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ABSTRACT
Dependencies have played an important role in database design for
many years. More recently, they have also turned out to be central
to data integration and data exchange. In this work we concentrate
on tuple generating dependencies (tgds) which enforce the pres-
ence of certain tuples in a database instance if certain other tuples
are already present. Previous complexity results in data integration
and data exchange mainly referred to the data complexity. In this
work, we study the query complexity and combined complexity of
a fundamental problem related to tgds, namely checking if a given
tgd is satisfied by a database instance. We also address an impor-
tant variant of this problem which deals with updates (by inserts or
deletes) of a database: Here we have to check if all previously sat-
isfied tgds are still satisfied after an update. We show that the query
complexity and combined complexity of these problems are much
higher than the data complexity. However, we also prove sufficient
conditions on the tgds to reduce this high complexity.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Relational databases;
H.2.5 [Database Management]: Heterogeneous Databases—Data
translation; F.2 [Analysis of Algorithms and Problem Complex-
ity]: Miscellaneous

1. INTRODUCTION
Dependencies are a classical tool in database design to express

integrity constraints on databases [2, 5, 10]. Recently, renewed in-
terest in dependencies has emerged in the vivid research areas of
data integration [23, 29] and data exchange [11, 26], where de-
pendencies are used to define schema mappings. Schema map-
pings are high-level specifications which describe the relationship
between two database schemas. They are usually given in the form
M = (S,T,Σ), where S denotes the source schema, T denotes
the target schema, and Σ is a set of dependencies specifying the re-
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lationship between the source and target schema. In this paper, we
restrict ourselves to tuple generating dependencies (tgds) which, in
their original form, are first-order (FO) formulae

∀~x
`
ϕ(~x)→ ∃~y ψ(~x, ~y )

´
where ϕ and ψ are conjunctive queries (CQs) and all variables in
~x actually do occur in ϕ(~x). Intuitively, such a tgd expresses the
condition that, if certain tuples are present in the database (namely
those tuples which are needed to satisfy the CQ ϕ) then certain
other tuples must be present as well (such that ψ is also satisfied).

In [13], it was shown that tgds are not powerful enough to ex-
press the composition of schema mappings. The authors thus in-
troduced second-order (SO) tgds, which allow existential quantifi-
cation over function symbols (for details, see Section 4). Many
important properties of SO tgds were proved in [13]; above all, SO
tgds are closed under composition. A related extension of tgds was
introduced in [16], namely nested tgds (see Section 5), where the
existentially quantified function symbols stand for relations. In the
first place, nested tgds were designed for nested relations and XML
data. However, also their restriction to the relational case has been
considered [36].

Many complexity results related to schema mappings and depen-
dencies have been presented for problems like query answering in
data integration or data exchange [1, 11], the data exchange prob-
lem (i.e., given an instance of the source schema, find an instance of
the target schema s.t. all dependencies are fulfilled) [11], core com-
putation in data exchange (i.e., finding a minimal solution to the
data exchange problem) [12, 19], etc. The usual notion of complex-
ity thus applied is the data complexity, i.e.: the schemas and depen-
dencies are considered as fixed while only the database instances
are allowed to vary. However, as more and more progress is made
in the area of automatic generation and processing of schema map-
pings [6] we shall have to deal with sets of dependencies of ever
increasing size. Hence, also the query complexity and the combined
complexity (where only the dependencies resp. both, the dependen-
cies and the data are allowed to vary) should be studied to arrive at
a complete picture. In fact, this study has already been initiated in
[27], where a sharp increase of the complexity of several important
problems in the area of data exchange was identified when com-
bined complexity is considered rather than data complexity, e.g.:
The problem of checking if a data exchange problem has a solution
rises from PTIME-membership to EXPTIME-completeness.

The goal of this paper is to continue the investigation of the query
complexity and combined complexity of fundamental problems re-
lated to dependencies. More specifically, we analyze the complex-
ity of the evaluation problem (also referred to as model checking) of
the above mentioned three kinds of tuple generating dependencies.
Note that the evaluation of tgds is a central building block of the
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chase procedure for computing a solution to a data exchange prob-
lem [11]. Actually, as long as we only have to deal with source-to-
target tgds (s-t tgds), the chase procedure could also be carried out
without ever checking if the tgds are satisfied. Instead, we could
compute all solutions over the source instance for the antecedent
ϕ(~x) of every s-t tgd (i.e., we compute substitutions λ on the vari-
ables ~x, s.t. all atoms of ϕ(~xλ) are in the source instance) and intro-
duce atoms corresponding to the conclusion of the tgd in the target
instance (i.e., we introduce the atoms of ψ(~xλ, ~xµ), where µ sends
the variables in ~y to fresh labelled nulls). Clearly, this form of s-t
chase (referred to as “oblivious” chase in [24]) may possibly intro-
duce more atoms in the target instance than needed to satisfy all s-t
tgds. But in some cases, this is even desired to arrive at an intuitive
definition of the semantics of query answering for queries that are
more complex than just CQs, see e.g., [3, 4, 30]. In contrast, if there
is no strict separation of the relation symbols occurring in the an-
tecedents and conclusions of the tgds (like in case of target tgds or
tgds in peer data management systems [22]), then the model check-
ing of tgds may be vital to ensure termination of the chase. This is
illustrated by the following example (which is taken from [11]).

EXAMPLE 1.1. Consider a schema with predicates Dept(d,m)
and Emp(e, d), where Dept contains information on departments
d and managers m; Emp(e, d) contains information on employees
e and departments d. Consider the following tgds:
τ1 : Dept(d,m)→ Emp(m, d)
τ2 : Emp(e, d))→ ∃mDept(d,m).

Let J = {Emp(bob, sales)} be an instance with a single atom.
Then the chase (with tgd model checking after each step) yields
an instance of the form J∗ = {Emp(bob, sales), Dept(sales, v),
Emp(v, sales)}, where v is a labelled null (which stands for the
unknown manager of the sales-department).

In contrast, without tgd model checking, the chase would not
terminate. Indeed, the last atom Emp(v, sales) introduced in J∗

helps to satisfy the antecedent of τ2. Without model checking, we
would thus introduce a new atom Dept(sales, v′), which in turn
helps to satisfy the antecedent of τ1. We would thus introduce an
atom Emp(v′, sales) which again causes tgd τ2 to fire, etc. 2

Similarly, in update exchange, it is crucial to check if some tgd is
violated every time a database instance has been modified [20, 28].
Of course, if the relation symbols in the antecedents and conclu-
sions of the tgds are strictly separated and if we only allow inserts,
then we could proceed by an oblivious chase as discussed above for
the s-t chase. However, if we have no such separation of the rela-
tion symbols or if we also allow deletes, then tgd model checking
is absolutely indispensable as the following example illustrates:

EXAMPLE 1.2. Suppose that Emp(e, d) from Example 1.1 is
in the source schema and Dept(d,m) is in the target schema and
consider only one tgd, namely τ2 (which is now an s-t tgd). Sup-
pose that we have a source instance I = {Emp(bob, sales)} and
target instance J = {Dept(sales, v), Dept(hr , alice)}.

If a delete request is issued against J , it is important to check
if this leads to the violation of an s-t tgd. Clearly, if the second
tuple in J is deleted, no tgd is violated and no action is required. In
contrast, if the first tuple is deleted, then τ2 is violated. 2

In Example 1.2, after deletion of the first tuple in J , it would be
counter-intuitive to cure the database by chasing I with τ2, since
this would simply restore the deleted tuple. Instead, [28] proposes
a “backward chase” that deletes appropriate tuples from the source
instance. This backward chase procedure relies on two main in-
gredients: user intervention (there may exist several tuples whose

deletion would cure the violation of a tgd) and tgd model checking
(every deletion of a tuple may itself cause the violation of a tgd).

For our analysis of the complexity of the evaluation problem of
tgds it is therefore important to study also a variant of this prob-
lem which deals with updates (by inserts or deletes) of a database:
Here we have to check if all previously satisfied tgds are still sat-
isfied after an update. We shall show that the query complex-
ity or combined complexity of tgd model checking is dramatically
higher than the data complexity: It rises from PTIME-membership
to Π2P -completeness (for FO tgds) and from NP-completeness to
NEXPTIME-completeness (for SO tgds and nested tgds). For the
update variants we show that the additional knowledge of how the
current database was obtained via inserts/deletes from a previous
database satisfying all tgds does not help to decrease the complex-
ity of tgd model checking. However, for all kinds of tgds studied
here, we prove sufficient criteria to reduce the high complexities.

Organization of the paper and summary of results.
• FO tgds. Since FO tgds are a special case of FO formulae,
the data complexity of model checking is clearly in PTIME. In
Section 3, we show that this problem becomes Π2P -complete for
query complexity and combined complexity. To search for compu-
tationally less expensive fragments, we apply the notion of treewidth
to this problem. We show that the complexity can thus be pushed
down to coNP-completeness. For the query complexity, we even
get tractability via an appropriate criterion based on the treewidth.

• SO tgds. The data complexity of evaluating SO tgds has been
shown to be NP-complete [13]. In Section 4, we show that the com-
plexity rises to NEXPTIME-completeness when query complexity
or combined complexity is considered. A reduction of this high
complexity is obtained via an easy to check criterion based on some
ordering of the universally quantified first-order variables. The ben-
efit of this criterion is twofold. On the one hand, it yields a decrease
of the complexity from NEXPTIME- to PSPACE-completeness.
On the other hand, we present a reduction of SO tgds to FO for-
mulae if this criterion is fulfilled. Hence, conditions for further
decreasing the complexity can be obtained from the research on
tractable fragments of FO formulae, see e.g. [14, 18].

• Nested tgds. Similarly to SO tgds, the data complexity of evalu-
ating nested tgds [16] is NP-complete. Likewise, we prove in Sec-
tion 5 the NEXPTIME-completeness for the query and combined
complexity. Again, this high complexity is reduced to PSPACE-
completeness via a criterion based on an ordering of the universally
quantified first-order variables. The resulting fragment includes the
nested tgds over purely relational schemas as studied in [36]. We
thus prove the PSPACE-completeness also for this variant of tgds.

• Update variants. In Sections 3 – 5, the complexity analysis of
the three kinds of tgds is extended to the update variants of the tgd
evaluation problem. We shall show that in all cases the complexity
of the update variant is as high as for the basic model checking
problem even if the update consists in the insertion or deletion of a
single tuple.

• Technical tools. The design of fixed-parameter algorithms has
received vivid research interest in recent years [32]. A well-studied
parameter in this area is the treewidth. In order to establish frag-
ments of FO tgd model checking with lower complexity, we de-
velop a new dynamic programming algorithm for counting the so-
lutions of conjunctive queries with bounded treewidth (see Sec-
tion 3). New techniques are required to overcome obstacles that
were not present in a related problem [35]. For the complexity
analysis of SO tgds in Section 4, we extend the generic PSPACE-
complete problem of QBFs (quantified Boolean formulae) to SO-
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QBFs (Second-Order QBFs) and show the NEXPTIME-complete-
ness of this new class of Boolean formulae. They may now serve
as a useful tool for further NEXPTIME-completeness proofs as the
application to SO tgd model checking clearly illustrates.
Due to lack of space, most proofs in this paper are only sketched or
even omitted. Detailed proofs of all results will be provided in the
full paper.

2. PRELIMINARIES
In this section, we recall some basic notions and formally define

the decision problems studied in this paper.
Schemas and instances. A relation schemaRi(A1, . . . , Aki) con-
sists of a relation symbol Ri of a fixed arity ki and with an as-
signed sequence of ki attributes (A1, . . . , Aki). By slight abuse
of notation, we often identify the relation schema with the rela-
tion symbol (in particular, if the attributes are clear from the con-
text or do not matter). A database schema (or simply a schema)
R = {R1, . . . , Rn} is given by a finite set of relation schemas. An
instance over a database schema R consists of a relation for each
relation schema in R. We only consider finite instances here.

Tuples of the relations may contain two types of terms: constants
and variables. The latter are also called marked nulls or labelled
nulls. Two labelled nulls are equal iff they have the same label.
For every instance J , we write dom(J), Var(J), and Const(J)
to denote the set of terms, variables, and constants, respectively,
of J . Clearly, dom(J) = Var(J) ∪ Const(J) and Var(J) ∩
Const(J) = ∅. If we have no particular instance J in mind, we
write Const to denote the set of all possible constants. We write ~x
for a tuple (x1, x2, . . . , xn). However, by slight abuse of notation,
we also refer to the set {x1, . . . , xn} as ~x. Hence, we may use
expressions like xi ∈ ~x or ~x ⊆ X , etc.

Let S = {S1, . . . , Sn} and T = {T1, . . . , Tm} be schemas
with no relation symbols in common. We call S the source schema
and T the target schema. We write 〈S,T〉 to denote the schema
{S1, . . . , Sn, T1, . . . , Tm}. Instances over S (resp. T) are called
source (resp. target) instances. If I is a source instance and J a
target instance, then their combination 〈I, J〉 is an instance of the
schema 〈S,T〉.

Let J , J ′ be instances. A homomorphism h : J → J ′ is a map-
ping dom(J) → dom(J ′), s.t. (1) whenever R(~x) ∈ J , then
R(h(~x)) ∈ J ′, and (2) for every constant c, h(c) = c. If such
an h exists, we write J → J ′. A homomorphism h′ is an extension
of a homomorphism h if, whenever h(x) is defined, also h′(x) is
defined and h′(x) = h(x) holds.
Tgds. A first-order tuple generating dependency (FO tgd or sim-
ply tgd) over a schema R is an FO formula τ = ∀~x

`
ϕ(~x) →

∃~y ψ(~x, ~y)
´

where both, antecedent ϕ and conclusion ψ are con-
junctive queries (CQs) over the relational symbols from R s.t. all
variables in ~x actually do occur in ϕ(~x). If R = 〈S,T〉 and ϕ
(resp. ψ) uses only relation symbols from S (resp. T), then τ is
called a source-to-target tgd (s-t tgd).

A tgd τ = ∀~x
`
ϕ(~x) → ∃~y ψ(~x, ~y)

´
is satisfied over some

instance J of R, if the answer to ϕ(~x) over J is a subset of the an-
swer to ∃~y ψ(~x, ~y). In terms of homomorphisms, τ is satisfied by
J , if for every homomorphism h : ϕ→ J , there exists an extension
h′ of h, s.t. h′ : ψ → J . In this case, we write J |= τ .

Other types of tgds studied in this paper are second-order tuple
generating dependencies (S0 tgds) [13] and nested tuple generat-
ing dependencies (nested tgds) [16]. We recall their definitions in
Section 4 and Section 5, respectively.
Problem definitions. The main theme of this paper is the evalua-
tion problem (also referred to as model checking problem) of tgds.

Formally, for a schema R, we define the problem as follows:

L tgd model checking
Input: TGD: Set Σ of L tgds over schema R.

Data: Instance K over schema R.
Question: Does K |= Σ hold?

Thereby L ∈ {FO, SO, nested}. An important special case of this
problem arises if we consider source-to-target tgds (s-t tgds), where
the schema is of the form 〈S,T〉, s.t. the antecedents of tgds may
only contain predicate symbols from S and the conclusions are
based on T. Actually, SO tgds and nested tgds have only been
considered in source-to-target settings anyway (see [13, 16, 36]).

Tgds often occur in settings where they are used to create new tu-
ples (by the chase) during the bootstrap phase of a (data exchange)
system. But of course, checking if a set of tgds is satisfied is also
important during the runtime of a system when updates may occur
(e.g., in collaborative data management systems or peer data man-
agement systems). We therefore also consider the following update
variants of the above model checking problem:

L tgd delete-update model checking
Input: TGD: Set Σ of L tgds over schema R.

Data: Instance K over schema R, s.t.
K |= Σ,
set U = {t1, . . . , t`} ⊆ K.

Question: Does K \ U |= Σ hold?

L tgd insert-update model checking
Input: TGD: Set Σ of L tgds over schema R.

Data: Instance K over schema R, s.t.
K |= Σ,
set U = {t1, . . . , t`} of tuples.

Question: Does K ∪ U |= Σ hold?

Again, L ∈ {FO, SO, nested}. The restriction to source-to-target
tgds (where the schema R is of the form 〈S,T〉) constitutes an
important special case also for these update variants. Of course,
in a source-to-target setting, the delete-update (resp. insert-update)
model checking is only of interest if a tuple is deleted from the
target instance (resp. inserted into the source instance).

When studying the complexity of the problems defined above,
we arrive at the combined complexity [37] of the problems. In addi-
tion, we also want to study the query complexity of these problems,
i.e.: the data is considered as fixed and the input only consists in
the set of tgds. Unless explicitly stated otherwise, all complexity re-
sults in this paper refer to both, the query complexity and the com-
bined complexity. Moreover (in case of FO-tgds), our results apply
to an arbitrary schema R as well as to a source-to-target setting
with schema R = 〈S,T〉. Clearly, the query complexity cannot
be higher than the combined complexity and the source-to-target
setting cannot be more complex than the general case. Hence, in
the proofs of our completeness results, we shall prove the member-
ship for the combined complexity with an arbitrary schema and we
prove the hardness for the query complexity with a schema 〈S,T〉.

We have already recalled that terms in a database instance can be
constants or variables (labelled nulls). In data exchange, one usu-
ally assumes that labelled nulls are allowed in the target instance,
while the source instance contains constants only. In our complex-
ity analysis, we make no specific assumption on the nature of the
terms. In particular, our membership results hold without any re-
strictions on the labelled nulls while our hardness proofs work with-
out making use of any labelled nulls.
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3. FIRST-ORDER TGDS
We start our complexity analysis with FO tgds. Since FO tgds

are made up of two CQs and CQ evaluation is NP-complete, we
cannot expect a lower complexity for the tgd evaluation. Indeed,
we shall prove in this section that tgd evaluation is even one level
higher in the polynomial hierarchy, i.e., Π2P -complete. We shall
also show how this complexity can be decreased by an appropriate
application of the concept of treewidth.

THEOREM 3.1. FO tgd model checking is Π2P -complete (both,
query and combined complexity). The problem remains Π2P -com-
plete even if Σ contains a single tgd only.

PROOF SKETCH. The membership is proved by devising a Σ2P -
algorithm for the co-problem: Let τ = ∀~x

`
ϕ(~x) → ∃~y ψ(~x, ~y)

´
be a tgd and let J be an instance. To check that J 6|= τ holds, we

(1) guess a mapping h : ~x → dom(J),
(2) check that h defines a homomorphism ϕ(~x)→ J , and
(3) check (by an NP-oracle) that there exists no extension

h′ : ψ(~x, ~y)→ J of h.

The hardness (of query complexity for the special case of source-
to-target dependencies) is proved by a reduction from the Π2P -
complete ∀-QSAT2 problem. As fixed data 〈I, J〉, we consider

I = {P (1, 0), P (0, 1)} and
J = {Q(1, 0), Q(0, 1), C(0, 0, 1), C(0, 1, 0), C(1, 0, 0),

C(0, 1, 1), C(1, 0, 1), C(1, 1, 0), C(1, 1, 1)}.
Now let an arbitrary instance of ∀-QSAT2 be given by the quanti-
fied Boolean formula F = ∀(x1, . . . , xk)∃(y1, . . . , y`)(C1∧ . . .∧
Cn) with Ci = (li,1 ∨ li,2 ∨ li,3) for i ∈ {1, . . . , n} (clearly,
the restriction of the matrix to 3-CNF is w.l.o.g.). From this, we
construct a single tgd τ = ∀~x(ϕ(~x)→ ∃~y ψ(~x, ~y)) with

ϕ(~x) =
Vk
i=1 P (xi, x̄i) and

ψ(~x, ~y) =
V`
i=1Q(yi, ȳi) ∧

Vn
i=1 C(l∗i,1, l

∗
i,2, l

∗
i,3),

where l∗i,j is defined as l∗i,j = xγ if li,j = xγ , and l∗i,j = x̄γ
if li,j = ¬xγ , resp. l∗i,j = yγ if li,j = yγ , and l∗i,j = ȳγ if
li,j = ¬yγ . By slight abuse of notation, we thus use x and y to
denote both propositional variables in F and FO variables in τ .

Clearly, this reduction is feasible in LOGSPACE. It remains to
prove that F is satisfiable iff τ is satisfied in 〈I, J〉.

THEOREM 3.2. FO tgd delete-update model checking and FO
tgd insert-update model checking are Π2P -complete (both, query
and combined complexity). They remain Π2P -complete even if Σ
contains a single tgd and U contains a single tuple only.

PROOF IDEA. Membership for both problems follows immedi-
ately from the Π2P -membership of tgd model checking. The idea
of the hardness proofs is to construct a setting where the tgd is triv-
ially satisfied, but after insertion/removal of a single tuple the tgd
is only satisfied iff some ∀-QSAT2 formula is satisfiable.

Recently, tgds have been recognized as a useful formalism to
express integrity constraints on RDF graphs [31]. In this case, all
relation symbols have arity 2. Now the question arises if the Π2P -
completeness also holds in this restricted case. Below, we give a
positive answer to this question.

THEOREM 3.3. FO tgd model checking remains Π2P -complete
(both, query and combined complexity) even if all relation symbols
have arity 2 and Σ contains a single tgd only.

3.1 Fragments with lower complexity
We now shift our attention to the search for fragments of the

FO tgd model checking problem and its update variants with lower
complexity. A very natural restriction is the restriction to full tgds,
i.e., FO tgds with no existentially quantified variables in the conclu-
sion. It can be easily checked that in this case, all Π2P -complete
problems considered above become coNP-complete: Indeed, the
coNP-membership follows immediately from the Π2P -membership
proof of Theorem 3.1, since the check in step (3) of that algo-
rithm no longer requires an NP-oracle; it is in PTIME for full tgds.
The coNP-hardness follows immediately from the NP-hardness of
Boolean Conjunctive Query evaluation, i.e.: we just have to con-
sider a tgd τ , whose conclusion will never be fulfilled. Then τ is
satisfied by a database instance K iff the CQ in the antecedent of τ
has no solution over K.

An interesting approach with a wide range of applications to in-
tractable problems comes from parameterized complexity theory
[9, 15]. It is based on the following observation: Many hard prob-
lems become tractable if some problem parameter is bounded by
a fixed constant. One important parameter of graphs and, more
generally, of finite structures is the treewidth, which measures the
“tree-likeness” of a graph or a structure. Treewidth has also been
successfully applied to conjunctive queries [7], and was even shown
to be the most general graph based characterization of tractable
conjunctive queries [21].

We first recall the definition of the treewidth of CQs: Let ϕ =
L1∧· · ·∧Ln be a CQ with atomsL = {L1, . . . , Ln} and variables
V . A tree decomposition T ofϕ is a pair 〈T, (At)t∈T 〉where T is a
tree and eachAt is a subset of L∪V with the following properties:
(1) Every a ∈ L∪V is contained in someAt. (2) For every variable
x ∈ V and atom Li, if x occurs in Li then there exists some node
t ∈ T with {x, Li} ⊆ At. (3) For every a ∈ L ∪ V , the set
{t | a ∈ At} induces a subtree of T .

Condition (3) is referred to as the connectedness condition; the
sets At are called the bags (or blocks) of T .

The width of a tree decomposition 〈T, (At)t∈T 〉 is max{|At| |
t ∈ T} − 1. The treewidth of ϕ, denoted as tw(ϕ), is the minimal
width of all tree decompositions of ϕ. Alternatively, tw(ϕ) can be
defined by defining the treewidth for graphs only and by associating
a graph with each CQ. Our definition of treewidth is obtained by
associating the so-called incidence graph with each CQ. There are
also other possibilities like the so-called primal graph or the dual
graph. But the treewidth defined via the incidence graph yields a
strictly bigger tractable fragment than any of the other notions. For
a discussion, see e.g., [35].

If the treewidth of the CQs under consideration is bounded by a
fixed constant, then many otherwise intractable problems become
tractable, like model checking of Boolean CQs or testing if some
tuple is in the answer to a non-Boolean CQ. Moreover, the set of
all answers to a CQ can be computed in output-polynomial time in
case of bounded treewidth.

In the remainder of this section, we investigate how the complex-
ity of model checking of tgds is affected if we restrict the treewidth
of the CQs in an FO tgd. Note that the CQ ϕ(~x) in the Π2P -
hardness proof of Theorem 3.1 has treewidth 1, while ψ(~x, ~y) in
general, has unbounded treewidth. Our first question is therefore,
what improvement of the complexity do we get if also the treewidth
of the conclusion is restricted by a constant. It turns out that then
the complexity decreases, but it is still coNP-complete.

THEOREM 3.4. Suppose that we only consider FO tgds τ =
∀~x
`
ϕ(~x) → ∃~y ψ(~x, ~y)

´
where both tw(ϕ(~x)) and tw(ψ(~x, ~y))

are bounded by some constant. Then FO tgd model checking is
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coNP-complete (both, query and combined complexity). It remains
coNP-complete even if Σ contains a single tgd only.

PROOF SKETCH. For the coNP-membership, observe that the
check in step (3) of the algorithm in the coNP-membership proof
of Theorem 3.1 is now in PTIME (rather than NP-complete). This
is due to the bounded treewidth of ψ(~x, ~y) and, therefore, also of
ψ(h(~x), ~y). Hence, checking J 6|= τ is in NP.

The coNP-hardness is shown by reduction from the VALIDITY-
problem. Note that the VALIDITY problem remains coNP-hard
even if the Boolean formulae are restricted to 3-DNF and each vari-
able occurs at most three times (see [33], Proposition 9.3).

As fixed pair of database instances 〈I, J〉, we choose
I = {Q(1, 1, 1, 0, 0, 0), Q(0, 0, 0, 1, 1, 1)} and
J = {R(0, 0, 0, 0), R(0, 0, 1, 0), R(0, 1, 0, 0), R(0, 1, 1, 0),

R(1, 0, 0, 0), R(1, 0, 1, 0), R(1, 1, 0, 0), R(1, 1, 1, 1),
S(1, 1, 1), S(0, 1, 1), S(1, 0, 1), S(0, 0, 0), T (1)}.

Now let F = C1 ∨ · · · ∨Cn with Ci = (li,1 ∧ li,2 ∧ li,3) be an ar-
bitrary Boolean formula in 3-DNF, s.t. each variable occurs at most
three times in F . Let Z = {z1, . . . , zm} denote the set of variables
in F . We construct the tgd τ = ∀~x(ϕ(~x) → ∃~y ψ(~x, ~y)) with
~x = {x1,1, x1,2, x1,3, x̄1,1, x̄1,2, x̄1,3, . . . , xm,1, xm,2, xm,3,
x̄m,1, x̄m,2, x̄m,3} (i.e., we introduce 6 variables for every vari-
able zi ∈ Z) and ~y = {y1, . . . , yn, y′2, . . . , y′n} (i.e., we introduce
2 variables for every implicant except for the first one) and

ϕ(~x) =
Vm
i=1 Q(xi,1, xi,2, xi,3, x̄i,1, x̄i,2, x̄i,3)

ψ(~x, ~y) =
Vn
i=1 R(l∗i,1, l

∗
i,2, l

∗
i,3, yi) ∧Vn

i=2 S(yi−1, yi, y
′
i) ∧ T (y′n)

To define l∗i,j (i ∈ {1, . . . , n}, j ∈ {1, 2, 3}), we transform the
formula F into F ′ by replacing the first occurrence of each zi by
a new variable zi,1, and the second and third occurrence of zi (if
they exist) by zi,2 and zi,3, respectively. We denote the resulting
literals in F ′ as l′i,j . Then l∗i,j = xγ,s if l′i,j = zγ,s and l∗i,j = x̄γ,s
if l′i,j = ¬zγ,s.

The intuition of this reduction is as follows: The Q-atoms en-
sure that the (at most 3) copies of each variable zi are assigned the
same truth value and that zi and z̄i are assigned dual values. The
R-predicate is now 4-ary: The first 3 arguments denote the possi-
ble truth values of the literals in each implicant. The 4-th argument
gives the resulting truth value of the implicant. The S-atoms en-
code the OR-operation. They are needed to “compute” the truth
value of C1 ∨ · · · ∨ Cn by successive binary OR-operations. The
T -atom holds the desired truth value 1 (corresponding to true) for
the evaluation of F .

This reduction is obviously feasible in LOGSPACE. It remains
to show that 〈I, J〉 |= τ indeed holds iff F is valid. Moreover,
we have to verify that the treewidth of ϕ and ψ has a bound that is
independent of the particular formula F . In fact, we can even show
that the treewidth of both ϕ and ψ is 1.

Just as in the unbounded case, the complexity of the update-
variants of the problem remains the same. The following theorem
can be proven by modifying the proof of Theorem 3.4 analogously
to the proof of Theorem 3.2.

THEOREM 3.5. Assume the same setting as in Theorem 3.4.
Then FO tgd delete-update model checking and FO tgd insert-
update model checking are coNP-complete (both, query and com-
bined complexity). Both problems remain coNP-complete even if Σ
contains a single tgd and U contains a single tuple only.

To reach tractability at least for the query complexity, additional
restrictions are required. To this end, we define the treewidth of

a tgd τ = ∀~x
`
ϕ(~x) → ∃~y ψ(~x, ~y)

´
as tw(τ) = tw(ϕ(~x) ∧

ψ(~x, ~y)), i.e., we treat a tgd like a single CQ rather than two sepa-
rated CQs. This gives us a sufficient criterion to ensure tractability
of the query complexity. The combined complexity under this cri-
terion is left as an open problem for future research.

THEOREM 3.6. Suppose that we only consider FO tgds τ =
∀~x
`
ϕ(~x) → ∃~y ψ(~x, ~y)

´
where tw(τ) = tw(ϕ(~x) ∧ ψ(~x, ~y))

is bounded by some constant. Then FO tgd model checking is in
PTIME (query complexity only).

The proof of this theorem is based on the following observation:
It is convenient to denote FO-tgds as ϕ(~x, ~z)→ ∃~y ψ(~x, ~y), s.t. ~x
denotes the variables occurring both in the antecedent and conclu-
sion, while the variables in ~z occur in the antecedent only. Now let
Q1 = ans1(~x) ← ϕ(~x, ~z) and Q2 = ans2(~x) ← ψ(~x, ~y), i.e.:
we consider bothQ1 andQ2 as CQs with free variables ~x. Clearly,
for any instance J , we have J |= τ iffQ1(J) ⊆ Q2(J), i.e.: all tu-
ples in the answer toQ1 are also contained in the answer toQ2. De-
spite the bounded treewidth of τ ,Qi(J) may contain exponentially
many tuples. Hence, we cannot afford to compute Qi(J) explic-
itly. However, for Q′2 = ans′2(~x)← ψ(~x, ~y) ∧ ϕ(~x), we observe
the following equivalences: Q1(J) ⊆ Q2(J) iff Q1(J) = Q′2(J)
iff |Q1(J)| = |Q′2(J)|. Hence, model checking of FO tgds comes
down to counting the number of solutions to conjunctive queries
with bounded treewidth.

It remains to prove that the query complexity of the latter task
is in PTIME. Indeed, this can be shown by an extension of the
dynamic programming algorithm in [35] for counting the number
of models of propositional formulae with bounded treewidth. It
will turn out that the extension of the algorithm in [35] to CQs
with no existentially quantified variables is quite straightforward.
However, in order to handle also CQs without this restriction, a
more sophisticated machinery will be required.

3.2 Efficient counting of CQ-answers
We now first present the ideas of a PTIME algorithm (similar to

[35]) that computes the number of solutions of a CQ without exis-
tentially quantified variables. Then we sketch how this algorithm
can be extended so as to handle also CQs with existentially quanti-
fied variables, which finally gives the proof of Theorem 3.6

For the algorithm we need the notion of a nice tree decompo-
sition [25] 〈T, (At)t∈T , r〉, where r is a dedicated root node and
〈T, (At)t∈T 〉 is a tree decomposition that satisfies the following
additional conditions: (1) Every node t ∈ T has at most two chil-
dren; (2) If some node t has two children t1 and t2, then At =
At1 = At2 (join node); (3) If t has exactly one child t′, then ei-
ther At = At′ ∪ {x} (introduce node) or At = At′ \ {x} (forget
node), where x is either a variable or an atom. Nice tree decom-
positions can be computed from arbitrary tree decompositions in
PTIME without increasing the width [25].

In the following, we denote with Tt the subtree of a tree decom-
position T rooted at t ∈ T , with Aat (resp. Avt ) the set of labels
in At representing atoms (resp. variables), Vt =

S
t′∈Tt A

v
t′ and

Att =
S
t′∈Tt A

a
t′ . Now suppose that we want to compute the

number of different solutions of some CQ ϕ over some instance I ,
and let T be a nice tree decomposition of width w − 1 of ϕ. We
do this in a bottom up traversal of the tree. Obviously, if we could
store for each node t ∈ T all assignments µ : Vt → dom(I) s.t. for
every atom Ci ∈ ϕ : µ(Ci) ∈ I , we would just have to count the
number of different mappings µ in the root node of T . However, as
there may be exponentially many (w.r.t. the size of the query) such
mappings, this is not allowed if we aim at tractability w.r.t. the com-
bined complexity. Therefore, we only store a smaller “footprint” of
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every such µ at each node t, consisting of the variable assignment
µ restricted to Avt , and, in addition, for every Ci ∈ Aat the set Ii of
those atoms from I to whichCi can be mapped by any extension of
µ. For the formalization of these sets Ii, we introduce an operator
π̂ as follows: For µ and Ci as above, we define:

π̂(µ(Ci)) = {Q ∈ I | Q = R(s′1, . . . , s
′
γ), Ci = R(s1, . . . , sγ)

and for all sj ∈ {s1, . . . , sγ}∩Vt : µ(sj) = s′j}

We further define the footprint of µ, denoted by fpr(µ), as fpr(µ)
= (α, I1, . . . , I`), where α is a variable assignment on Avt , ` =
|Aat |, and Ii ⊆ I for every i ∈ {1, . . . , `}, and the following con-
ditions (1) and (2) hold: (1) α is the restriction of µ to the variables
in Avt and (2) for all Ci ∈ Aat , Ii = π̂(µ(Ci)).

Clearly, given µ, fpr(µ) is uniquely defined for a given node
t ∈ T and can be easily computed. It is, however, easy to see that
different assignments µmay possess the same footprint, i.e. µ 6= µ′

but fpr(µ) = fpr(µ′). Given a footprint θ = (αx, I1, . . . , I`) and
a node t ∈ T , we therefore define N(t, α, I1, . . . , I`) as the set of
all mappings µ : Vt → dom(I) s.t. (1) fpr(µ) = θ and (2) for all
Ci ∈ Att s.t. Var(Ci) ⊆ Vt, it holds that µ(Ci) ∈ I .

Then, because of (2), if r denotes the root node of T , it follows
immediately that

S
(α,I1,...,I`)

N(r, α, I1, . . . , I`) contains exactly
all the solutions to ϕ. Again, for complexity reasons, it is not al-
lowed to store any such set N(η) with η = (t, α, I1, . . . , I`) ex-
plicitly. Instead, as we are only interested in the number of solu-
tions, it suffices to store η together with the cardinality of N(η).
Hence we can use footprints to identify sets of assignments Vt →
dom(I), and can store efficiently how many different assignments
have a certain footprint. For the correctness of the algorithm, it is
crucial that no assignment µ is counted twice. This is guaranteed
by the following lemma, which follows immediately from the fact
that fpr(µ) is uniquely defined.

LEMMA 3.1. Given (t, α, (I1, . . . , I`)) and (t, α′, (I ′1, . . . ,
I ′`)) with α 6= α′ or Ii 6= I ′i for any i ∈ {1, . . . , `}, then
N(t, α, (I1, . . . , I`)) ∩N(t, α′, (I ′1, . . . , I

′
`)) = ∅

We store all the η = (t, α, I1, . . . , I`) together with the cardinal-
ity of N(η) in a table Mt consisting of k = |Avt | columns en-
coding the variable assignment α, ` = |Aat | columns containing
(I1, . . . , I`) and one column storing the cardinality of N(η).

We restrict our data structure Mt to contain only rows where
I1 6= ∅, . . . , I` 6= ∅. In the rules given below, if some row is
created with Ii = ∅, this row is immediately removed from Mt

without explicitly mentioning this removal. This is justified by the
fact that none of the assignments µ encoded by such rows can ever
be extended to a variable assignment such that ϕ is satisfied. To
show that the size of each Mt is only exponential in the treewidth
(but not in the size of the query ϕ and the instance I), we need the
following lemmas:

LEMMA 3.2. Let N(t, α, (I1, . . . , I`)) 6= ∅ and
N(t, α, (I ′1, . . . , I

′
`)) 6= ∅. Then for all i ∈ {1, . . . , `}, either

Ii = I ′i or Ii ∩ I ′i = ∅

PROOF. Let i be arbitrary and assume that Ii 6= I ′i . We have to
show that then Ii ∩ I ′i = ∅. Towards this goal, let
µ ∈ N(t, α, (I1, . . . , I`)) and µ′ ∈ N(t, α, (I ′1, . . . , I

′
`)). As by

assumption Ii 6= I ′i , µ and µ′ differ on Var(Ci). Therefore let
x ∈ Var(Ci) s.t. µ(x) 6= µ′(x). By the definition of π̂, it follows
immediately that Ii ∩ I ′i = ∅.

LEMMA 3.3. Given an instance I , CQ ϕ, and tree decomposi-
tion T of width w− 1 of ϕ, the table Mt stored for each t ∈ T has
at most O(|dom(I)|w ∗ |I|w) rows.

PROOF. For every t, there can be at most |dom(I)|w different
values of α, since At contains at most w variables. Moreover, the
number of different values of (I1, . . . , I`) is bounded by |I|w for
the following reason: ` = |Aat | ≤ w. Moreover, for every i, we
have: Ii 6= ∅, Ii ∩ I ′i = ∅ for any two sets Ii, I ′i with Ii 6= I ′i , and
Ii ⊆ I . Hence, each Ii may take at most |I| different values.

Next we describe how to fill Mt for every t ∈ T in a single
bottom-up traversal of the tree decomposition.
Leaf Node. Let t be a leaf node with the variables x1, . . . , xk and
the atoms C1, . . . , C`. Then for every variable assignment α on
x1, . . . , xk, Mt contains a row with the variable assignment α,
Ii = π̂(α(Ci)), and the counter in each row is 1.
Introduce Node (Atom). Let t be an introduce node for atom C`+1,
and t′ the child node of t. Then copy every row ρ from Mt′ into
Mt and set I`+1 = π̂(α(C`+1)). The counter of the row remains
unchanged. The idea is that due to the connectedness condition, we
know that the extensions µ of α to Vt cannot affect any variable in
C`+1 except those mapped by α.
Introduce Node (Variable). Let t be an introduce node for vari-
able xk+1, and t′ the child node of t. Then for every row ρ ∈
Mt′ , add |dom(I)| rows to Mt, one for every possible extension
of αt′ to α, i.e. for every possible assignment for xk+1. Every
I ′i is filtered according to α(xr+1), i.e. Ii = {A ∈ I ′i|Ci =
R(s1, . . . , sγ) and A = R(s′1, . . . , s

′
γ) and s′j = α(xk+1) for all

j s.t. sj = xk+1}. The value for the counter is copied.
Forget Node (Atom). Let t be a forget node for atom C`. Merge all
rows from Mt′ in the child node t′ of t that only differ by I`. For
every resulting row in Mt, the value of the counter is the sum over
the counters of all merged rows.
Forget Node (Variable). Let t be a forget node for variable xk.
Merge all rows from Mt′ in the child node t′ of t that only differ
by xk. For every resulting row in Mt, the value of the counter is
the sum over the counters of all merged rows.
Join Node. Let t be a join node with two children t′ and t′′. For
each pair of rows ρ′ ∈ Mt′ and ρ′′ ∈ Mt′′ : If α′ = α′′, then
add a row ρ to Mt with α = α′ = α′′ and Ii = I ′i ∩ I ′′i (for
all i ∈ {1, . . . , `}). The counters of ρ′ and ρ′′ are multiplied to
retrieve the counter for ρ. Finally all equal rows are merged and
their counter values are summed up.
Root Node. Sum up the counters of all rows that do not contain
empty sets. This gives the number of possible assignments to all
variables in ϕ.
Analogously to the dynamic programming algorithm in [35] for
counting the models of a propositional formula in CNF with boun-
ded treewidth, we get the upper boundO(|T |∗(|dom(I)|w∗|I|w)2)
for filling in Mt for each node t of the tree decomposition T . The
reason for this is that each table Mt (with t ∈ T ) has at most
O(|dom(I)|w ∗ |I|w) rows and computing Mt from the table at
the child node(s) can be done in time which is at most quadratic in
the size of these tables. For instance, in case of a join node, we can
compute Mt by a nested loop over all rows in the tables Mt′ and
Mt′′ of the child nodes t′ and t′′ of t.

So far, we have only considered the case where the CQ ϕ con-
tains only free variables. For the proof of Theorem 3.6 however, an
algorithm is required for arbitrary CQs of the form ϕ = ∃~yψ(~x, ~y),
to count the number of different variable assignments (solutions) on
~x only. It therefore remains to extend the above algorithm s.t. the
resulting algorithm is still tractable w.r.t. the size of the query. Note
that, if we were only interested in the decision problem (does there
exists a solution?), we could still use the same data structure and
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rules as in the previous case. However, to count the number of dif-
ferent assignments on ~x, this algorithm does not give the correct
results, as it cannot distinguish whether two truth assignments dif-
fer on ~x or on ~y. To this end, we have to adapt the data structure
stored at each node of the tree decomposition.

PROOF SKETCH OF THEOREM 3.6. As we are no longer inter-
ested in the number of different assignments on all variables, but
only on the free ones, from now on we consider at each t ∈ T
mappings µ : Vt → dom(I) as µ = µx ∪µy where µx : Vt ∩ ~x→
dom(I) and µy : Vt ∩ ~y → dom(I). Therefore, we also slightly
change the definition of a footprint of µ on some t ∈ T . We now
consider a function fpr(µx , µy) = (αx , αy , I1 , . . . , I`), where, as
before, (1) αx is the restriction of µx to the variables in Avt , (2)
αy is the restriction of µy to the variables in Avt , and (3) for every
Ci ∈ Aat , Ii = π̂(µ(Ci)) (for µ = µx ∪ µy).

Again, different mappings µ may create the same footprint.
However, from the information in the footprint, we cannot distin-
guish whether these mappings differ on the free or the existential
variables. But only if they differ on the free variables, they corre-
spond to different solutions. The problem here is that the same µx
may (in combination with different µy) create different footprints.
Hence, Lemma 3.1 does no longer hold. We therefore group dif-
ferent assignments µ by µx. Because of this we cannot use the
footprints as identifiers for the sets of assignments managed at ev-
ery node of the tree, but instead have to use sets of footprints. This
results in the following datastructure to store the relevant informa-
tion at each node t of T :

Let |~x| = k1, |~y| = k2, and M = |dom(I)|k2 . Now for a
set of footprints θ1, . . . , θm at some t ∈ T , where all θi share
the same αx, we define the combined footprint (αx, I), where
I = {(α1

y, I
1
1 , . . . , I

1
` ), . . . , (αmy , I

m
1 , . . . , I

m
` )}. Given such a

combined footprint (αx, I) at node t, we define N(t, αx, I) as the
set of mappings µx : Vt ∩ ~x→ dom(I) such that
(a) for every j ∈ {1, . . . , |I|}, there exists a µy : Vt∩~y → dom(I)

s.t. (1) fpr(µx , µy) = (αx , α
j
y , I

j
1 , . . . , I

j
` ) and (2) for all Ci

∈ Att s.t. Var(Ci) ⊆ Vt : µ(Ci) ∈ I (where µ = µx ∪ µy)
(b) for all µ̂y s.t. µx ∪ µ̂y satisfies (a2) (i.e. for all Ci ∈ Att s.t.

Var(Ci) ⊆ Vt : µ(Ci) ⊆ I , for µ = µx ∪ µ̂y), there exists a j
s.t. fpr(µx , µ̂y) = (αx , α

j
y , I

j
1 , . . . , I

j
` ).

By considering these sets I of combinations of (αjy, I
j
1 , . . . I

j
` )

rather than a single footprint (αy, I1, . . . I`), the following prop-
erty (corresponding to Lemma 3.1) holds:

LEMMA 3.4. Given (t, αx, I) and (t, α′x, I′) with αx 6= α′x or
I 6= I′ then N

`
t, αx, I

´
∩N

`
t, α′x, I′

´
= ∅.

Hence, analogously to the ∃-free case treated above, we can
count the number of solutions to a CQ ϕ = ∃~yψ(~x, ~y) by fill-
ing in tables Mt at each node t ∈ T consisting of columns en-
coding the variable assignment αx, the set I, and the cardinality
of N

`
t, αx, I

´
. This can be done by rules analogously to the rules

described above for the various types of nodes of a nice tree decom-
position. Analogously to Lemma 3.3, the number of rows in each
table Mt is bounded by O(2|dom(I)|w·|I|w ) since we now have to
deal with sets of combinations (αjy, I

j
1 , . . . I

j
` ). However, for the

query complexity, |I| is considered as constant and, therefore, the
size of each table Mt is polynomially bounded w.r.t. the size of ϕ.
Thus, also the computation of each Mt is feasible in polynomial
time w.r.t. the size of ϕ.

4. SECOND-ORDER TGDS
In [13], second-order tuple generating dependencies (SO tgds)

were introduced since FO tgds are not powerful enough to express

the composition of schema mappings defined by FO s-t tgds. In
contrast, SO tgds are closed under composition. Moreover, any set
of FO s-t tgds can be transformed into an equivalent set of SO tgds.

An SO tgd over source and target schema 〈S,T〉 is a formula of
the form

∃~f((∀~x1(ϕ1 → ψ1)) ∧ · · · ∧ (∀~xn(ϕn → ψn)),

where (1) each member of ~f is a function symbol, (2) each ϕi is a
conjunction of atoms S(y1, . . . , yk) (S ∈ S, yj ∈ ~xi) and equali-
ties of the form t = t′ (t, t′ are terms based on ~xi and ~f ), (3) each
ψi is a conjunction of atoms T (t1, . . . , tl) (T ∈ T, t1, . . . , tl are
terms based on ~xi and ~f ), and (4) every y ∈ ~xi must appear in
some atom in ϕi.

The semantics of SO tgds over instances 〈I, J〉 is defined over
structures 〈U ; I, J〉, where the universe U includes the active do-
main and is “sufficiently large” (in [13], it was discovered that it
is not necessary to consider arbitrarily large universes, but it suf-
fices to consider a universe of polynomial size). An SO tgd σ =

∃~fσ′ (where σ′ is a first-order formula) is satisfied by 〈U ; I, J〉, if
there exists a set of functions f0 (∀f0

i ∈ f0: f0
i : Uki → U ) s.t.

〈U ; I, J〉 |= σ′[~f → f0].

EXAMPLE 4.1 ([13]). Consider the schemas S1 = {T (n, c)},
S2 = {T ′(n, c), S(n, s)}, and S3 = {E(s, c)}, where T (n, c)
and T ′(n, c) mean that a student with name n takes course c,
S(n, s) associates to each student name n a student id s, and
E(s, c) means that a student with id s is enrolled on course c. Let
two mappings from S1 to S2 and from S2 to S3 be defined by the
following sets of FO s-t tgds:

Σ12 = {(∀n, c)
`
T (n, c)→ T ′(n, c)

´
,

(∀n, c)
`
T (n, c)→ (∃s)S(n, s)

´
} and

Σ23 = {(∀n, s, c)
`
S(n, s) ∧ T ′(n, c)→ E(s, c)

´
}.

Fagin et al. showed that the composition of these two mappings
cannot be expressed by FO tgds. To see this, consider an instance
of S1 with atoms T (n, c1), . . . , T (n, cm) (i.e., the same student n
takes several courses). Then the atoms E(s, c1), . . . , E(s, cm) in
the corresponding instance of S3 must have the same student id s.
FO tgds are too weak to enforce the equality of the first component
in all atoms E(s, ci). In particular, the FO tgd (∀n, c)

`
T (n, c)→

(∃s)E′(s, c)
´

fails to enforce this equality. In contrast, the SO tgd
in Σ13 = {(∃f)(∀n, c)

`
T (n, c)→ E(f(n), c)

´
} does the trick.

In this section, we want to pinpoint the query complexity and
combined complexity of model checking of SO tgds. We shall thus
prove the NEXPTIME-completeness of this problem. To estab-
lish this result, we introduce the notion of SO-QBFs, i.e., quanti-
fied Boolean formulae (QBFs) extended by existentially quantified
second-order function variables. We shall first show the NEXP-
TIME-completeness of SO-QBFs and then prove the hardness of
model checking of SO tgds by a reduction from SO-QBFs.

4.1 Second-Order QBFs
QBFs are formulae of the form F = ∀~x1∃~x2∀~x3∃~x4 . . . Qn~xn

ϕ(~x1, . . . , ~xn), s.t. ϕ(~x1, . . . , ~xn) is a propositional formula over
the Boolean algebra B = ({0, 1}; ∧, ∨, ¬, →, ↔). W.l.o.g., we
assume that the first quantifier is universal; the last quantifier Qn
is either existential or universal. The Boolean variables are inter-
preted over {0, 1}; the quantifiers and connectives have the usual
meaning. Model checking of QBFs (i.e., checking if a given QBF
ψ evaluates to 1) is the classical PSPACE-complete problem [33].

We extend QBFs to SO-QBFs by allowing existentially quanti-
fied function symbols at the beginning of the quantifier prefix and
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functional terms as atoms, i.e., SO-QBFs are of the form F =
∃~f ∀~x1∃~x2∀~x3 . . . Qn~xnϕ(~f, ~x1, . . . , ~xn), where ~f is a set of func-
tion symbols. The atoms in ϕ(~f, ~x1, . . . , ~xn) may be Boolean
variables, Boolean constants 0,1, or functional terms of the form
fi(t1, . . . , tki), where fi ∈ ~f , ki denotes the arity of fi and t1, . . . ,
tki are Boolean variables or Boolean constants 0,1. The Boolean
variables, quantifiers and connectives are interpreted as usal. Each
ki-ary function symbol fi ∈ ~f is interpreted by a function
f0
i : {0, 1}ki → {0, 1}. Below we show that model checking of

SO-QBFs (i.e., checking if a given SO-QBF ψ evaluates to 1) is
significantly harder than model checking of QBFs.

THEOREM 4.1. Model checking of SO-QBFs is NEXPTIME-
complete. It remains NEXPTIME-complete even for formulae F =

∃~f ∀~xϕ(~f, ~x) where ϕ(~f, ~x) is in 3-CNF and contains no con-
stants 0,1.

PROOF SKETCH. The membership is established via the follow-
ing non-deterministic algorithm: We first guess the functions, that
is, an exponentially big function table for each function symbol.
Then the SO-QBF essentially reduces to a QBF, where the value
of each functional term in any truth assignment is obtained by a
simple lookup into the corresponding function table. Hence, the
SO-QBF evaluation requires only polynomial space w.r.t. the size
of the input formula (in addition to the function tables) and is thus
feasible in exponential time.

The hardness is shown by encoding the computation of a NEXP-
TIME-Turing machine into an SO-QBF similarly to the proof of the
Cook-Levin Theorem [33]. The exponentially higher complexity
than in case of SAT is due to the existentially quantified function
symbols, which allow us to encode a successor relation. We can
then binary encode exponentially many time instants and tape po-
sitions by vectors X and Y of Boolean variables. Moreover, we
can use functional terms to express the configuration of the Turing
machine, and to enforce only valid transitions between two config-
urations. Below, we sketch the reduction.

Let M denote a non-deterministic Turing machine (TM) which
decides some NEXPTIME-problem L. W.l.o.g., we may assume
that, on any input I , the TM M halts after exactly 2m − 1 steps,
with m = nk and n = |I|. We define the following SO-QBF to
simulate the computation of M on input I:
Functions. In our construction, we will use the following func-
tions, with the corresponding intended meaning (upper case let-
ters denote vectors of Boolean variables, while lower case letters
stand for single Boolean variables. Superscripts denote the arity of
a function or the size of the vector, respectively. If omitted, vec-
tors have size m, and the arity of the function is clear from its ar-
guments.): For every i ∈ {1, . . . ,m}, last i(Xi), succi(Xi, Y i),
where first i(Xi) and last i(Xi) denote thatXi is the first resp. last
i-ary bit vector (i.e.: (0, . . . , 0) resp. (1, . . . , 1), and succi(Xi, Y i)
expresses that the i-ary bit-vector Y i is the successor ofXi. We en-
code the lexicographical ordering on {0, 1}m by the “less or equal”
relation leq_than(X,Y ) and the “less” relation le_than(X,Y ).
The terms states(X), cursor(X,Y ), and symbolσ(X,Y ) express
that, at time instant X , the machine M is in state s, the cursor is at
position Y , and the tape cell Y contains the symbol σ.
Initial configuration. Suppose that the Turing machine is run on
the input string w = σ′1 . . . σ

′
n. Moreover, let b0, . . . , bn denote

the binary representations of the numbers 0, . . . , n. Then the ini-
tial configuration of the Turing machine is encoded by the follow-
ing subformulae: ∀X(first(X) → cursor(X,X)) (the cursor is
located over the first tape cell), ∀X(first(X)→ states0(X)) (the
machine is in the initial state), ∀X(first(X)→ symbol.(X, b0)∧

symbolσ′1
(X, b1))∧ · · · ∧ symbolσ′n(X, bn)) (the first n+ 1 cells

contain the left tape delimiter . followed by the input string w),
and ∀X∀Y (first(X) ∧ le_than(bn, Y )→ symbolt(X,Y )) (the
remaining tape cells are empty).

Acceptance. W.l.o.g. we assume that M halts after 2m − 1 steps
in an accepting state. Let sq denote the accepting state. Then ac-
ceptance is encoded by ϕacc = ∀X(last(X)→ statesq (X)).

Valid configurations ofM . To ensure that the encoding represents
only valid configurations of M , we define subformulae which en-
code that, at every time instant, the TM is in exactly one state, the
cursor is at exactly one position and every tape cell contains ex-
actly one symbol. For example, the latter is expressed by one sub-
formula ∀X∀Y (symbolσj (X,Y ) ↔ (¬symbolσ0

(X,Y ) ∧ · · · ∧
¬symbolσj−1

(X,Y )∧ ¬symbolσj+1
(X,Y )∧ · · · ∧ ¬symbolσp(

X,Y ))) for every symbol σj from the alphabet.

Inertia rules. To ensure that changes on the tape occur only at
the cursor position, we add for every symbol σ from the alphabet
the subformula ∀X∀X ′∀Y ∀Y ′(cursor(X,Y )∧symbolσ(X,Y ′)
∧¬(Y = Y ′) ∧ succ(X,X ′)→ symbolσ(X ′, Y ′)).

Transition rules. For each pair (s, σ) of a state s and a symbol σ
let (s, σ, s′1, σ

′
1, d1), . . . , (s, σ, s′k, σ

′
k, dk) denote all possible tran-

sitions of the Turing machine. We encode these transitions by
the formula ∀X∀X ′∀Y ∀Y ′∀Y ′′ ((states(X) ∧ cursor(X,Y ) ∧
symbolσ(X,Y )∧ succ(X,X ′) ∧ (last(Y ) ∨ succ(Y, Y ′)) ∧
(first(Y ) ∨ succ(Y ′′, Y )))→
((symbolσ′1

(X ′, Y ) ∧ states′1(X ′) ∧ cursor(X ′, Y ∗1 )) ∨ · · · ∨
(symbolσ′

k
(X ′, Y ) ∧ states′

k
(X ′) ∧ cursor(X ′, Y ∗k )))),

where Y ∗i = Y if di = 0, Y ∗ = Y ′ if di = +1, and Y ∗ = Y ′′ if
di = −1.

Helper functions. In addition, we need several subformulae to
ensure that the functions first , last , succ, le_than , and leq_than
have their desired meanings.

Summary. The SQ-QBF encoding the Turing machine consists
of the conjunction of all these subformulae, and the SO quantifi-
cation goes over all the above mentioned function symbols. The
transformation into 3-CNF and the elimination of Boolean con-
stants is routine. The desired form F = ∃~f ∀~xϕ(~f, ~x) is obtained
by a kind of Skolemization, i.e., suppose that the quantifier pre-
fix starts with ∃~f ∀~x1∃(y1, . . . , ym)∀~x2. Then the existentially
quantified Boolean variables y1, . . . , ym are replaced by functional
terms g1(~x1), . . . , gm(~x1) and the quantifier prefix is transformed
into ∃~f ∃(g1, . . . , gm)∀~x1∀~x2.

4.2 Complexity of SO Tgds
We now use SO-QBFs to establish the complexity of SO tgds.

THEOREM 4.2. SO tgd model checking is NEXPTIME-complete
(both, query and combined complexity). It remains NEXPTIME-
complete even if Σ contains a single SO tgd consisting of a single
implication only.

PROOF SKETCH. For the membership, we proceed analogously
to Theorem 4.1: We first guess the functions (i.e., an exponen-
tially big function table for each function symbol). The size of
these function tables is indeed single-exponential due to the afore-
mentioned result from [13] that it suffices to consider a polynomi-
ally big universe. Then the SO tgd essentially reduces to a first-
order formula, which can be evaluated in polynomial space and
hence in exponential time (w.r.t. the size of the input formula).

The hardness-proof is by reduction from SO-QBFs. We define
〈U ; I, J〉 as U = {0, 1}, I = {P (0, 1), P (1, 0)}, and J =
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{Q(0, 1),Q(1, 0)} ∪ {C(α, β, γ) | α, β, γ ∈ {0, 1}}\{C(0, 0, 0)}.
Let F = ∃(f1, . . . , fk)∀(x1, . . . , x`)ϕ(~f, ~x) be an arbitrary SO-
QBF with ϕ(~f, ~x) = C1 ∧ · · · ∧ Cn and Ci = (li,1 ∨ li,2 ∨ li,3),
where each li,j is a (negated or unnegated) variable or functional
term. We construct the SO tgd τ = ∃~f∃~f ′(∀~x∀~x′(ϕ→ ψ)) with
~f ′ = {f ′ | f ∈ ~f}, ~x′ = {x′ | x ∈ ~x},
ϕ =

V`
i=1 P (xi, x

′
i), and

ψ = ψ1 ∧ ψ2 with

ψ1 =
`Vn

i=1 C(l∗i,1, l
∗
i,2, l

∗
i,3)
´

and
ψ2 =

`V
fi(~t )∈ψ1∨f ′i(~t )∈ψ1

Q(fi(~t ), f ′i(~t ))
´
, where

l∗i,j =

8>>><>>>:
xγ if li,j = xγ

x′γ if li,j = ¬xγ
fγ(xγ,1, . . . , xγ,α) if li,j = fγ(xγ,1, . . . , xγ,α)

f ′γ(xγ,1, . . . , xγ,α) if li,j = ¬fγ(xγ,1, . . . , xγ,α)

Clearly, this reduction is in LOGSPACE.

As in the FO case, the update variants of the problem contain the
full hardness of the basic problem of model checking.

THEOREM 4.3. SO tgd delete-update model checking and SO
tgd insert-update model checking are NEXPTIME-complete (both,
query and combined complexity). They remain NEXPTIME-com-
plete even if Σ contains a single SO tgd with a single implication
and the update U ′ contains a single tuple only.

PROOF IDEA. Membership follows directly from Theorem 4.2.
The hardness of both, SO tgd delete-update model checking and
insert-update model checking is shown by the same modifications
of the proof of Theorem 4.2 as in the FO case.

To achieve a lower complexity, we define the fragment SOord

of SO tgds as follows: W.l.o.g., SO tgds contain no nesting of
functional terms, i.e., any term of the form f(. . . , g(~t), . . . ) can
be replaced by a term of the form f(. . . , z, . . . ) and an additional
equality z = g(~t) for a fresh variable z, see [13]. Hence, terms
in SO tgds are either constants or (first-order) variables or func-
tional terms of the form f(t1, . . . , tk), where f is a second-order
variable and the ti’s are either constants or (first-order) variables.
An SO tgd τ is called an SOord tgd if it is rectified (i.e., every
variable is bound by only one quantifier) and there exists an order-
ing ~X = (xi1 , . . . , xin) of the first-order variables in τ , s.t. (1)
the variables occurring in each functional term in τ form a prefix
of X , i.e., the set of variables occurring in a functional term is of
the form {xi1 , . . . , xiα} with α ≤ n and, moreover, (2) for every
pair of functional terms f(s1, . . . , sk) and f(t1, . . . , tk) in τ with
identical function symbol, either these two terms differ on some
constant position (i.e., si 6= ti for some i, s.t. si, ti are constants)
or these two terms coincide on all variable positions (i.e., si = ti
for all i, s.t. si, ti are variables). We show that SOord tgds can be
efficiently transformed into FO formulae. Thus, the complexity of
model checking reduces to PSPACE.

THEOREM 4.4. SOord tgds can be transformed into first-order
formulae by a PTIME-transformation.

PROOF. Let ~X = (x1, . . . , xn) denote the ordering of the first-
order variables in τ , s.t. the variables occurring in each functional
term in τ form a prefix of X . W.l.o.g., we may arrange the uni-
versal quantifiers in this order. Then the transformation into an FO
formula can be achieved by applying “de-Skolemization”, which
is a common technique in second-order quantifier elimination [8,
17], i.e., rather than replacing an existentially quantified variable

y in the scope of universally quantified variables {x1, . . . , xα}
by a functional term g(x1, . . . , xα), we replace a functional term
f(xi1 , . . . , xiα) (where {xi1 , . . . , xiα} = {x1, . . . , xα} holds)
by an existentially quantified FO variable y in the scope of ∀(x1,
. . . , xα).

Note that the SO tgd τ = (∃f)(∀n, c)
`
T (n, c) → E(f(n), c)

´
in Example 4.1 is an SOord tgd and, thus, Theorem 4.4 is applicable
to τ . Indeed, as already mentioned in [13], τ is equivalent to the
FO formula τ ′ = ∀n∃y∀c

`
T (n, c)→ E(y, c)

´
.

THEOREM 4.5. The SOord tgd model checking problem is
PSPACE-complete (both, query and combined complexity). The
problem remains PSPACE-complete even if Σ contains a single
tgd with a single implication only.

PROOF. The membership is an immediate consequence of The-
orem 4.4. The hardness can be shown by defining SOord-QBFs as
a fragment of QBFs (in the same way as SOord tgds) and by estab-
lishing the following chain of reductions: From QBFs to SOord-
QBFs and from SOord-QBFs to SOord tgds. The latter reduction
is precisely the one from Theorem 4.2. The first reduction is done
using Skolemization: Let yi be an existentially quantified variable
and suppose that yi is in the scope of the universally quantified vari-
ables ~x. Then we introduce a new function symbol gi and replace
every occurrence of yi by the functional term gi(~x). Obviously, the
resulting SO-QBF falls into the set of SOord-QBFs.

In the above proof, the reduction from SOord-QBFs to SO tgds
is the same as in the proof of Theorem 4.2. Hence, the PSPACE-
hardness of the update variants of the problem follows immediately
by applying the same ideas as in the proof of Theorem 4.3.

THEOREM 4.6. The problems SOord tgd insert-update model
checking and SOord tgd delete-update model checking are PSPACE-
complete (both, query and combined complexity). The problems re-
main PSPACE-complete even if Σ contains a single SO tgd with a
single implication and the update U ′ contains a single tuple only.

Finally, we show that the fragment of SOord tgds can be effi-
ciently identified.

THEOREM 4.7. It can be checked in PTIME if an arbitrary SO
tgd is an SOord tgd.

PROOF SKETCH. Let t1, . . . , tm denote the functional terms oc-
curring in an arbitrary SO tgd τ . For i ∈ {1, . . . ,m}, letXi denote
the set of variables occurring in ti. Now let Xj1 , . . . , Xjm be an
ordering of these variable setsXi by ascending cardinality (ties are
broken by random). Then we first check if Xj1 ⊆ · · · ⊆ Xjm
holds. If this is the case, then we can define an ordering ~X on the
variables in τ by first arranging the variables of Xj1 in arbitrary
order, then the variables in Xj2 \Xj1 , . . . , then Xjm \Xjm−1 . It
remains to check that the conditions (1) and (2) of SOord are thus
fulfilled.

5. NESTED TGDS
Nested tgds were introduced in [16] to allow for more structure

preserving transformations of data from a source into a target in-
stance. As they were defined over a hierarchical schema, before
giving the definition of nested tgds, we first adopt the nested rela-
tional model presented in [34] to our needs.

We extend the notion of relation schemas R(A1, . . . , An) by al-
lowing two different types of attributesAi, namely atomic and rela-
tion attributes. Thereby the latter ones are again relation schemas.
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An instance still consists of a set of atoms, with each atom now con-
taining at each position either an atomic value or a set of atoms (re-
ferred to as subrelation) depending on the type of the corresponding
attribute. By slight abuse of notation we simply write R to denote
the relation schema R(A1, . . . , An). We define the nesting depth
δ(R) of relation schema R as δ(R) = 1 if all attributes of R are
atomic and δ(R) = 1 + max({δ(Ai) | Ai is a relation attribute of
R}) otherwise.

Now let I and J be two instances of relation schema R. We
recursively define a hierarchical homomorphism I → J as a map-
ping h : I → J with the following properties: (1) Let δ(R) = 1.
Then h is a hierarchical homomorphism iff h is a homomorphism
I → J . (2) Now let δ(R) > 1. W.l.o.g. we assume R to con-
tain k + l attributes, where the first k ≥ 0 attributes of R have
atomic type and the last l ≥ 1 attributes are relation attributes.
Then h is a hierarchical homomorphism iff for every atom t =
R(t1, . . . , tk+l) ∈ I there exists an atom t′ = R(t′1, . . . , t

′
k+l) ∈

J s.t. h(t1) = t′1, . . . , h(tk) = t′k and, for every j ∈ {1, . . . , l},
h : tk+j → t′k+j is a hierarchical homomorphism.

A nested tgd is a logical formula ∃~F (χ1,1) where χ1,1 is defined
over the hierarchical relational model inductively as
χ1,1 = ∀~x1(ϕ1(~x1)→ ∃~y1(ψ1(~x1, ~y1) ∧ χ2,1 ∧ · · · ∧ χ2,m2)),
s.t. for every i and j, χi,j is defined as
χi,j = ∀~xi(ϕi(~x1, . . . , ~xi)→
∃~yi(ψi(~x1, . . . , ~xi, ~y1, . . . , ~yi) ∧ χi+1,1 ∧ · · · ∧ χi+1,mi+1)).

Thereby, every ϕi is a conjunction of source atoms, while ψi is a
conjunction of target atoms; variables in ~xi and ~yi can be of atomic
type (atomic variables) or relational type (relation variables), and
all variables from ~xi (resp. ~yi) must occur inϕi (resp.ψi). A source
atom is an atom whose leading symbol is either a relation symbol
from the source schema or a relation variable that was bound in
some source atom. Thereby a relation variable is bound if it oc-
curs in the arguments of an atom with either a predicate symbol
or a bound relation variable as leading symbol. Target atoms are
defined analogously. Hence relation variables cannot only occur in
the arguments of an atom, but can also be used as leading symbol
of an atom. Note that it follows from the above definition, that re-
lation variables can only occur in nested tgds over schemas with
nesting depth greater than 1. ~F is a set of function variables which
are used to map combinations of atomic values to relations. Nested
tgds allow terms built with these function variables (using only uni-
versally quantified atomic variables as arguments) to be used in any
place where an existential relation variable may stand. Therefore
nested tgds over schemas of nesting depth 1 cannot contain any
second-order term. We refer to χi,j as a submapping at level i. By
slight abuse of notation, we reuse the same symbols (~xi, ~yi, χi,j)
in different submappings at the same level, although they can take
different values in every such submapping. Similar to SO tgds, a
nested tgd ∃~F (χ) is satisfied if for some set ~F 0 of concrete func-
tions 〈I, J〉 |= χ[~F → ~F 0] holds (under the above definition of a
hierarchical homomorphism).

The following example demonstrates the previous definitions.
Thereby we first use the imperative syntax from [16], and then
rephrase the schemas and tgds in a more logic-style notation.

EXAMPLE 5.1 ([16]). Consider two relation schemas Proj
and Dept , where Proj is a source relation schema and Dept a
target relation schema. Suppose that they are defined as follows:
Proj : set of [dN, pN,Emps : set of[eN ]] and
Dept : set of [dN,Empst : setof [eN,Proj t : set of [pN ]]],
where d stands for “department”, e for “employee“, p for “pro-
ject”, and N for “name”. In a logic-style notation, the above re-

lation schemas can be written as Proj (dN, pN,Emps(eN)) and
Dept(dN,Empst(eN,Proj t(pN))).

Intuitively, in the source schema, employees are grouped by projects
and departments. In the target schema, the information is first
grouped by departments and then by employees. Consider the fol-
lowing nested tgd τ over the above schemas:

for p in Proj ⇒ exists d′ in Dept

where d′.dN = p.dN ∧ d′.Empst = E[p.dN ] ∧
( for e in p.Emps ⇒ exists e′ in d′.Empst, p

′ in e′.Proj t
where p′.pN = p.pN ∧ e′.eN = e.eN ∧

e′.Proj t = P [p.dN, e.eN ]),

where E and P are functions returning sets, and E[x] and P [x]
denote the function value for argument x. In the logic-style nota-
tion, the same mapping can be written as

∃E,P ((∀d, p, Es)(Proj (d, p, Es)→ (Dept(d,E[d]) ∧
((∀e)(Es(e)→ (E[d](e, P [d, e])∧P [d, e](p)))))))

Now let the instances I and J be defined as I = {Proj (′d1′,′ p1′,
{Emps(′e1′)}), Proj (′d1′,′ p2′, {Emps(′e1′)})} and
J = {Dept(′d1′, {Empst(

′e1′, {Proj t(
′p1′),Proj t(

′p2′)})})}.
Then 〈I, J〉 |= τ clearly holds.

Note that the use of the functionsE and P requires both projects
to be contained in the same subrelation in the target instance, while
e.g. for J ′= {Dept(′d1′, {Empst(

′e1′, {Proj t(
′p1′)})}), Dept

(′d1′, {Empst(
′e1′, {Proj t(

′p2′)})})}, we have 〈I, J ′〉 6|= τ .
In other words, the set functions allow us to express grouping.

As can be seen from the example, the functions allowed in nested
tgds can be used to restructure the source data by expressing group-
ing conditions. Moreover, every existential relation variable can be
replaced by a default Skolem function, that is by introducing a new
function symbol and by replacing every occurrence of the variable
by a functional term, built from the new function symbol and tak-
ing as arguments all universally quantified variables the replaced
relation variable was in the scope of. If the resulting tgd contains
only such default Skolem functions, this process and the resulting
tgd are called default Skolemization in [16].

Nested tgds have also been considered in [36], but there no hier-
archical schema was assumed, but only relations of depth 1. When
applying the above definition (that captures the definition in [16])
to schemas of nesting depth 1 only, we arrive at the definition pre-
sented in [36], except that in the latter every ψi is allowed to be
missing (i.e. to consist of no atoms). However, this is a purely
technical issue and has no impact on the complexity as we will see
below. In contrast, the restriction of schemas to nesting depth 1
(in connection with disallowing the use of second-order functions)
clearly does make a big difference. We show below that this re-
striction significantly decreases the complexity of model checking.

Towards the complexity of nested tgd model checking, we first
observe that applying standard techniques for encoding object re-
lational databases as purely relational ones allows us to replace set
functions by atomic functions and to avoid nested relations. To
this end we recursively introduce for every relation attribute with
schema R(A1, . . . , An) a new top level relation schema R(id, A1,
. . . , An). For every subrelation we create a unique identifier, re-
place the subrelation by this identifier and move the content of the
subrelation into the corresponding new top level relation, where
R.id contains the identifier of the original subrelation. To trans-
form nested tgds, we additionally replace all set functions by atomic
functions determining the unique identifier values, and relation vari-
ables are replaced by atomic variables for the corresponding identi-
fiers. We denote the result of this operation as flattened(X), where
X is a hierarchical schema, an instance, or a (nested) tgd.
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EXAMPLE 5.2. Recall the schemas, tgd, and instances from Ex-
ample 5.1. The flattened correspondence of the target schema is
{Dept(dN, eid), Empst(eid, eN, pid), Proj t(pid, pN)}.
The flattened tgd is
∃fe, fp ((∀d, p, eid)(Proj (d, p, eid)→ (Dept(d, fe(d)) ∧

((∀e)(Emps(eid, e)→ (Empst(fe(d), e, fp(d, e)) ∧
Proj t(fp(d, e), p))))))).

The flattened target instance is {Dept(′d1′, eid1), Empst(eid1,
′e1′, pid1), Proj t(pid1,′ p1′), Proj t(pid1,′ p2′)}.

It can be verified that 〈I, J〉 |= τ iff 〈flattened(I),flattened(J)〉
|= flattened(τ), and, obviously, flattened(X) can be computed
efficiently. The flattening will be useful to prove the membership
part of the following complexity result:

THEOREM 5.1. The nested tgd model checking problem over
a hierarchical schema is NEXPTIME-complete (both, query and
combined complexity). The problem remains NEXPTIME-complete
even if Σ contains only a single nested tgd.

PROOF IDEA. It was already noticed in [16] that over purely
relational schemas, every nested tgd can be transformed into an
equivalent SO tgd. Hence, we can transform nested tgds by first
applying the flattening and then transforming the flattened tgds
into a corresponding SO tgd. Hence, the NEXPTIME-membership
of nested tgds follows immediately from the NEXPTIME-mem-
bership of SO tgds (see Theorem 4.2).

The hardness is shown by reduction from SO-QBFs. The idea
is the same as in the reduction from SO-QBFs to SO tgds, except
that we have to express function variables in the SO-QBF by func-
tions over subrelations, as nested tgds do not support functions over
atomic values.

Analogously to FO tgds and SO tgds, also for nested tgds, the
update variants have the full complexity of model checking:

THEOREM 5.2. Nested tgd insert-update model checking and
nested tgd delete-update model checking are NEXPTIME-complete.
They remain NEXPTIME-complete even if Σ contains a single nested
tgd and U contains a single atom only.

PROOF IDEA. Membership follows directly from Theorem 4.2,
while the hardness proof of the two update variants is based on
ideas similar to the FO and SO case.

Analogously to SO tgds, we want to identify a fragment of nested
tgds, based on the structure of the functional terms, for which model
checking has a lower complexity. W.l.o.g. we assume a nested tgd
τ to be flattened. However, unlike for SO tgds, we cannot define
the fragment of nestedord tgds immediately on flattened(τ), as it
may still contain existential variables, because of which we are not
allowed to arbitrarily change the order of the universally quanti-
fied variables. Therefore we first have to replace every existentially
quantified variable by a new Skolem function. Then, analogously
to SOord, we define the nestedord tgds as those nested tgds where
there exists an ordering ~X on the universally quantified variables
of τ , such that after flattening and Skolemization, (1) the variables
occurring in each functional term form a prefix of ~X (2) for ev-
ery pair of functional terms f(~s ) and f(~t ) with identical function
symbol, either these two terms differ on some constant position or
they coincide on all variable positions.

THEOREM 5.3. Nestedord tgds can be transformed into first-
order formulae in PTIME.

PROOF IDEA. The general idea of this transformation is, given
some nested tgd τ , first to obtain flattened(τ). Then, by Skolem-
ization, all remaining existential variables are removed. Finally,
basic equivalence rules of FO logic allow us to “unfold” the nest-
ing levels, resulting in a “flat” SO tgd.

We want to stress that the fragment of nestedord tgds includes the
special cases of default Skolemization as mentioned in [16] and the
case of nested tgds without function variables over purely relational
schemas as defined in [36]. Below we show that model checking is
PSPACE-complete in all these cases.

THEOREM 5.4. The nestedord tgd model checking problem is
PSPACE-complete (both, query and combined complexity). The
problem remains PSPACE-complete if Σ contains a single nestedord

tgd only, and even for the special cases of default Skolemization (as
defined in [16]) and the case of nested tgds without function vari-
ables over purely relational schemas (according to [36]).

PROOF SKETCH. Membership follows immediately from Theo-
rem 5.3. Note that the fact that in the nested tgds defined in [36]
the ψi may be empty has no effect on the membership result, as it
still allows for rewriting into an FO formula.

We show the PSPACE-hardness for nested tgds without func-
tion variables over a purely relational schema. Obviously, this is
a special case of the other two classes of nested tgds mentioned
in the theorem. The proof is done by reduction from the well-
known PSPACE-complete problem QSAT and works similarly
to the Π2P -hardness proof for the FO tgd model checking prob-
lem. We use the same source and target schemas and instances as
in the proof of Theorem 3.1. Let an arbitrary instance of QSAT
be given by the QBF ∀~x1∃~y1 . . .∀~xm∃~ym(ϕ). W.l.o.g. we as-
sume that the innermost quantifier is “∃” and ϕ is in 3-CNF, i.e.,
ϕ = C1 ∧ · · · ∧ Cn with Ci = (li,1 ∨ li,2 ∨ li,3)). We define the
following nested tgd τ with

τ = ∀~x1, ~x
′
1(
V|~x1|
i=1 P (x1,i, x

′
1,i)→

(∃~y1, ~y′1 (
V|~y1|
i=1 Q(y1,i, y

′
1,i) ∧ (τ2)))),

where (for i ∈ {2, . . . ,m− 1})
τi = ∀~xi, ~x′i(

V|~xi|
ji=1 P (xi,ji , x

′
i,ji)→

(∃~yi, ~y′i(
V|~yi|
ji=1(Q(yi,ji , y

′
i,ji) ∧ (τi+1))))), and

τm = ∀~xm, ~x′m(
V|~xm|
i=1 P (xm,i, x

′
m,i)→

(∃~ym, ~y′m(
V|~ym|
i=1 Q(ym,i, y

′
m,i)∧

Vn
i=1 C(l∗i,1, l

∗
i,2, l

∗
i,3)))).

Thereby all further definitions (x′i, l
∗
i,j , . . . ) are as in the proof of

Theorem 3.1.

Again, the update variants of the problem have the full complex-
ity of the general model checking problem.

THEOREM 5.5. Nestedord tgd insert-update model checking and
nestedord tgd delete-update model checking are PSPACE-complete
(both, query and combined complexity). They remain PSPACE-
complete even if Σ contains a single nestedord tgd and U contains
a single atom only.

PROOF IDEA. Membership follows directly from Theorem 5.4.
The hardness of the two problems is shown by adapting the proof
ideas from the FO and SO cases to the reduction in the proof of
Theorem 5.4.

6. CONCLUSION
In this paper, we have studied the complexity of the model check-

ing problem of three kinds of tgds (FO, SO, and nested tgds). The
data complexity of these problems has been known to be tractable
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(for FO tgds) and NP-complete (for SO tgds and nested tgds). For
the combined complexity and the query complexity of these prob-
lems, we have proved completeness in the classes Π2P (for FO
tgds) and NEXPTIME (for SO and nested tgds), respectively. More-
over, we have shown that the update variants of these problems (i.e.,
a database which previously satisfied all tgds is updated by delet-
ing or inserting a tuple) retain the full complexity. However, we
have also identified sufficient criteria to reduce these high complex-
ities. Technically, we have developed a new fixed-parameter algo-
rithm for counting the solutions of CQs with bounded treewidth
and we have introduced a new class of Boolean formulae, namely
SO-QBFs (Second-Order QBFs). The latter may play as generic
NEXPTIME-complete problem a similar role to QBFs in PSPACE.

Future work in this area should pursue two lines of research: On
the one hand, the search for fragments of the model checking prob-
lem with lower complexity (ideally, tractable fragments) should be
continued. On the other hand, the investigation of the combined
complexity and the query complexity (which was initiated in [27]
and continued here) should be extended to many more fundamental
problems in the area of schema mappings and data exchange. It
is to be expected that these complexities are much higher than the
data complexity, which has been mainly studied so far. But then, it
is even more important to understand the source of the high com-
bined complexity and query complexity and to search for fragments
with significantly lower complexity.
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