5z3∨y6z4 is an MUB for Φ1 from Figure 1. Every clause
in Φ1

1,u has exactly one witness in Φ1 which is also criti-

cal. No clause can be extended further, since vars(Φ1
1,u) =

vars(Φ1). The formula Φ2
1,u = x1 ∨ x2 ∨ x3y5z3 ∨ y6z4 is

also an MUB; here clauses x1 and x2 both have two critical
witnesses. It can be checked that Φ2

1,u cannot be extended
by any variable from vars(Φ1). ✷

As in the case of greatest lower bounds, we can enumerate
all iDNF least upper bounds of a given unate formula Φ:

Proposition 6. Algorithm 1 computes all iDNF least up-
per bounds of a unate formula. ✷

Soundness is sketched above. For completeness, consider
an arbitrary MUB ΦU and for illustration purposes, imagine
Algorithm 1 to be non-deterministic, i.e. instead of iterating
over possibilities, it chooses one randomly. It is straight-
forward to see that there exists a computation branch that
produces ΦU : First, remove all variables that are not in
ΦU , then merge clauses. These merging and removing steps
necessarily have to occur intertwined. Consider formula
ax ∨ bx ∨ ay ∨ by. The LUB a ∨ b cannot be obtained if



1OF-LUB (k-partite unate formula Φ)

outputs 1OF LUBs of Φ that are k-partite

B ← set of projections graphs.
Complete connected components of each projection
graph in B.
M← subset of all projection graphs B that contain a
component that is not aligned with components of a
different projection graph in B.
if M = ∅ then Output the 1OF represented by B.
foreach projection graph B ∈M do
B′ ← copy of B.
while there exist two projection graphs in B′ that
have non-aligned components C,C′ do

// Wlog assume that the
// projection graph of C is not B.
Align C to C′ in B′.
Complete connected components of the
projection graph of C in B′.

Output the 1OF represented by B′.

Complete projection graph B in B′

foreach Connected component C in B do
Replace component C with (V,W, V ×W ) in B′.

Align component C to component C′ in B′

if C and C′ are not aligned then
A variable set V of C = (V,W,E) is incomparable
with a variable set V ′ of C′ = (V ′,W ′, E′),
i.e. V ∩ V ′ 6= ∅ and V 6⊆ V ′ and V 6⊃ V ′.
D ← (V − V ′)×W ′.
Add edges D to projection graph of C′ in B′.

Algorithm 3: Finding 1OF LUBs of a k-partite
unate formula Φ.

clauses are merged first, and the LUB ax ∨ b ∨ y cannot be
obtained if clauses are removed first.

The intertwined occurrence of merging, removing, and a-
dding clauses makes the design of a polynomial-delay algo-
rithm for enumerating MUBs difficult, since different compu-
tation branches may not necessarily lead to different MUBs.

Example 8. Consider the formula ab ∨ ax ∨ xy. Starting
with the usual pessimistic bound a∨b∨x∨y, the MUB ab∨x
is found in a computation branch that first merges a and b
and then removes y. A second branch might first remove a
and y, and then expand clause b by a. A third branch will
delete y and then merge a and b. All these branches lead to
the same MUB ab ∨ x. ✷

Polynomial delay can be obtained, however, if we only
enumerate MUBs that have all input variables:

Proposition 7. Given a unate DNF formula Φ, the set
of all iDNF least upper bounds ΦU for Φ such that vars(Φ) =
vars(ΦU ) can be enumerated with polynomial delay. ✷

Algorithm 2 can be used to this effect. Soundness and
completeness with respect to this restricted class of MUBs
follow equivalently to Algorithm 1. The generated MUBs
contain all variables of the input formula, since no variable
ever gets dropped from the initial upper bound that con-
tains all variables. It remains to be shown that the algo-
rithm never returns two identical MUBs due to alternative

merging orders that may lead to the same MUB and that
the variables cannot be first deleted and later added again,
as it can happen in Algorithm 1. The symmetric matrix A
records the history of clause merges: Av,v′ = 1 if and only if
an MUB has already been discovered in which variables v, v′

appear in the same clause. The condition Av,v′ = 0 before
merging clauses thus ensures that any new MUB does not
have a clause with v and v′. Furthermore, it is guaranteed
that every new MUB contains a clause in which v or v′ are
paired with some other variable. Since all MUBs are iDNF
formulas, they are thus pairwise incomparable. Since all
computation branches are bounded in depth by |vars(Φ)|,
return distinct MUBs, and are independent and may thus
be removed from the stack after returning, and since matrix
A has size |vars(Φ)|2, the algorithm needs space polynomial
in the size of the input formula.

Example 9. The MUB Φ2
1,u from Example 7 has fewer

variables than Φ1 and can thus not be found by Algorithm 2.
Consider the iDNF formula abc ∨ xyz which is also its only
MUB. The algorithm indeed finds this bound, for example
by merging steps ab∨c∨x∨y∨z, abc∨x∨y∨z, abc∨xy∨z,
abc ∨ xyz and sets Aa,b = Ab,c = Aa,c = Ax,y = Ay,z =
Ax,z = 1. Consequently, upon returning from the recursion
to the top-level invocation of PolyMUB with ΦU = a ∨ b ∨
c ∨ x ∨ y ∨ z, the for-loop will not invoke another recursive
PolyMUB call, e.g., for a∨bc∨x∨y∨z, since Ab,c = 1. There
is thus exactly one computation branch for one MUB. ✷

The time complexity of Algorithms 1 and 2 can be expo-
nential in the size of the input, and this is necessarily so.

Proposition 8. The unate DNF formula

Φ = (x1y1 ∨ x1y2) ∨ · · · ∨ (xny2n−1 ∨ xny2n)

has 2n clauses and 3n iDNF least upper bounds. Any for-
mula consisting of either xi, or xiy2i−1∨y2i, or y2i−1∨xiy2i
for all 1 ≤ i ≤ n is an iDNF least upper bound of Φ. ✷

5. OPTIMAL 1OF APPROXIMATIONS
In this section we show how to derive optimal 1OF bounds

for unate k-partite formulas representing lineage of conjunc-
tive queries without self-joins.

Recognizing 1OF formulas can be done using the following
characterisation [13]: A unate formula Φ is in 1OF if and
only if Φ is normal and G(Φ) is P4-free. A graph is P4-free
if it has no induced subgraph that is isomorphic to P4, i.e.
the graph • − • − • − •. A formula is normal if it can be
unambiguously recovered from its graph. For instance, in
the graphs of Figure 2 (with edges (xi, zj) added), G(Φ2)
has the P4 subgraph x1 − z1 − x2 − z3, and G(Φ1) has the
P4 subgraph x1− z1− x2− y4. The formulas Φ1 and Φ2 are
thus not in 1OF. For unate DNF formulas, P4-freeness and
subsequent normality checks can be performed in polynomial
time in their size [10]. The graph of a k-partite formula is
always normal, if it is P4-free [24].

A 1OF formula can be recovered from its graph G in
polynomial time [13, 10]. We next sketch the implemen-
tation of a function ρ that maps graphs to 1OF formu-
las. If G is a set of connected components G1, . . . , Gn, then
ρ(G) = (ρ(G1) ∨ · · · ∨ ρ(Gn)). Otherwise, we compute the
complement of G and check again for connected components
G1, . . . , Gm. Then, ρ(G) = (ρ(G1)∧· · ·∧ρ(Gm)). We recurse
with smaller graphs and check for connected components in
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Figure 2: Graphs of Φ1, Φ2, Φ3 from Figure 1. Edges (xi, zj) are not shown to avoid clutter, but can be
inferred here since xi is connected to yl’s that are connected to zj’s. The fourth and fifth graphs represent
LUBs returned by Algorithm 3; orange and blue edges are added due to the alignment and completion steps,
respectively. The sixth graph depicts the completion of G(Φ2).

these graphs and their complements. Before any comple-
mentation, the formula is obtained as the disjunction of the
subformulas for the connected components. With each com-
plementation, we alternate conjunctions and disjunctions.
In case of a node, we return its literal. If G represents an
1OF formula, then this procedure necessarily finds it.

Example 10. Consider the graph G that is the third from
left in Figure 2. It has three components: C1, C2, C3. Then,
ρ(G) = ρ(C1)∨ρ(C2)∨ρ(C3). We next illustrate for C1, the
same applies to the other two components. We complement
it, and obtain two components: C11 consisting of one node
x1 and C12 consisting of two connected nodes y1 and y2.
Then, ρ(C1) = x1∧ρ(C12). We complement C12 and obtain
two components, one with the node y1 and the other with
the node y2. Hence, ρ(C12) = y1 ∨ y2. The 1OF formula
represented by G(Φ3) is x1(y1∨y2)∨x2(y3∨y4)∨x3(y5∨y6).

For the rightmost graph in Figure 2, we complement it and
obtain two connected components: One component consists
of a clique of three nodes x1, x2, x3, and the other consists
of all the remaining nodes. The obtained formula is thus a
conjunction of the formulas of these two components. After
several decomposition steps, we obtain

(x1 ∨ x2 ∨ x3)[z1(y1 ∨ y3) ∨ z2(y2 ∨ y4) ∨ z3y5 ∨ z4y6].✷

We next give an alternative graph-based characterisation
of k-partite 1OF formulas. This is used in the next sections
to create optimal 1OF bounds and is based on two graph
notions: alignment and completeness. A bipartite graph
(X,Y,E) is complete if E = X × Y .

Definition 10. Two bipartite graphs G = (V1, V2, E) and
G′ = (V ′

1 , V
′

2 , E
′) are aligned if for all pairs (Vi, V

′

j ), 1 ≤
i, j ≤ 2, it holds that Vi ∩ V

′

j = ∅ or Vi ⊆ V
′

j or V ′

j ⊂ Vi. ✷

Our characterisation of k-partite 1OFs is as follows:

Lemma 3. Let B be the set of projection graphs of a unate
k-partite formula. The set of connected components of the
bipartite graphs in B are complete and pairwise aligned if
and only if the formula represented by B is in 1OF. ✷

Since a k-partite formula Φ is in general not normal, its
graph may represent a different formula. The next lemma
shows that the represented formula is a k-partite upper bound
of Φ and that there is no smaller normal k-partite upper
bound. This implies that the graph only represents clauses
that are necessarily in every k-partite 1OF upper bound.

Lemma 4. Let Φ be a k-partite formula, B its set of pro-
jection graphs, and Φu the formula represented by B. Then

Φu is k-partite, M(Φ) ⊆ M(Φu), and there is no normal
k-partite formula Φ′

u such that M(Φ) ⊆M(Φ′

u) ⊂M(Φu).

The following lemma states that in order to find optimal
1OF bounds for a unate k-partite formula Φ, it is sufficient
to remove clauses from Φ or add clauses to Φ.

Lemma 5. Let Ψ be a GLB (LUB) for a unate k-partite
formula Φ with respect to k-partite 1OFs. Then Ψ is GLB
(LUB) for Φ with respect to general 1OFs. ✷

Both Lemmata 3 and 5 are key ingredients for finding
optimal 1OF bounds for unate k-partite formulas.

5.1 1OF Least Upper Bounds
Algorithm 3 enumerates optimal k-partite upper bounds

using an approach that closely follows Lemma 3. We first
complete all connected components of bipartite projection
graphs of the input formula. Then, we align components
from different projection graphs that have overlapping, but
incomparable sets of nodes, by introducing new edges across
these components. Whereas there is one possible completion
for these graphs, there may be two possible alignments for
any pair of components.

While the completion step implements the canonical no-
tion of a complete bipartite graph, the alignment step needs
further explanation. If two components C = (V,W,E) and
C′ = (V ′,W ′, E′) are non-aligned, then at least one pair
of variable sets (V, V ′), (V,W ′), (W,V ′), (W,W ′) — assume
wlog it is (V, V ′) — must be incomparable, i.e. satisfy V ∩
V ′ 6= ∅ and V 6⊆ V ′ and V 6⊃ V ′. We align the components
C,C′ by enlarging C′ such that V ⊆ V ′. This is achieved
by adding edges (V − V ′) ×W ′ to the projection graph of
C′ as shown in the Align procedure in Algorithm 3. All
these edges are necessary for alignment; further edges could
be added but they would violate the optimality of our con-
struction of least upper bounds.

Example 11. The graph G(Φ1) from Figure 2 has three
bipartite projection graphs B(Φ) = {Bxy , Bxz, Byz}. Con-
sider the sets of variables V1 = {y1, y2}, V2 = {y3, y4},
V3 = {y1, y3}, and V4 = {y2, y4}. The first two sets and
the last two sets belong to different components of the pro-
jections graphs Bxy and Byz, respectively. Any of V1 and V2

is incomparable with any of V3 and V4, that is, they overlap
yet none is included in the other. This means that their
components are not aligned. Diagrams four and five in Fig-
ure 2 show two possible alignment and completion steps for
G(Φ1). The edge y1 − z2 (orange) in the fourth diagram



aligns node sets V1 and V3 by extending the component con-
taining nodes V3 = {y1, y3} in Byz by node y2, leading to
V1 ⊆ {y1, y2, y3}. The edges y1 − z2, y3 − z2, and y4 − z2
(blue) are due to the subsequent completion step in the pro-
jection graph Byz.

The projection graph Bxy in the graph G(Φ2) has one
component only. This component is not complete, since, for
instance, (x3, y1) 6∈ Bxy . The rightmost diagram in Figure 2
shows G(Φ2) after completion. The projection graphs in the
latter graph are already aligned: Indeed, the variable set
{y1, . . . , y6} of the large component includes the variable sets
{y1, y3}, {y2, y4}, and {y5, y6} of the other components. ✷

Both steps, completion and alignment, may introduce new
clauses that are necessary to obtain a 1OF formula. They
detect P4 paths and add edges between their nodes that
correspond to new clauses of arity k. When these steps are
done, the graph is P4-free and defines a 1OF formula.

We are now ready to state the main result of this section.

Theorem 3. Algorithm 3 computes k-partite 1OF least
upper bounds of a unate k-partite formula. ✷

Soundness follows by Lemmata 3 and 5 and the fact that by
completion and alignment no unnecessary edges are added
to the graph (in other words, no unnecessary clause is added
to the input formula). In particular, note that according to
Lemma 5, bounds computed by Algorithm 3 are optimal
even with respect to the 1OF language, and not only to the
language of k-partite 1OFs.

Example 12. The aligned and completed graphs of G(Φ1)
given in Figure 2 correspond to the 1OF formulas:

1 : (x1 ∨ x2)[z1(y1 ∨ y3) ∨ z2(y2 ∨ y4)] ∨ x3(y5z3 ∨ y6z4)

2 : [x1(y1 ∨ y2) ∨ x2(y3 ∨ y4)](z1 ∨ z2) ∨ x3(y5z3 ∨ y6z4)

These two formulas are the only 3-partite LUBs for Φ1.
The completion of G(Φ2) given in Figure 2 corresponds to

the only 1OF 3-partite LUB formula for Φ2:

Φ2
U = (x1 ∨ x2 ∨ x3)[z1(y1 ∨ y3) ∨ z2(y2 ∨ y4) ∨ z3y5 ∨ z4y6]

Example 10 shows how to compute the 1OF formula of the
graph obtained after completing G(Φ2). ✷

Theorem 4. Algorithm 3 enumerates 1OF least upper
bounds for a k-partite unate DNF formula with polynomial
delay. ✷

The graph of a k-partite unate DNF formula can be con-
structed in time polynomial in k, in the size and in the
number of variables of the formula, and has O(k2) bipartite
subgraphs. Each iteration of the foreach-loop outputs a dis-
tinct LUB, since every iteration fixes a projection graph B
that is never aligned; two LUBs produced by different runs
are thus incomparable. It remains to be shown that any
foreach-iteration takes at most polynomial time. The num-
ber of alignment and completion steps — hence the number
of while-iterations — required is bounded by the maximal
number of edges in the graph, O(n2). Each alignment and
completion step in a component of a projection graph costs
at most quadratic time in the number of its nodes.

Enumeration of all k-partite 1OF LUBs. Algorithm
3 does not enumerate all k-partite 1OF LUBs of a given for-
mula. This is due to the restriction that for each projection
graph B that has a non-aligned component only one LUB

1OF-GLB (k-partite unate formula Φ)

outputs all 1OF GLBs of Φ that are k-partite

Γ← ∅ // Γ is the set of all GLBs seen so far
foreach n from |Φ| downto 1 do

foreach Φ′ ⊆ Φ such that |Φ′| = n do
if Φ′ is in 1OF and 6 ∃Φ0 ∈ Γ such that Φ′ ⊆ Φ0

then
Output ρ(Φ′)
if Φ′ = Φ then

return
Γ← Γ ∪ {Φ′}

Algorithm 4: Finding 1OF GLBs of a k-partite
unate formula.

is constructed. By removing the foreach-statement from
the algorithm and implementing the choice in the while-
statement to be non-deterministic, this restriction can be
lifted to obtain a non-deterministic algorithm that finds all
k-partite 1OF LUBs. To obtain a deterministic version of
this algorithm, we iterate and branch over all such choices.
Since different branches may find the same LUB several
times, this algorithm does not enumerate LUBs with polyno-
mial delay. Indeed, this extended algorithm has exponential
time complexity, since (i) we can choose one of two possible
alignments for each pair of non-aligned projection graphs,
and (ii) the number of alignments of a k-partite graph can
be exponential in the size of the graph.

Proposition 9. The graph of the 3-partite formula Φ3
n =

n
∨

i=1

(

xiy4i−3z4i−3∨xiy4i−2z4i−2∨xi+1y4i−1z4i−3∨xiy4iz4i−2

)

has size 4n and 2n alignments. ✷

The graph in Proposition 9 consists of n unconnected copies
of the subgraph represented by the upper part U of the
graph G(Φ1) in Figure 2. There are exponentially many
alignments since U has two alignments and the n copies of
U are unconnected.

Remark 2. Algorithm 3 can also be used to compute k-
partite 1OF upper bounds for formulas that represent lin-
eage of conjunctive queries with self-joins. Those formulas
are similar to k-partite ones, except that they are not over
disjoint variable sets V1, . . . , Vk, but some Vi, Vj can be iden-
tical. To obtain bounds in this case, first drop a minimal
number of variables from clauses such that each clause con-
tains at most one variable from each distinct variable set.
Subsequently, Algorithm 3 can be applied to this smaller
formula. An important direction of future work is to study
the case of optimal bounds for such formulas as well as un-
restricted unate formulas. ✷

5.2 1OF Greatest Lower Bounds
For a given k-partite unate formula Φ, Algorithm 4 com-

putes k-partite 1OF greatest lower bounds. It iterates over
all subformulas Φ′ representing subsets of Φ starting with
the largest subformulas first. If Φ′ is a 1OF formula and is
not included in any bounds previously found by the algo-
rithm, then Φ′ is reported as a greatest lower bound.

Proposition 10. Algorithm 4 computes all k-partite 1OF
greatest lower bounds of a unate k-partite formula. ✷



Since it only checks for subsets of the input formula Φ, the
algorithm reports lower bounds that have arity k, which is
sufficient according to Lemma 5. The 1OF lower bounds
computed by the algorithm are optimal, since we check that
there is no larger 1OF lower bound. We do this by iterating
over the larger subformulas before the smaller subformulas,
and also over Φ, and memorizing all GLBs encountered so
far (in Γ). The algorithm is complete since it iterates over
the entire space of possible k-partite lower bounds.

Example 13. Formula Φ1 in Figure 1 has four 1OF GLBs:

1 : (x1y1 ∨ x2y3)z1 ∨ x3(y5z3 ∨ y6z4)

2 : x1y1z1 ∨ x2y4z2 ∨ x3(y5z3 ∨ y6z4)

3 : (x1y2 ∨ x2y4)z2 ∨ x3(y5z3 ∨ y6z4).

4 : x1y2z2 ∨ x2y3z1 ∨ x3(y5z3 ∨ y6z4).✷

Algorithm 4 needs exponential time to report all k-partite
1OF GLBs of a unate DNF formula. This is partly due to
the exponential number of such lower bounds. The problem
of enumerating 1OF greatest lower bounds with polynomial
delay remains open.

Proposition 11. The unate bipartite DNF formula

Φ = (x1y1∨x1y2∨x2y2)∨· · ·∨(x2n−1y2n−1∨x2n−1y2n∨x2ny2n)

has 3n clauses and 3n 1OF bipartite greatest lower bounds.
Any formula consisting of either x2i−1(y2i−1 ∨ y2i), or

(x2i−1 ∨ x2i)y2i, or (x2i−1y2i−1 ∨ x2iy2i) for all 1 ≤ i ≤ n is
a 1OF bipartite greatest lower bound of Φ. ✷

6. APPROXIMATION BY QUERIES
In this section we show how to derive queries that com-

pute bounds for the lineage of conjunctive queries without
self-joins on databases in which each tuple is annotated
with a fresh Boolean variable. In case of random vari-
ables, such databases are tuple-independent probabilistic
databases. Bounds for the lineage are expressed in the lan-
guages of iDNF or 1OF, as discussed in the previous sections.

Our motivation behind this study is twofold. Firstly,
bounds that are expressible by queries can be computed
in polynomial time using relational database engines. This
is essential for probabilistic databases, where query evalua-
tion is #P-hard in general since it involves probability com-
putation of arbitrary propositional formulas. Secondly, we
would like to understand whether queries with polynomial
data complexity on classical relational databases can be ap-
proximated by bound queries that have polynomial combined
complexity and have answers representable in the iDNF or
1OF propositional languages.

6.1 Expressing Bound Queries
The main challenge in expressing bounds using queries is

the encoding (i) of the completion and alignment steps for
1OF upper bounds, and (ii) of the choice of a maximal sub-
set of clauses that is still in iDNF or 1OF for lower bounds.
Deriving queries that express iDNF upper bound computa-
tion is subject to future work.

We first discuss the case of 1OF bounds. For a given
conjunctive query Q, its lineage is already in 1OF if Q is
hierarchical and has no self-joins [17]. By Definition 3, the
hierarchical property is violated by relation symbols with
several query variables that also appear in other distinct
relation symbols. For instance, relation S in queries Q1, Q2,

Query-UB (Conjunctive Query without Self-Joins Q)

outputs upper bound queries for Q

foreach non-head query variables A,B such that not
(s(A) ∩ s(B) = ∅ or s(A) ⊆ s(B) or s(A) ⊃ s(B)) do

foreach relation S ∈ (s(A) ∩ s(B)) do
//Step 1: complete S on columns (A,B)
replace S by transQ(S,A,B) in Q

//Step 2: align S on columns (A,B)
αA(A,B, X̄):-S(A,B′, X̄), Sd(A′, B, X̄), Sd(A′, B′, X̄)
αB(A,B, X̄):-S(A′, B, X̄), Sd(A,B′, X̄), Sd(A′, B′, X̄)

choose one of the following:
1. replace S by αA in Q
2. replace S by αB in Q

output Q

Algorithm 5: Deriving upper bound queries.

and Q3 of Figure 1 violates the hierarchical property. In case
of Q1, the relation S can be constructed such that it pairs
arbitrary tuples from relations R and T , and in particular
arbitrary annotations from the two relations. The lineage of
such queries cannot thus be in 1OF in general, though it may
be in 1OF for particular extensions or reductions of such
violating relations. The key insight is that one particular
case of extensions or reductions of violating relations is by
means of completion and alignment of their content.

Algorithm 5 extends Q with completion and alignment
steps necessary for computing 1OF upper bounds, as de-
tailed in Section 5.1. It first detects the binary projections
of violating relations S that have incomplete and/or mis-
aligned connected components. This detection is based on
the hierarchical property of conjunctive queries as given in
Definition 3, which corresponds precisely to the alignment
check used by Algorithm 3.

The completion step requires transitive closure on the bi-
partite graph GAB represented by the projection S(A,B):
For each tuple t from a relation joined with S via an equal-
ity or inequality condition on A and that has an A-value
a, we introduce new tuples in S. These tuples allow for
combinations of t with B-values that are annotated by their
variables in S and that appear with A-values from the same
connected component of GAB with value a. We denote this
closure by transQ(S,A,B) in Algorithm 5.

Example 14. Consider the queryQ:-R(A), S(A,B), T (B),
where the relations are defined as follows:

R A
x1 a1
x2 a2

S A B
y1 a1 b1
y2 a1 b2
y3 a1 b3
y4 a2 b1
y5 a2 b4

T B
z1 b1
z2 b2
z3 b3
z4 b4

S′ A B
y4 a1 b1
y5 a1 b4
y1 a2 b1
y2 a2 b2
y3 a2 b3

The completion of the violating relation S leads to the
addition of the tuples S′ to S. The lineage of the upper
bound query Qu

:-R(A), transQ(S,A,B), T (B) is the 1OF
formula (x1 ∨ x2)[(y1 ∨ y4)z1 ∨ y2z2 ∨ y3z3 ∨ y5z4]. This
is indeed an upper bound of the original lineage x1(y1z1 ∨
y2z2 ∨ y3z3) ∨ x2(y4z1 ∨ y5z4), which is not in 1OF. ✷

After completion, the alignment step can add tuples to S
so that all variables associated with either A or B are now



Query-LB (Conjunctive Query without Self-Joins Q)

outputs lower bound queries for Q

choose an order <Q on the query variables of Q
foreach non-head query variables A,B such that not
(s(A) ∩ s(B) = ∅ or s(A) ⊆ s(B) or s(A) ⊃ s(B)) do

1. In case of 1OF bounds:
if A <Q B then

f ← functional dependency (A→ B)

else
f ← functional dependency (B → A)

2. In case of iDNF bounds:
f ← functional dependencies (A→ B,B → A)
foreach relation S in s(A) ∩ s(B) do

replace S by repairf (S) in Q

output Q

Algorithm 6: Deriving lower bound queries.

also associated with the other B or A values, respectively, in
the same connected component GAB . We denote alignment
by αv in the algorithm; Sd is relation S without variables
and v denotes our choice of aligning on either A or B. The
alignment step can be encoded as a conjunctive query.

Example 15. In query Q1 from Figure 1, S is the only vi-
olating relation. This relation is already complete. There
are two possible bound queries: Qu1

1 :-R(A), αA(A,B), T (B)
and Qu2

1 :-R(A), αB(A,B), T (B), where α is defined as given,
where in addition S is replaced by transQ1(S,A,B). Af-
ter the alignment αA, the following tuples are added to
S: y1(1, 2), y2(1, 1), y3(2, 2), y4(2, 1), y5(3, 4), and y6(3, 3).
With this extended relation S, the query would produce the
lineage [x1(y1∨y2)∨x2(y3∨y4)](z1∨z2)∨x3(y5∨y6)(z3∨z4).
This lineage is an 1OF upper bound of the original lineage.✷

Theorem 5. Given a conjunctive query without self-joins
Q, Algorithm 5 constructs queries QU with a transitive clo-
sure construct such that:

• The size of QU is at most quadratic in the size of Q,

• For every relational database D, Q(D) ⊆ QU(D),

• For every annotated database D, the lineage of QU (D)
is a |Q|-partite 1OF formula, and

• For every probabilistic database D and tuple t ∈ Q(D),
P (t ∈ Q(D)) ≤ P (t ∈ QU (D)) and, given QU (D),
P (t ∈ QU (D)) can be computed in polynomial time. ✷

This result draws on the connection between Algorithms 5
and 3, since the former only provides query encodings of
the completion and alignment steps of the latter. It can be
further shown that the completion step is redundant when
all joins are key-foreign key joins. If in addition these joins
build a hierarchy based on inclusion of the query variables
involved in each join, then the query is hierarchical and the
alignment step is also not needed, since then the lineage is
guaranteed to be in 1OF. Alternative upper bound queries
without the transitive closure construct can be constructed
by dropping one of the join conditions for each violating
relation in the query.

Theorem 5 also holds for input queries with inequality
joins (<). In case of queries with self-joins, we can obtain
upper bounds by first dropping all but one occurrence of
each relation symbol in the query, and then use Algorithm 5.

To express lower bound computation using queries, we
need to resolve incompletion and misalignment of graph
components of many-to-many relations by dropping tuples
and hence clauses from the lineage to be approximated. This
can be achieved by non-deterministically choosing maximal
functional bipartite subgraphs of many-to-many binary re-
lations, and as such, it requires a choice operator, whose
expressiveness is beyond first order [20]. A similar opera-
tor has been proposed in the context of uncertain databases
for constructing all possible (maximal) repairs of a relation
under given functional dependencies [1]. Algorithm 6 uses
a repair operator to choose a maximal subset of a relation
that satisfies a given set of functional dependencies. An al-
ternative approach to the choice operator is to extend the
language of first-order queries with a new binary order <
operator, and consider an arbitrary linear ordering of the
universe. Linearly ordered finite domains provide a first-
order definable choice function, namely the one that always
picks <-least elements [20].

Theorem 6. Given a conjunctive query without self-joins
Q, Algorithm 6 constructs queries QL with a repair construct
such that:

• The size of QL is at most quadratic in the size of Q,

• For every relational database D, QL(D) ⊆ Q(D),

• For every annotated database D, the lineage of QL(D)
is a |Q|-partite 1OF or iDNF formula, and

• For every probabilistic database D and tuple t ∈ Q(D),
P (t ∈ QL(D)) ≤ P (t ∈ Q(D)) and, given QL(D),
P (t ∈ QL(D)) can be computed in polynomial time. ✷

By enforcing a functional dependency A→ B on each vio-
lating relation S in the query, we turn the bipartite graph of
S(A,B) into the graph of a function, and drop clauses from
the lineage of the original query that forbid factorisation in
1OF. In the iDNF case, we enforce a two-way dependency
A ↔ B on each violating relation S, hence each variable
annotating a tuple in S can only occur in one clause in the
lower bound lineage. In the 1OF case, the constructed query
turns the database into a chain of one-to-many joined rela-
tions. All connected components of the projection graphs of
the lineage graph are then necessarily complete and aligned,
hence the lineage is in 1OF.

Example 16. We enforce any of the functional dependen-
cies A → B or B → A on relation S in the query Q1

from Figure 1. The number of maximal functional sub-
graphs of S is eight in the first case and four in the second
case. In the former case, the 1OF lower bound query would
be Ql1

1 :-R(A), repairA→B(S(A,B)), T (B). If we choose the
first tuples for each A-value in S, we obtain the lineage
(x1y1 ∨ x2y3)z1 ∨ x3y5z3.

The query Q
l2
1 :-R(A), repairA↔B(S(A,B)), T (B) is the

iDNF lower bound query for Q1. If we choose the first,
fourth, and sixth tuples in S, we obtain the lineage x1y1z1∨
x2y4z2 ∨ x3y5z3. The iDNF bound query is optimal since
its bound is optimal. The 1OF bound query is not optimal,
Example 13 lists the 1OF greatest lower bounds for Q1. ✷

As exemplified above, the 1OF lower bound queries con-
structed by Algorithm 6 are usually not optimal. To obtain
optimality, we would need a more involved version of the
repair operator that can enforce any of the two functional
dependencies independently for each of the connected com-
ponents of the bipartite graph of S(A,B).



6.2 iDNF and 1OF Representation Systems
Since iDNF and 1OF formulas representing the lineage

of bound queries have sizes linear in the number of their
variables, a natural question is whether bound queries can
be evaluated more efficiently than the queries they approx-
imate. The initial answer is “no”, since there are bound
queries, such as the product of n relations, that produce
answers of size exponential in n. The structure of answers
to bound queries, however, follows the regular structure of
1OF or iDNF languages. This motivates the use of these
languages as succinct representations of query answers.

Definition 11. Let Q be a 1OF bound query, D be an
annotated database, and Φ be the 1OF lineage of the query
answer Q(D). The 1OF representation of Q(D) is (Φe,S),
where S is the schema of the query answer and Φe is Φ
extended by inserting at each variable x occurring in Φ the
input tuple t annotated with x together with the schema of
t. The case of iDNF is defined analogously. ✷

Example 17. Consider the lineage of the 1OF upper bound
query Qu1

1 on database D from Example 15: [x1(y1 ∨ y2) ∨
x2(y3 ∨ y4)](z1 ∨ z2) ∨ x3(y5 ∨ y6)(z3 ∨ z4). The 1OF repre-
sentation of Qu1

1 (D) is (Φe,S) with S = ∅ and

Φe =
[

x1〈1〉(y1〈1, 1〉 ∨ y2〈1, 2〉)∨

x2〈2〉(y3〈2, 1〉 ∨ y4〈2, 2〉)
]

(z1〈1〉 ∨ z2〈2〉)

∨
[

x3〈3〉(y5〈3, 3〉 ∨ y6〈3, 4〉)
]

(z3〈3〉 ∨ z4〈4〉).✷

This representation is closed under queries with projection,
selection, and product operators, but not under queries with
joins and projection. In contrast to classical DNF represen-
tations of query answers (equivalent to a list of answer tu-
ples), the 1OF representation is more succinct and enables
lower complexity of query evaluation for 1OF bound queries.

Theorem 7. Given a bound query Q as constructed by
Algorithms 5 and 6 and an annotated database D, the 1OF
or iDNF representation of Q(D) needs space O(|D|) and can
be computed in polynomial combined complexity.

Given an 1OF or iDNF representation of Q(D), the an-
swers to Q(D) can be enumerated with polynomial delay. ✷

7. CONCLUSION AND FUTUREWORK
This paper introduces a novel approach to query approx-

imation in probabilistic and relational databases via two
tractable propositional languages. We show equivalences
between semantic and syntactic characterisations of optimal
bounds; while the former provide an intuitive understand-
ing of optimality, the latter are more easily accessible to ef-
ficient algorithmic treatment. We propose two methods for
the computation of optimal bounds, one based on the syntax
of lineage formulas, and one based on query rewriting.

We see several promising directions for future work. We
plan to integrate the approximation framework into our query
engine for probabilistic databases called SPROUT. The ap-
plication of our results to the relational case suggests a novel
paradigm to the representation and computation of query
answers. A promising direction is the investigation of queries
whose answers are k-readable, that is, answers that can be
represented as formulas where each input tuple occurs at
most k times, where k is a polynomial in the sizes of the

database and the query. The problem of enumerating 1OF
greatest lower bounds with polynomial delay is still open.
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APPENDIX

Proof of Proposition 2

Let Φ be a unate formula.
Lower bounds . Let ΦL be a formula obtainable by re-
moving clauses from Φ or adding literals to its clauses. Let
ϕL be a clause in ΦL. Then there exists a clause ϕ in Φ such
that ϕL ⊇ ϕ. Hence ΦL is a lower bound for Φ by virtue of
Definition 4 and Lemma 1.
Upper bounds . Let ΦU be a formula obtainable by adding
clauses to Φ or removing literals from its clauses. Let ϕ be a
clause in Φ. Then there exists a clause ϕU in ΦU such that
ϕ ⊇ ϕU . Hence ΦU is an upper bound for Φ by virtue of
Definition 4 and Lemma 1.

Proof of Theorem 1

MLB⇒ GLB. Let Φ be an irreducible unate DNF formula
and ΦL an MLB for Φ. Assume ΦL is no GLB for Φ. Then
there exists an iDNF formula Φ′

L such that

M(ΦL) ⊂M(Φ′

L) ⊆M(Φ)

and the following properties hold:

(i) ΦL ⊆ Φ (every clause in ΦL is also a clause in Φ)

(ii) Every clause ϕ in Φ and not in ΦL contains a conflicting
variable, i.e. a variable x ∈ ϕ such that there exists a
clause ϕ̄L ∈ ΦL with x ∈ ϕL

(iii) ∀ϕ′

L ∈ Φ′

L : ∃ϕ ∈ Φ : ϕ′

L ⊇ ϕ (Φ′

L |= Φ and Lemma 1)

(iv) ∀ϕL ∈ ΦL : ∃ϕ′

L ∈ Φ′

L : ϕL ⊇ ϕ
′

L

(ΦL |= Φ′

L and Lemma 1)

(v) No two clauses ϕ, ϕ̄ ∈ Φ satisfy ϕ |= ϕ̄
(Φ is irreducible)

Properties (i) and (ii) follow from ΦL being an MLB for Φ,
(iii) – (iv) fromM(ΦL) ⊂M(Φ′

L) ⊆M(Φ). We prove that
ΦL is equivalent to Φ′

L by case differentiation:

1. 1 ∈ Φ. Then since 1 has no conflicting variables with
any other clause also 1 ∈ ΦL and thus M(ΦL) =
M(Φ′

L) = M(Φ) which is a contradiction to the as-
sumption that ΦL is no GLB for Φ.

2. 1 6∈ Φ. Let ϕ′

L ∈ Φ′

L be any clause in Φ′

L and ϕ ∈ Φ
a clause such that ϕ′

L ⊇ ϕ according to (iii). With
respect to property (i), we have the following two cases:

(a) ϕ ∈ ΦL. Let ϕ̄′

L ∈ Φ′

L be a clause with ϕ ⊇ ϕ̄′

L

according to (iv). Together with ϕ′

L ⊆ ϕ from
above we have ϕ̄′

L ⊇ ϕ ⊇ ϕ′

L, and since none of
ϕ,ϕ′

L, ϕ̄
′

L can be the empty clause (see case (a)),
ϕ′

L and ϕ̄′

L must share at least one variable. Since
Φ′

L ∈ iDNF, it follows that ϕ′

L and ϕ̄′

L are the same
clause. Thus:

ϕ ⊇ ϕ̄′

L = ϕ
′

L ⊇ ϕ ⇒ ϕ = ϕ
′

L.

It follows that ΦL = Φ′

L which is a contradiction
to the assumptionM(ΦL) ⊂M(Φ′

L).

(b) ϕ 6∈ ΦL. According to (ii), there is a variable x ∈ ϕ
such that there exists a clause ϕL ∈ ΦL with x ∈
ϕL; furthermore, ϕL ∈ Φ due to (i). From ϕ′

L ⊇ ϕ
it follows x ∈ ϕ′

L. From (iv) it follows that there
exist a clause ϕ̄′

L ∈ Φ′

L such that ϕL ⊇ ϕ̄′

L. We
distinguish two cases:

i. x ∈ ϕ̄′

L. It follows ϕ̄′

L = ϕ′

L, because Φ′

L ∈
iDNF. From ϕL ⊇ ϕ̄′

L = ϕ′

L ⊇ ϕ it follows that
ϕL ⊇ ϕ. Since ϕL, ϕ ∈ Φ, this is a contra-
diction to the assumption that Φ is irreducible,
property (v).

ii. x 6∈ ϕ̄′

L. Then according to (iii) there is a ϕ̄ ∈ Φ
with ϕ̄′

L ⊇ ϕ̄ and thus x 6∈ Φ which in turn
implies ϕ̄ 6= ϕ because x ∈ ϕ. Transitivity of ⊇
implies ϕL ⊇ ϕ̄ which is a contradiction to the
assumption that Φ is irreducible, property (v).

GLB ⇒ MLB. Assume that a GLB ΦL for Φ is no MLB
for Φ. Then at least one of the two MLB properties in
Definition 5 is unsatisfied. We show that in either case ΦL

is no GLB for Φ.

1. Assume ΦL 6⊆ Φ. Then ΦL contains a clause ϕL that
is not in Φ.

(a) If there is a clause ϕ ∈ Φ such that ϕL ⊇ ϕ, then
ϕL ⊃ ϕ. Let x be a variable that occurs in ϕL but
not in ϕ. Then the iDNF formula obtained from
ΦL by removing the variable x from ϕ has strictly
more models than ΦL and thus ΦL is no GLB for
Φ.

(b) If there is no such clause, then ΦL 6|= Φ following
Lemma 1 and thus ΦL is no lower bound and in
particular no greatest lower bound for Φ.

2. If there is a clause ϕ ∈ Φ such that ΦL ∪ {ϕ} ∈ iDNF,
thenM(ΦL) ⊂M(ΦL∪{ϕ}) because none of the vari-
ables in ϕ occur in ΦL and thus ΦL is no GLB for Φ.

Proof of Theorem 2

MUB ⇒ LUB. Assume ΦU is a minimal upper bound for
Φ but not an LUB for Φ. Then there exists a better iDNF
upper bound Φ′

U for Φ that satisfies

M(Φ) ⊆M(Φ′

U ) ⊂M(ΦU ).

Using Lemma 1, the second inclusion unfolds to:

M(Φ′

U ) ⊂M(ΦU )

iffM(Φ′

U ) ⊆M(ΦU ) and notM(ΦU ) ⊆M(Φ′

U )

iff ∀ϕ′

U ∈ Φ′

U∃ϕU ∈ ΦU .ϕ
′

U ⊇ ϕU

and ∃ϕU ∈ ΦU∀ϕ
′

U ∈ Φ′

U¬(ϕU ⊇ ϕ
′

U ).

By collecting the assumptions and unfolding the definitions:

(i) ∀ϕ ∈ Φ : ∃ϕ′

U ∈ Φ′

U : ϕ ⊇ ϕ′

U (Φ |= Φ′

U )

(ii) ∀ϕ ∈ Φ : ∃ϕU ∈ ΦU : ϕ ⊇ ϕU (Φ |= ΦU )

(iii) ∀ϕ′

U ∈ Φ′

U : ∃ϕU ∈ ΦU : ϕ′

U ⊇ ϕU (Φ′

U |= ΦU )

(iv) ∃ϕU ∈ ΦU : ∀ϕ′

U ∈ Φ′

U : ¬(ϕU ⊇ ϕ
′

U ) (ΦU 6|= Φ′

U )

(v) There is no clause ϕU ∈ ΦU that can be extended by a
variable from vars(Φ) and the resulting formula is still
in iDNF and implied by Φ

(vi) Every ϕ ∈ Φ is a witness for at least one clause ϕU ∈
ΦU , i.e. Φ |= ΦU according to Lemma 1

(vii) Every clause ϕU ∈ ΦU has some critical witnesses in Φ.

Sentences (i)–(iv) are due to the assumption that ΦU is up-
per bound but no LUB for Φ and sentences (v)–(vii) are the
syntactical characterisation of the MUB property of ΦU .

Let ϕU ∈ ΦU be as in (iv). Let ϕ′

U ∈ Φ′

U be a clause in
Φ′

U that shares at least one variable with ϕU . If no such



clause exists, then by transitivity of ⊇ and ΦU ,Φ
′

U ∈ iDNF,
ΦU cannot have a witness in Φ which is a contradiction to
(vii).

Then, since ΦU ,Φ
′

U ∈ iDNF, ϕU can be the only clause
in ΦU that satisfies sentence (iii) and together with ¬(ϕU ⊇
ϕ′

U ) from (iv) we can conclude ϕ′

U ⊃ ϕU . Let x be a variable
that occurs in ϕ′

U , but not in ϕU . We show a contradiction
to the above sentences (i) – (vii) by case differentiation:

1. If x 6∈ ΦU : According to (vii), ϕU has a critical witness
w ∈ Φ. Consider Figure 3a.

(a) If w |= ϕ′

U : Then ϕU can be extended by x and
the resulting formula is still in iDNF and implied
by Φ. This is a contradiction to (v).

(b) If w 6|= ϕ′

U : Then according to (i) there is a ϕ̄′

U ∈
Φ′

U such that w |= ϕ̄′

U . Since Φ′

U ∈ iDNF, ϕ′

U and
ϕ̄′

U share no variables; due to (iii) there must be a
ϕ̄U ∈ ΦU which is implied by ϕ̄′

U and is different
from ϕU due to the iDNF property of ΦU . From
the transitivity of the implication relation it follows
w |= ϕ̄U which is a contradiction to the assumption
that w is a critical witness for ϕU .

2. If x ∈ ΦU : Let ϕ̄U ∈ ΦU such that x ∈ ϕ̄U , and w ∈ Φ
be a critical witness for ϕ̄U . Consider Figure 3b.

(a) If w |= ϕ′

U : As above, transitivity of |= implies
w |= ϕU which is a contradiction to the assumption
that w is a critical witness for ϕ̄U .

(b) If w 6|= ϕ′

U : Then according to (i) there is a ϕ̄′

U ∈
Φ′

U such that w |= ϕ̄′

U . Since x ∈ ϕ′

U and Φ′

U ∈
iDNF, ϕ̄′

U does not contain the variable x; due to
(iii) there must be a ϕ̂U ∈ ΦU which is implied by
ϕ̄′

U and does thus not contain the variable x and is
hence different from ϕ̄U . Transitivity of |= implies
w |= ϕ̂U which is a contradiction to the assumption
that w is a critical witness for ϕ̄U .

This completes the proof for the direction MUB ⇒ LUB.

LUB ⇒ MUB. Assume ΦU is no MUB for Φ. We need to
show that whenever any of the three conditions in Definition
9 does not hold, then ΦU is no LUB for Φ.

1. If there is a clause in Φ which is not a witness of clauses
in ΦU , then Φ 6|= ΦU and thus ΦU is no upper bound
for Φ and in particular no least upper bound.

2. Let x be a variable such that a clause ϕU ∈ ΦU can be
extended by x and the resulting formula is in iDNF and
implied by Φ. It is clear that x does not occur in ΦU ,
because otherwise it would not be possible to extend
the formula without violating the iDNF property. Then
the assignment with x← false and all other variables
true is a model of ΦU but no model of the extended
formula Φext

U . ThusM(Φext
U ) ⊂ M(ΦU ) and ΦU is no

LUB for Φ.

3. Let ϕU ∈ ΦU be a clause without a critical witness in
Φ. Then removing ϕU from ΦU creates a formula Φ̄U

with the following properties:

• Since ΦU is a iDNF formula, removing ϕU creates
a formula with strictly fewer models than ΦU .

• Since all witnesses of ϕU are non-critical, they im-
ply other clauses in ΦU as well. Hence Φ̄U is still
implied by Φ.

Φ̄U is thus a better upper bound for Φ and ΦU is no
LUB.

Proof of Lemma 2 and Proposition 5

We first show the close correspondence between finding great-
est lower iDNF bounds for a formula and finding maximal in-
dependent sets in its clause-dependency graph, as formalised
by Lemma 2.

Proof of Lemma 2. Let Φ be a unate DNF formula and
G = (Φ, E) its clause-dependency graph. Then we have the
following equivalences:

ΦL ⊆ Φ is an iDNF GLB for Φ

iff All clauses in ΦL are pairwise independent and there is
no clause in Φ that is independent from ΦL [By Defi-
nition 5]

iff No two clauses in ΦL share a variable and all clauses
in Φ− ΦL share a variable with some clause in ΦL

iff No nodes from ΦL are connected in G and every node
in Φ−ΦL is connected to some node in ΦL [By Defini-
tion 6]

iff ΦL is a maximal independent set in G [Definition of
maximal independent set]

As the following Proposition shows, the correspondence
of Lemma 2 can be extended to the case in which one is in-
terested in finding the greatest lower bound with the largest
probability. Such a bound corresponds to the maximal in-
dependent set with the largest sum of node weights.

Proposition 12. Let Φ be a DNF formula over a set of
Boolean random variables x1, . . . , xn with probabilities p(xi),
and G = (Φ, E) its clause-dependency graph. Define node
weights for nodes ϕ ∈ Φ in graph G as follows:

w(ϕ) = − ln
(

1−
∏

x∈ϕ

p(x)
)

. (1)

A formula ΦL is an iDNF greatest lower bound of Φ with
maximum probability among all iDNF greatest lower bounds
of Φ, if and only if ΦL is an independent set with maximum
node weight

W (Φ) =
∑

ϕ∈Φ

w(ϕ)

in the node-weighted graph G.

Proof. We show the proposition by proving that the to-
tal orders on formula probabilities and weighted independent
sets in G are compatible under w(·). Let ΦL and Φ′

L two
iDNF GLBs of Φ.



Φ Φ′

U ΦU

w ϕ′

U

ϕU

ϕ̄′

U
ϕ̄U

critical

(a)

(b)

(b)

(a) Witness graph illustration of the witnesses in
M(Φ) ⊆M(Φ′

U ) ⊂M(ΦU ) for the case x 6∈ ΦU .
In case 1(b), the assumption that w is a critical
witness for ϕU is disproved by clause ϕ̄U which
is also implied by w due to the transitivity of the
implication relation.

Φ Φ′

U ΦU

w ϕ′

U
ϕU

ϕ̄′

U

ϕ̄U

ϕ̂U

critical

(a)

(b)

(b)

(b) Witness graph illustration of the witnesses in
M(Φ) ⊆M(Φ′

U ) ⊂M(ΦU ) for the case x ∈ ΦU .
In cases 2(a) and 2(b), the assumption that w is
a critical witness for ϕ̄U is disproved by clause
ϕU or ϕ̂U , respectively, which are also implied
by w due to the transitivity of the implication
relation.

Figure 3: Witness graphs used in the proof of Theorem 2.

Pr(ΦL) ≥ Pr(Φ
′

L)

⇔ 1−
∏

ϕ∈ΦL

(1−
∏

x∈ϕ

p(x)) ≥ 1−
∏

ϕ∈Φ′

L

(1−
∏

x∈ϕ

p(x))

⇔
∏

ϕ∈ΦL

(1−
∏

x∈ϕ

p(x)) ≤
∏

ϕ∈Φ′

L

(1−
∏

x∈ϕ

p(x))

⇔
∑

ϕ∈ΦL

ln(1−
∏

x∈ϕ

p(x)) ≤
∑

ϕ∈Φ′

L

ln(1−
∏

x∈ϕ

p(x))

⇔
∑

ϕ∈ΦL

− ln(1−
∏

x∈ϕ

p(x)) ≥
∑

ϕ∈Φ′

L

− ln(1−
∏

x∈ϕ

p(x))

⇔
∑

ϕ∈ΦL

w(ϕ) ≥
∑

ϕ∈Φ′

L

w(ϕ)

⇔ W (ΦL) ≥W (Φ′

L)

It follows that the GLB with the largest probability is
the independent set in the clause-dependency graph with
maximum weight.

We need the following helpers in order to show Proposi-
tion 5.

Proposition 13. Let k, k1, . . . , km, h ∈ N
+ such that

l
∑

i=1

ki ≤ lk for all l = 1, . . . ,m− 1, and

m
∑

i=1

ki ≤ mk − h.

Then k̃1, . . . , k̃m ∈ N
+ with

k̃i =

{

ki i < m

ki + h i = m

satisfy

l
∑

i=1

k̃i ≤ lk for all l = 1, . . . , m.

Proof. This is clear for l < m. For l = m:

m
∑

i=1

k̃i =

(

m−1
∑

i=1

k̃i

)

+ k̃m

=

(

m−1
∑

i=1

ki

)

+ km + h

=

(

m
∑

i=1

ki

)

+ h

≤ mk − h+ h

= mk

Proposition 14. Let k, k1, . . . , km ∈ N
+ such that

l
∑

i=1

ki ≤ lk for all l = 1, . . . ,m.

Let w1, . . . , wm ∈ R
+ such that w1 ≥ w2 ≥ · · · ≥ wm. Then

m
∑

i=1

kiwi ≤
m
∑

i=1

kwi.

Proof. We prove the proposition by induction onm. For
m = 1 we have kp1 ≥ k1p1 iff k ≥ k1. Now let the statement
be true for m− 1 and let k, k1, . . . , km ∈ N

+ such that

l
∑

i=1

ki ≤ lk for all l = 1, . . . ,m.

Let h = km − k. We distinguish two cases:

1. km ≤ k: Then via the induction hypothesis the follow-
ing inequalities hold:

m
∑

i=1

kiwi ≤
m−1
∑

i=1

kwi+kmwm ≤
m−1
∑

i=1

kwi+kwm =

m
∑

i=1

kwi.

2. km > k: First note that

m−1
∑

i=1

ki =
m
∑

i=1

ki − km ≤ mk − km = (m− 1)k − h.



ϕi1 ϕ2 · · ·
ϕi2 · · ·

ϕij · · ·
ϕij+1 · · ·

ϕim · · · ϕn

~Φi1
~Φij

~Φim

Figure 4: Notation used in the proof of Proposi-
tion 5.

Hence by Proposition 13 there exist k̃1, . . . , k̃m−1 with

k̃i =

{

ki i < m− 1

ki + h i = m− 1

such that

l
∑

i=1

k̃i ≤ lk for all l = 1, . . . ,m− 1.

By the induction hypothesis and due to the decreasing
order wn ≥ · · · ≥ w1 the following inequalities hold:

m
∑

i=1

kiwi =

m−2
∑

i=1

kiwi + km−1wm−1 + kmwm

≤
m−2
∑

i=1

kiwi + (km−1 + h)wm−1 + (km − h)wm

≤
m−1
∑

i=1

k̃iwi + kwm

≤
m−1
∑

i=1

kwi + kwm

≤
m
∑

i=1

kwi

Proposition 15. Let k ∈ N
+ and x ∈ [0, 1). Then

1− xk

1− x
≤ k.

Proof. We proof by induction over k. For k = 1 we have
1 = 1. For the inductive step, assume 1−xk ≤ k(1−x). We
need to show 1−xk+1 ≤ (k+1)(1−x) = k(1−x)+ (1−x).

1− xk+1 = x(1− xk) + (1− x)

≤ xk(1− x) + (1− x)

≤ k(1− x) + (1− x)

The first inequality is due to the induction hypothesis, the
second due to 0 ≤ x < 1.

Proof of Proposition 5. We prove that Algorithm 7
satisfies Proposition 5.

Let Φ = ϕ1 ∨ · · · ∨ ϕn be a k-partite formula as in the
proposition, such that the clauses are ordered by descending
probability, i.e. p(ϕ1) ≥ · · · ≥ p(ϕn). Note that the mapping
from clause probabilities to weights in equation (1) is strictly
monotonic and thus the clause order ϕ1, . . . , ϕn is also de-
creasing with respect to clause weights w(ϕi), i.e. w(ϕ1) ≥
· · · ≥ w(ϕn). In the light of Proposition 12 this implies that

GreedyIDnfGlb (k-partite unate formula Φ)

outputs An iDNF GLB of Φ

Sort clauses of Φ in descending order ϕ1, . . . , ϕn of their
probabilities p(ϕ1) ≥ p(ϕ2) ≥ · · · ≥ p(ϕn).
ΦL ← ∅
for i = 1 . . . n do

if vars(ϕi) ∩ vars(ΦL) = ∅ then
ΦL ← ΦL ∪ {ϕi}

Output ΦL

Algorithm 7: Algorithm for finding an iDNF max-
imum lower bound for a k-partite formula whose
probability is at most factor k smaller than the
probability of the best iDNF GLBs.

we can reason about sums of clause weights and formula
probabilities equivalently.

Let ΦL be the GLB returned by the algorithm. Clearly,
the algorithm runs in time O(|Φ| log(|Φ|)). It remains to be
shown that for any other GLB Φopt

L the inequality P (Φopt
L ) ≤

k · P (ΦL) holds.
We use the notation depicted in Figure 4: ΦL = ϕi1 ∨

ϕi2 ∨ · · · ∨ϕim ; for every ϕij ∈ ΦL the set of clauses ~Φij are
the clauses between ϕij (included) and ϕij+1

(excluded) for
j < m, and the clauses after ϕij (included) for j = m:

~Φij =

{

{

ϕij , . . . , ϕij+1−1

}

if j < m,
{

ϕij , . . . , ϕn

}

if j = m.

The sets ~Φij are a partition of Φ. Define weights w̃(·) on
the clauses of Φ by

ϕ ∈ ~Φij ⇒ w̃(ϕ) = w(ϕij ).

In words: The probabilities of the clauses in Φ are as large
as possibly allowed by the decreasing order. Clearly w̃(ϕ) ≥
w(ϕ) for all clauses ϕ ∈ Φ.

Let Φopt
L be any GLB for Φ. Then Φopt

L ⊆ Φ and

W (Φopt
L ) =

∑

ϕ∈Φ
opt

L

w(ϕ) ≤
∑

ϕ∈Φ
opt

L

w̃(ϕ).

Define integers kj by

kj =
∣

∣

∣

{

ϕ ∈ Φopt
L and ϕ ∈ ~Φij

}∣

∣

∣
.

In words: Φopt
L contains k1 clauses from ~Φi1 , k2 clauses from

~Φi2 , . . . , and km clauses from ~Φim . Then

∑

ϕ∈Φ
opt

L

w̃(ϕ) =

m
∑

j=1

∑

ϕ∈Φ
opt

L
and ϕ∈~Φij

w̃(ϕ)

=

m
∑

j=1

∑

ϕ∈Φ
opt

L
and ϕ∈~Φij

w(ϕij )

=

m
∑

j=1

w(ϕij )
∑

ϕ∈Φ
opt

L
and ϕ∈~Φij

1

=
m
∑

j=1

kjw(ϕij ).



With respect to the order ϕ1, . . . , ϕn, the existence of the
GLB ΦL imposes the following constraints on the kj :

1. Every clause ϕ ∈ (~Φij −{ϕij}) shares at least one vari-
able with one of ϕi1 , . . . , ϕij . This is due to the greedy
selection in the algorithm that constructs ΦL.

2. For each l ≤ m the set of clauses
⋃l

j=1
~Φij contains

at most l · k independent clauses. This can be seen as
follows: Let c be the number of independent clauses in
⋃l

j=1
~Φij . Each of those independent clauses shares at

least one variable with one of ϕi1 , . . . , ϕil ; for a clause
ϕij this is evident; for any other clause this is necessary
since it was not selected by the algorithm and hence
is not independent of, i.e. shares a variable with one
of ϕi1 , . . . , ϕil . There are thus at least c such shared
variables that are additionally all different since their
clauses are independent. However, clauses ϕi1 , . . . , ϕil

contain exactly lk different variables. It follows c ≤ lk.

In terms of the kj this means that for every 1 ≤ l ≤ m
it holds that

l
∑

j=1

kj ≤ kl.

By Proposition 14 it follows that

m
∑

j=1

kjw(ϕij ) ≤
m
∑

j=1

kw(ϕij ).

By chasing back the inequalities we finally conclude that
W (Φopt

L ) ≤
∑m

j=1 kw(ϕij ); using the correspondence be-
tween weights and probabilities, it follows that

P (Φopt
L ) ≤ 1−

m
∏

j=1

(1− p(ϕij ))
k
.

We thus have

P (Φopt
L )

P (ΦL)
≤

1−
∏m

j=1(1− p(ϕij ))
k

1−
∏m

j=1(1− p(ϕij ))

=
1−

[

∏m

j=1(1− p(ϕij ))
]k

1−
∏m

j=1(1− p(ϕij ))

≤
1− xk

1− x

≤ k.

The last inequality is due to Proposition 15 with

0 ≤ x =

m
∏

j=1

(1− p(ϕij )) < 1.

Proof of Lemmata 3 and 4

We need the following helpers in order to prove Lemma 3.
We start with several facts about the connection between
k-partite formulas and their graph representations.

Proposition 16. Let Φ, Ψ be k-partite formulas.
If M(Φ) ⊂M(Ψ) then formula Ψ contains a clause that is
not a clause in formula Φ.

Proof. According to Lemma 1 the following implications
hold:

M(Φ) ⊂M(Ψ)

⇒ ∀(ϕ ∈ Φ) ∃(ψ ∈ Ψ) : ϕ ⊇ ψ and ∃(ψ ∈ Ψ) ∀(ϕ ∈ Φ) :
ψ 6⊇ ϕ

⇒ ∃(ψ ∈ Ψ) ∀(ϕ ∈ Φ) : ψ 6⊇ ϕ

⇒ ∃(ψ ∈ Ψ) ∀(ϕ ∈ Φ) : ψ 6= ϕ

Proposition 17. The formula represented by the graph
of a k-partite formula is k-partite.

Proof. Let Φ be a k-partite formula. We need to show
that all maximal cliques in the graph G(Φ) have size k.

First, the graph of Φ can by definition not contain a clique
that contains more than k nodes, since this would require
at least one edge between two nodes from the same variable
set and the latter cannot exist since Φ is k-partite.

The graph can also not contain a maximal clique with
less than k nodes: Assume, there is a node that is part of a
maximal clique of size l where l < k. Then there is a node
that is not part of a k-clique. However, by construction of
the graph all nodes are part of at least one k-clique, which
is a contradiction.

Note that not every k-partite formula is normal. Consider
for example a1b1c2∨a2b2c2∨a2b1c1. Its graph represents the
formula a1b1c2 ∨ a2b2c2 ∨ a2b1c1 ∨ a2b1c2. However, as the
following Lemma 4 shows, this graph only represents clauses
that are necessarily in every k-partite 1OF upper bound.

Proof of Lemma 4. We denote byG(·) the function that
maps a formula to its graph and by F (·) the function that
maps a graph to its represented formula. Then F (G(Φ)) = Φ
iff Φ is normal.

Let Φ be a formula, G(Φ) its graph and Φu = F (G(Φ))
the formula formula represented by G(Φ).

It follows from Proposition 17 that Φu is k-partite. Since
by construction every clause in Φ is a k-clique in G(Φ), it is
thus also a maximal clique in G(Φ). Thus every clause in Φ
is also a clause in Φu andM(Φ) ⊆M(Φu).

We prove by contradiction that there is no smaller normal
k-partite formula: Assume that there is a normal k-partite
formula Φ′

u such thatM(Φ) ⊆M(Φ′

u) ⊂M(Φu). The for-
mulas Φ, Φ′

u, Φu are k-partite and furthermore F (G(Φ′

u)) =
Φ′

u and F (G(Φu)) = Φu and G(Φ) = G(Φu).
It follows from M(Φ′

u) ⊂ M(Φu) that Φu contains a
clause that is not in Φ′

u by Proposition 16. Let this clause
be α = x1 ∧ · · · ∧ xk. Since α 6∈ Φ′

u one of the edges (xi, xj)
is not in G(Φ′

u). [Because otherwise x1, . . . , xk is a clique
in G(Φ′

u) and thus a clause in Φ′

u.] Let (xh, xl) be such a
missing edge. It follows that Φ′

u contains no clause with
variables xh and xl.

Since x1 ∧ · · · ∧ xk is a clause in Φu and G(Φ) = G(Φu) it
follows that all edges (xi, xj) are inG(Φ). In particular, edge
(xh, xl) is in G(Φ) and thus by construction of the graph the
formula Φ contains a clause containing both variables xh and
xl. This contradicts the assumptionM(Φ) ⊆M(Φ′

u) which
implies

∀(ϕ ∈ Φ) : ∃(ϕ′ ∈ Φ′

u) : ϕ ⊇ ϕ
′
,

since there is no clause in Φ′

u containing both variables xh

and xl.

Proposition 18. Let G(Φ) be the graph of a k-partite
formula over variable sets V1, . . . , Vk, and H a subgraph of



G induced by a subset V ⊆ {V1, . . . , Vk} of the variable sets.
Every set of nodes in H that contains at most one node from
each variable set in V can be extended to a maximal clique
of size |V| in H.

Proof. This follows from Proposition 17.

Proposition 19. Any induced subgraph of a P4-free graph
is P4-free.

Proof. This follows directly from the definition of P4-
freeness.

Proposition 20. Let B = (V1, V2, E) be a bipartite graph.
Every P4 in B contains exactly two nodes from V1 and two
nodes from V2. Four such nodes a, b ∈ V1 and c, d ∈ V2 form
a P4 if and only if E contains exactly three of the following
edges: (a, c), (a, d), (b, c), (b, d).

Proof. First note that paths in bipartite graphs visit
nodes from V1 and V2 in alternating order. A P4 in a bipar-
tite graph must thus contain exactly two nodes from V1 and
two nodes from V2. Let a, b ∈ V1 and c, d ∈ V2 be four such
nodes. Since B is bipartite, (a, b) 6∈ E and (c, d) 6∈ E. If E
contains less than three of the edges (a, c), (a, d), (b, c), (b, d),
then a, b, c, d do not form a path, hence no P4. If E contains
all four of those edges, then a, b, c, d form no P4 by definition.
Conversely, let a, b, c, d be a P4 in B. Then E contains ex-
actly three of the edges (a, b), (a, c), (a, d), (b, c), (b, d), (c, d).
Since (a, b) 6∈ E and (c, d) 6∈ E, E must contain exactly
three of the remaining edges (a, c), (a, d), (b, c), (b, d).

The first lemma is a fairly general syntactic characterisa-
tion of bi-partite 1OF formulas.

Lemma 6. A bi-partite graph B = (V1, V2, E) is P4-free
if and only if all connected components of B are complete
bipartite graphs.

Proof. “⇐”: Let B be a bi-partite graph in which all
connected components are complete graphs. We show that
B does not contain a P4. Firstly, there is trivially no path
and hence no P4 that spans more than one connected com-
ponent of B. Let C be a complete bipartite connected com-
ponent of B over disjunct node sets W1 ⊆ V1 and W2 ⊆ V2.
If |W1| < 2 or |W2| < 2 then C does not contain a path
with 4 different nodes, hence is P4-free. Otherwise, assume
C contains a P4. According to Proposition 20, the P4 must
span four distinct nodes a, b ∈ W1 and c, d ∈ W2. Since C is
complete, it contains edges (a, c), (a, d), (b, c), (b, d) and thus
nodes a, b, c, d are no P4 according to Proposition 20.
“⇒”: For the other direction, first note that P4-freeness

of B implies P4-freeness of all connected components of B.
We can thus assume wlog that B has only one connected
component. Let S be the following statement to be proven:
If a connected bi-partite graph (V1, V2, E) is P4-free, then it
is complete. The proof of S is by induction on the numbers
of vertices |V1| and |V2| of the graph. The base cases |V1|+
|V2| ≤ 4 are as follows: If |V1| < 2 or |V2| < 2, then B
is complete since it is connected. If |V1| = |V2| = 2, then
the graph contains at least three edges since it is connected.
According to Proposition 20 the graph must contain four
edges if it is P4-free. Hence the graph is complete.

We first proof S for fixed |V1| = 2 by induction over |V2|.
The base case |V1| = |V2| = 2 is as above. For the inductive
step, assume that S holds for |V1| = 2, |V2| = m. Let B′ =
(V1, V2, E

′) be a bi-partite graph with |V1| = 2, |V2| = m+1.

Assume that B′ is P4-free; it remains to be shown that B′ is
complete. Pick a node v ∈ V2 and let B = (V1, V2 \ {v}, E)
be the subgraph of B′ induced by V1, V2 \ {v}. Since B is
an induced subgraph of B′ and B′ is P4-free, B is P4-free
by Proposition 19, and furthermore complete by induction
hypothesis, since |V1| = 2 and |V2 \ {v}| = m. Since B′

is connected, it must contain an edge between v and some
node from V1 = {x1, x2}, assume wlog it is x1. Since B is
complete and an induced subgraph of B′, B′ contains edges
between x1, x2 and a node y1 ∈ V2, and hence the path
v − x1 − y1 − x2. Since B′ is P4-free, it must also contain
the edge v − x2 according to Proposition 20. Thus v is
connected to all vertices of V1 in B′, and together with the
completeness of B it follows that B′ is a complete bi-partite
graph. Hence S holds on all bi-partite graphs with |V1| = 2.

The proof for arbitrary |V1| is similar and by induction
over |V1|: The base case |V1| = 2, |V2| = m is proven above.
For the inductive step, let S be satisfied for |V1| = n, |V2| =
m. Let B′ = (V1, V2, E

′) be a bi-partite graph with |V1| =
n+1, |V2| = m. Assume that B′ is P4-free; it remains to be
shown that B′ is complete. Pick a node v ∈ V1 and let B =
(V1\{v}, V2, E) be the subgraph of B′ induced by V1\{v}, V2.
Since B is an induced subgraph of B′ and B′ is P4-free, B
is P4-free by Proposition 19, and furthermore complete by
induction hypothesis, since |V1 \ {v}| = n and |V2| = m.
Since B′ is connected, it must contain an edge between v
and some node from V2 = {y1, . . . , ym}, assume wlog it is
y1. Let x1 ∈ V1 \ {v}. Since B is complete and an induced
subgraph of B′, B′ contains edges between x1 and all nodes
yi ∈ V2. Hence, B′ contains the paths v−y1−x1−yi for all
1 ≤ i ≤ m. Since B′ is P4-free, it must also contain all edges
v−yi according to Proposition 20. Thus v is connected to all
vertices yi ∈ V2 in B′, and together with the completeness
of B it follows that B′ is a complete bi-partite graph. Hence
S holds on all bi-partite graphs.

The following second lemma is the central connection be-
tween alignment of projection graphs and P4-freeness of
graphs of k-partite formulas.

Lemma 7. Let B(Φ) be the set of projection graphs of a
k-partite formula Φ over variable sets V1, . . . , Vk, such that
all connected components in all projections Bi,j ∈ B are
complete bi-partite graphs.

1. If there exist projection graphs Bi,j and Bl,m and con-
nected components C ∈ Bi,j , C

′ ∈ Bl,m in those pro-
jection graphs such that C and C′ are not aligned, then
the graph of Φ contains a path isomorphic to P4.

2. Conversely, if all such components C, C′ in all projec-
tion graphs are aligned, then the graph of Φ is P4-free.

Proof. First, note that a projection graph Bi,j of a pro-
jection Φi,j is exactly the subgraph of the graph G(Φ) of Φ
induced by variable sets Vi, Vj . Edges in Bi,j are thus also
edges in G(Φ).

For part 1, let C = (V1, V2, E) and C′ = (V ′

1 , V
′

2 , E
′) be

non-aligned complete components. By definition of align-
ment, there exists 1 ≤ i, j ≤ 2 such that Vi ∩ V

′

j 6= ∅ and
Vi 6⊆ V ′

j and Vi 6⊃ V ′

j . Wlog, assume that this holds for
i = j = 1. Then there exists distinct variables a, c, e with
c ∈ V1 and c ∈ V

′

1 , a ∈ V1 and a 6∈ V
′

1 , and e 6∈ V1 and e ∈ V
′

1 .
Additionally, C and C′ must be components from different
projection graphs, since otherwise they would be connected
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Figure 5: Graphical illustration for the proof part 2
of Lemma 7

yet not complete. Thus V2 ∩ V
′

2 = ∅, and there exist vari-
ables b, d with b ∈ V2 and b 6∈ V ′

2 , and d 6∈ V2 and d ∈ V ′

2 .
The situation is depicted in Figure 6. If (b, d) ∈ G(Φ), then
a− b− d− e is a P4 in G(Φ), otherwise a− b− c− d is a P4

in G(Φ).
For part 2, assume that G(Φ) contains a P4. We prove

the statement by case differentiation on number of variable
sets Vi that are visited by the P4.

• There is no path of length four within a single variable
set Vi, since there are no edges between variables/nodes
of the same set.

• If the P4 visits exactly two variables sets Vi and Vi,
then the projection graph Bi,j contains a component
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Figure 6: Illustrations for the proof of part 1 of
Lemma 7

that is not complete by Proposition 20. This is a con-
tradiction to the assumption that all such components
are complete bi-partite graphs.

• The P4 contains nodes from exactly three variable sets
Vi, Vj , Vk. The following construction shows that the
assumptions of an existing P4 and aligned and complete
projection graphs is contradictory, compare Figure 5.
Assume that G contains such a P4 and all components
of projection graphs are complete and aligned.

Diagram (a) shows the P4 in G that stretches over
three variable sets {ai}, {bi}, {ci}. The path b2 − c2
is extendible to a clique of size 3 according to Propo-
sition 18. The third of this clique cannot be a2, since
then the edge a2 − c2 would annul the P4, see diagram
(b). Hence G contains an additional node a3 which
forms a clique with b2 and c2, see diagram (c). By the
same reasoning, b1− c2 must be part of a clique of size
3. If the third node is a2 then the edge a2 − c2 annuls
the P4. If the third node is a3 – see diagram (d) – then
due the assumption of complete bi-partite projection
graphs, also a2− b2 would be an edge in G which again
annuls the P4. Hence G contains a node a1 that is part
of the clique a1, b1, c2, see diagram (e). Analogously, G
must contain a node c1 to extend a2 − b1 to a clique
without annuling the P4, see diagrams (f) and (g).

Diagram (h) is equivalent to (g) except for graphical
reordering and edges between b and c nodes left out.
Clearly, the components Cb = ({b1}, {a1, a2}) and Cc =
({c2}, {a1, a3}) are not aligned. Hence, G must contain
the edge b1 − a3 or the edge a2 − c2 to achieve align-
ment between the abovementioned components. In the
former case – diagram (i), due to the assumption of
complete components also a2−b2 is an edge in G which
annuls the P4. In the latter case, edge a2 − c2 directly
annuls the P4, see diagram (j).

This constructions shows that the above assumption is
contradictory, i.e. G cannot be complete and aligned
and contain a P4.

• The P4 contains nodes from exactly four variable sets
Vi, Vj , Vk, Vl. Let G contain the P4 a1 − b1 − c1 − d1.
Then there according to Proposition 18 there must exist
a node b2 from the same variable set as b1 to extend
the clique c1, d1. Hence a1 − b1 − c1 − b2 is a P4 in G
that streches over three variable sets; the rest follows
as above.

We are now in position to prove Lemma 3:



Proof of Lemma 3. Let G be the graph of a unate k-
partite formula Φ. Φ is 1OF if and only if Φ is normal and
its graph is P4-free [13]. G is normal because all maximal
cliques are by construction of size k and correspond exactly
to the clauses of Φ. It thus remains to be proven that G
is P4-free if and only if the connected components of the
bipartite subgraphs in G are complete and pairwise aligned.
We prove the direction (⇒) by contraposition: If there is a
connected component of a bipartite subgraph in G that is
not complete, thenG has a P4 by virtue of Lemma 6. If there
exist non-aligned components in any of the projections, then
G has a P4 according to case 1 of Lemma 7.

The converse direction (⇐) is case 2 of Lemma 7.

Proof of Lemma 5

We start with LUBs. The first proposition ensures that
there exist k-partite LUBs for a k-partite unate formula. In
particular, the proposition proves that alternative bounds
with clauses smaller than k are necessarily incomparable to
k-partite ones.

Proposition 21. Let Φ be an unate formula whose short-
est clause has arity k, Φi a formula that contains a clause
with arity i, i < k. Then Φi 6|= Φ.

Proof. Let ϕi =∈ Φr be a clause with arity i. Assume
Φi |= Φ. Then according to Lemma 1 there must be a clause
ϕ ∈ Φ such that ϕi ⊇ ϕ. This is a contradiction to the
assumption that all clauses in Φ have at least arity k.

The next proposition shows that 1OF bounds comprising
clauses with arity larger than k are necessarily worse than
k-partite bounds.

Proposition 22. Let Φ be a unate k-partite formula over
variable sets V1, . . . , Vk and Φl

u be an 1OF upper bound for
Φ that contains a clause of arity l, k < l. Φl

u is no 1OF
LUB for Φ.

Proof. Φl
u necessarily contains variables that are not

from any of the sets V1, . . . , Vk; denote the set of those vari-
ables X. Define the formula Φu by removing all clauses
from Φl

u that contain a variable from X. We show that
Φu is a tighter upper 1OF bound than Φl

u. Non of the re-
moved clauses is implied by a clause in Φ; it followsM(Φ) ⊆
M(Φu) due to Lemma 1. Furthermore, we haveM(Φu) ⊂
M(Φl

u), since at least one clause (with arity l) was removed
and this clause cannot be redundant, because Φl

u is in 1OF
and hence irreducible.

It remains to be shown that Φu is a 1OF formula. By
assumption, Φl

u is in 1OF, i.e. its graph G is normal and
P4-free. Removing all clauses that contain variables from
X means to remove all nodes corresponding to variables in
X from G. It is clear that this operation removes exactly
the maximal cliques from G that correspond to the removed
clauses; all other maximal cliques remain unchanged. The
graph of Φu is thus normal. Furthermore, if a given graph is
P4-free, then removing nodes from the graph cannot intro-
duce a P4. (To see this, consider the contraposition: Let K
be a graph with that contains a P4 (a, b, c, d). Adding nodes
and edges connecting those nodes among themselves or to
nodes inK does not connect any of the four nodes (a, b, c, d);
(a, b, c, d) is thus still a P4 in the larger graph.) The graph
of Φu is thus P4-free and normal and Φu is indeed a tighter
1OF upper bound than Φl

u.

This completes the proof for LUBs. We now turn to GLBs.
Proposition 21 shows that formulas with arity smaller k can-
not be lower bounds for k-unate formulas. It remains to be
shown that bounds that contain clauses with arity larger
than k are not optimal. This is ensured by the following
proposition:

Proposition 23. Let Φ be a unate k-partite formula over
variable sets V1, . . . , Vk and Φl

l be an 1OF lower bound for Φ
that contains a clause of arity l, k < l. Φl

l is no 1OF GLB
for Φ.

Proof. Φl
l necessarily contains variables that are not from

any of the sets V1, . . . , Vk; denote the set of those variables
X. We first note that, according to Lemma 1, variables
from X can only occur in clauses in Φl

l that also contain k
variables from V1, . . . , Vk.

Define the formula Φl by removing all variables from set
X from all clauses in Φl

l. We show that Φl is a tighter lower
1OF bound than Φl

l. Let ϕ
l
l be a clause in Φl

l. According to
Lemma 1, ϕl

l implies a clause in Φ. Removing X-variables
from ϕl

l does not change this property, since Φ does not con-
tain variables from X; it follows M(Φl) ⊆ M(Φ). Further-
more, we haveM(Φl

l) ⊂M(Φl
l), since at least one variables

was removed from some clause with arity l and this clause
cannot be redundant, because Φl

l is in 1OF and hence irre-
ducible.

It remains to be shown that Φl is a 1OF formula. This fol-
lows completely analogously to the proof of Proposition 22.

Comparison with Reference [9]

R A

x1 1
x2 1

S A B

y1 1 1
y2 1 1

T B

z1 1
z2 1

(a) Example 18

R A

x1 1
x2 2

S A B

y1 1 1
y2 1 2
y3 2 1

T B

z1 1
z2 2

(b) Example 19

Figure 7: Tuple-independent databases (R,S, T ) used
in Examples 18 and 19.

Reference [9] proposes a technique to derive upper bounds
on the probability of conjunctive queries without self-joins.
We show that these bounds are not model-based, and in
particular not optimal with respect to 1OF bounds (but
we conjecture that they are optimal with respect to iDNF
bounds). The following arguments require an understanding
of the technique proposed in [9].

We give two counter-examples, one for a query that actu-
ally yields 1OF lineage and one for which the completion-
based approach can be better, depending on the probability
distribution of the random variables.

Example 18. [1OF lineage] Consider the database from
Figure 7a. The query Q ← R(x), S(x, y), T (y) has lineage
(x1 ∨ x2)(y1 ∨ y2)(z1 ∨ z2) ∈ 1OF with probability

[1− (1− P (x1))(1− P (x2))][1− (1− P (y1))(1− P (y2))]

[1− (1− P (z1))(1− P (z2))]

The dissociation R(x), S(x, y), T (x, y) proposed in [9] yields
the probability

1−
∏

i=1,2

[

1− P (xi)

(

1−
∏

m,n=1,2

(

1− P (ym)P (zn)
)

)]



which is larger than the exact probability in all but patho-
logical cases. ✷

Example 19. [Comparison of dissociation and alignment]
Consider the database from Figure 7b. The query

Q← R(x), S(x, y), T (y)

has lineage x1(y1z1∨y2z2)∨x2y3z1 that is not 1OF. The dis-
sociation method allows for two minimal safe dissociations,

R(x), S(x, y), T (x, y) (DissociationRight),

R(x, y), S(x, y), T (z) (DissociationLeft).

Similarly, the alignment method allows to align the graph
towards the left (AlignLeft) or the Right (AlignRight). The
probabilities according to these four methods over the data-
base from Figure 7b are given in the equation below.

P (AlignRight) = (1 − (1 − p(z1))(1 − p(z2)))·

(1 − (1 − p(x1)(1 − (1 − p(y1))(1 − p(y2))))(1 − p(x2)p(y3)))

P (AlignLeft) = (1 − (1 − p(x1))(1 − p(x2)))·

(1 − (1 − p(z1)(1 − (1 − p(y1))(1 − p(y3))))(1 − p(x2)p(y2)))

P (DissociateRight) = 1 − (1 − p(x1)(1 − (1−

p(y1)p(z1))(1 − p(y2)p(z2))))(1 − p(x2)p(y3)p(z1))

P (DissociateLeft) = 1 − (1 − p(z1)(1 − (1−

p(x1)p(y1))(1 − p(x2)p(y3))))(1 − p(x1)p(y2)p(z2))

It is straightforward to check that, depending on the par-
ticular probability distribition of the variables in the data-
base, none of the four upper is the best. For example, Align-
Right > DissociateRight for P (x1) =

1
2
, P (x2) =

1
2
,P (y1) =

1
4
, P (y2) =

1
4
, P (y3) =

1
4
, P (z1) =

1
2
, P (z2) =

1
2
, but Align-

Right < DissociateRight for P (x1) = 511
512

, P (x2) = 255
256

,

P (y1) =
7
8
, P (y2) =

1
4
, P (y3) =

63
64
, P (z1) =

1
2
, P (z2) =

1
2
.✷


