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ABSTRACT
Matching dependencies were recently introduced as declar-
ative rules for data cleaning and entity resolution. Enforc-
ing a matching dependency on a database instance identifies
the values of some attributes for two tuples, provided that
the values of some other attributes are sufficiently similar.
Assuming the existence of matching functions for making
two attributes values equal, we formally introduce the pro-
cess of cleaning an instance using matching dependencies,
as a chase-like procedure. We show that matching func-
tions naturally introduce a lattice structure on attribute do-
mains, and a partial order of semantic domination between
instances. Using the latter, we define the semantics of clean
query answering in terms of certain/possible answers as the
greatest lower bound/least upper bound of all possible an-
swers obtained from the clean instances. We show that clean
query answering is intractable in some cases. Then we study
queries that behave monotonically wrt semantic domination
order, and show that we can provide an under/over approx-
imation for clean answers to monotone queries. Moreover,
non-monotone positive queries can be relaxed into monotone
queries.

1. INTRODUCTION
Matching dependencies (MDs) in relational databases were

recently introduced in [16] as a means of codifying a domain
expert’s knowledge that is used in improving data quality.
They specify that a pair of attribute values in two database
tuples are to be matched, i.e., made equal, if similarities
hold between other pairs of values in the same tuples. This
is a generalization of entity resolution [15], where basically
full tuples have to be merged or identified since they seem
to refer to the same entity of the outside reality. This form
of data fusion [10] is important in data quality assessment
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and in data cleaning.
Matching dependencies were formally studied in [17], as

semantic constraints for data cleaning and were given a
model-theoretic semantics. The main emphasis in that pa-
per was on the problem of entailment of MDs and on the
existence of a formal axiom system for that task.

MDs as presented in [17] do not specify how the match-
ing of attribute values is to be done. In data cleaning, the
user, on the basis of his or her experience and knowledge
of the application domain, may have a particular method-
ology or heuristics for enforcing the identifications. In this

paper we investigate MDs in the context of matching func-

tions. These are functions that abstract the implementa-
tion of value identification. Rather than investigate specific
matching functions, we explore a class of matching func-
tions satisfying certain natural and intuitive axioms. With
these axioms, matching functions impose a lattice-theoretic
structure on attribute domains. Intuitively, given two input
attribute values that need to be made equal, the match-
ing function produces a value that contains the information
present in the two inputs and semantically dominates them.
We show this semantic domination partial order can be nat-
urally lifted to tuples of values as well as database instances
as sets of tuples.

Example 1. Consider the following database instanceD0.
Assume there is a matching dependency stating that if for
two tuples the values of name and phone are similar, then
the value of address should be made identical. Consider
a similarity relation that indicates the values of name and
phone are similar for the two tuples in this instance. To en-
force the matching dependency, we create another instance
D1 in which the value of address for two tuples is the re-
sult of applying a matching function on the two previous
addresses. This function combines the information in those
address values.

D0 name phone address

John Doe (613)123 4567 Main St., Ottawa
J. Doe 123 4567 25 Main St.

⇓
D1 name phone address

John Doe (613)123 4567 25 Main St., Ottawa
J. Doe 123 4567 25 Main St., Ottawa

We can continue this process in a chase-like manner if there
are still other MD violations in D1. abc �

The framework of [17] leaves the implementation details of
data cleaning process with MDs completely unspecified and
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implicitly leaves it to the application on hand. We point
out some limitations of the proposal in [17] for purposes of
cleaning dirty instances in the presence of multiple MDs, and
show that a formulation of the formal semantics of the sat-
isfaction and enforcement of MDs, incorporating matching
functions, remedies this problem. In giving such a formu-
lation, we revisit the original semantics for MDs proposed
in [17], propose some changes and investigate their conse-
quences. More precisely, we define intended clean instances,
those that are obtained through the application of the MDs
in a chase-like procedure. We further investigate properties
of this procedure in relation to the properties of the match-
ing functions, and show that, in general, the chase procedure
produces several different clean instances, each of which se-
mantically dominates the original dirty instance.

We then address the problem of query answering over a
dirty instance, where the MDs do not hold. We take advan-
tage of the semantic domination order between instances,
and define clean answers by specifying a tight lower bound
(corresponding to certain answers) and a tight upper bound
(corresponding to possible answers) for all answers that can
be obtained from any of the possibly many clean instances.
We show that computing the exact bounds is intractable in
general. However, in polynomial time we can generate an
under-approximation for certain answers as well as an over-
approximation for possible answers for queries that behave
monotonically w.r.t. the semantic domination order.

We argue that monotone queries provide more informative
answers on instances that have been cleaned with MDs and
matching functions. We therefore introduce new relational
algebra operators that make use of the underlying lattice
structure on the domain of attribute values. These operators
can be used to relax a regular positive relational algebra
query and make it monotone w.r.t. the semantic domination
order.

Recently, Swoosh [8] has been proposed as generic frame-
work for entity resolution. In entity resolution, whole tu-
ples are identified, or merged into a new tuple, whenever
similarities hold between the tuples on some attributes. Ac-
cordingly, the similarity and matching functions work at the
tuple level. Given their similarity of purpose, it is interest-
ing to ask what is the relationship between the frameworks
of MDs and of Swoosh. We address this question in this
paper.

In summary, we make the following contributions:

• We identify the limitations of the original proposal of
MDs [17] wrt the application of data cleaning in the
presence of multiple MDs and show that the limita-
tions can be overcome by considering MDs along with
matching functions.

• We study matching functions in terms of their prop-
erties, which are certain intuitive and natural axioms.
Matching functions induce a lattice framework on at-
tribute domains which can be lifted to a partial order
over instances, that we call semantic domination.

• We formally characterize answering a query given a
dirty instance and a set of MDs, and capture it using
certain and possible answers. Computing these an-
swers is intractable in general. For queries that are
monotone wrt the semantic domination relation, we
develop a polynomial time heuristic procedure for ob-

taining under- and over-approximations of query an-
swers.

• We demonstrate the power of the framework of MDs
and of our chase procedure for MD application by re-
constructing the most common case for Swoosh, the
so-called union and merge case, in terms of matching
dependencies with matching functions.

The paper is organized as follows. In Section 2, we provide
necessary background on matching dependencies as origi-
nally introduced. We introduce matching functions and the
notion of semantic domination in Section 3. Then we de-
fine the data cleaning process with MDs in Section 4. We
explore the semantic of query answering in Section 5. In
Section 6, we study monotone queries and show how clean
answers can be approximated. We establish a connections
to an important related work, Swoosh, in Section 7, and
present concluding remarks in Section 8.

2. BACKGROUND
A database schema R is a set {R1, . . . , Rn} of relation

names. Every relation Ri is associated with a set of at-
tributes, written as Ri(A1, . . . , Am), where each attribute
Aj has a domain DomAj . We assume that attribute names
are different across relations in the schema, but two at-
tributes Aj , Ak can be comparable, i.e., DomAj = DomAk

.

An instance D of schema R assigns a finite set of tuples tD

to every relation Ri, where tD can be seen as a function
that maps every attribute Aj in Ri to a value in DomAj .

We write tD[Aj ] to refer to this value. When X is a list of
attributes, we may write tD[X] to refer to the correspond-
ing list of attribute values. A tuple tD for a relation name
R ∈ R is called an R-tuple. We deal with queries Q that are
expressed in relational algebra, and treat them as operators
that map an instance D to an instance Q(D).

For every attribute A in the schema, we assume a binary
similarity relation ≈A ⊆ DomA ×DomA. Notice that when-
ever A and A′ are comparable, the similarity relations ≈A

and ≈A′ are identical. We assume that each ≈A is sym-
metric and subsumes equality, i.e., =DomA

⊆ ≈A. When
there is no confusion, we simply use ≈ for the similarity
relation. In particular, for lists of pairwise comparable at-
tributes, Xi = Ai

1, . . . , A
i
n, i = 1, 2, we write X1 ≈ X2 to

mean A1
1 ≈1 A2

1∧· · ·∧A1
n ≈n A2

n, where ≈i is the similarity
relation applicable to attributes A1

i , A
2
i .

Given two pairs of pairwise comparable attribute lists
X1, X2 and Y1, Y2 from relations R1, R2, resp., a matching

dependency (MD) [17] is a sentence of the form

ϕ : R1[X1] ≈ R2[X2] → R1[Y1] ⇋ R2[Y2].
1 (1)

This dependency intuitively states that if for an R1-tuple
t1 and an R2-tuple t2 in instance D, the attribute values
in tD1 [X1] are similar to attribute values in tD2 [X2], then we
need to make the values tD1 [Y1] and tD2 [Y2] pairwise identical.

Enforcing MDs may cause a database instance D to be
changed to another instance D′. To keep track of every
single change, we assume that every tuple in an instance has
a unique identifier t, which could identify it in both instance

D and its changed version D′. We use tD and tD
′

to refer to

1All the variables in Xi, Yj are implicitly universally quan-
tified in front of the formula.



a tuple and its changed version in D′ that has resulted from
enforcing an MD. For convenience, we may use the terms
tuple and tuple identifier interchangeably.

Fan et al. [17] give a dynamic semantics for matching de-
pendencies in terms of a pair of instances: one where the
similarities hold, and a second where the specified identifi-
cations have been enforced:

Definition 1. [17] A pair of instances (D,D′) satisfies
the MD ϕ : R1[X1] ≈ R2[X2] → R1[Y1] ⇋ R2[Y2], denoted
(D,D′) |= ϕ, if for every R1-tuple t1 and R2-tuple t2 in D
that match the left-hand side of ϕ, i.e., tD1 [X1] ≈ tD2 [X2],
the following holds in the instance D′:

(a) tD
′

1 [Y1] = tD
′

2 [Y2], i.e., the values of the right-hand side
attributes of ϕ have been identified in D′; and

(b) t1, t2 in D′ match the left-hand side of ϕ, that is,

tD
′

1 [X1] ≈ tD
′

2 [X2].

For a set Σ of MDs, (D,D′) |= Σ iff (D,D′) |= ϕ for every
ϕ ∈ Σ. An instance D′ is called stable if (D′, D′) |= Σ. abc�

Notice that a stable instance satisfies the MDs by itself,
in the sense that all the required identifications are already
enforced in it. So, whenever we say that an instance is dirty,
we mean that it is not stable w.r.t. the given set of MDs.

While this definition may be sufficient for the implication
problem of MDs considered by Fan et al. [17], it does not
specify how a dirty database should be updated to obtain
a clean instance, especially when several interacting updates

are required in order to enforce all the MDs. Thus, it does
not give a complete prescription for the purpose of cleaning
dirty instances. Moreover, from a different perspective, the
requirements in the definition may be too strong, as the
following example shows.

Example 2. Consider the set of MDs Σ consisting of ϕ1:
R[A] ≈ R[A] → R[B] ⇋ R[B] and ϕ2: R[B,C] ≈ R[B,C] →
R[D] ⇋ R[D]. The similarities are: a1 ≈ a2, b2 ≈ b3,
c2 ≈ c3. Instance D0 below is not a stable instance, i.e., it
does not satisfy ϕ1, ϕ2. We start by enforcing ϕ1 on D0.

D0 A B C D

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3

D1 A B C D

a1 〈b1, b2〉 c1 d1
a2 〈b1, b2〉 c2 d2
a3 b3 c3 d3

Let 〈b1, b2〉 in instance D1 denote the value that replaces
b1 and b2 to enforce ϕ1 on instance D0, and assume that
〈b1, b2〉 6≈ b3. Now, (D0, D1) |= ϕ1. However, (D0, D1) 6|=
ϕ2.

If we identify d2, d3 via 〈d2, d3〉 producing instance D2,
the pair (D0, D2) satisfies the condition (a) in Definition 1
for ϕ2, but not condition (b). Notice that making more
updates on D1 (or D2) to obtain an instance D′, such that
(D0, D

′) |= Σ, seems hopeless as ϕ2 will not be satisfied
because of the broken similarity that existed between b2 and
b3. abc �

Definition 1 seems to capture well the one-step enforcement
of a single MD. However, as shown by the above example,
the definition has to be refined in order to deal with sets of
interacting MDs and to capture an iterative process of MD
enforcement. We address this problem in Section 4.

Another issue worth mentioning is that stable instances
D′ for D and Σ are not subject to any form of minimality
criterion on D′ in relation with D. We would expect such
an instance to be obtained via the enforcement of the MDs,
without unnecessary changes. Unfortunately, this is not the
case here: If in Example 2 we keep only ϕ1, and in instance
D1 we change a3 by an arbitrary value a4 that is not similar
to either a1 or a2, we obtain a stable instance with origin in
D0, but the change of a3 is unjustified and unnecessary. We
will also address this issue.

Following [17], we assume in the rest of this paper that
each MD is of the form R1[X1] ≈ R2[X2] → R1[A1] ⇋

R2[A2]. That is, the right-hand side of the MDs contains a
pair of single attributes. We also assume that the sets Σ of
MDs we consider are always finite.

3. MATCHING FUNCTIONS AND SEMAN-
TIC DOMINATION

In order to enforce a set of MDs (cf. Section 4) we need
an operation that identifies two values whenever necessary.
With this purpose in mind, we will assume that for each com-
parable pair of attributes A1, A2 with domain DomA, there
is a binary matching function mA : DomA×DomA → DomA,
such that the value mA(a, a

′) is used to replace two values
a, a′ ∈ DomA whenever the two values need to be made
equal. Here are a few natural properties to expect of the
matching function mA (similar properties were considered in
[8], cf. Section 7): For a, a′, a′′ ∈ DomA,

I (Idempotency): mA(a, a) = a,
C (Commutativity): mA(a, a

′) = mA(a
′, a),

A (Associativity): mA(a,mA(a
′, a′′)) = mA(mA(a, a

′), a′′).

It is reasonable to assume that any matching function sat-
isfies at least these three axioms. Under this assumption,
the structure (DomA,mA) forms a join semilattice, LA, that
is, a partial order with a least upper bound (lub) for every
pair of elements. The induced partial order �A on the ele-
ments of DomA is defined as follows: For every a, a′ ∈ DomA,
a �A a′ whenever mA(a, a

′) = a′. The lub operator with re-
spect to this partial order coincides with mA: lub�A

{a, a′} =
mA(a, a

′).
A natural interpretation for the partial order �A in the

context of data cleaning would be the notion of semantic

domination. Basically, for two elements a, a′ ∈ DomA, we
say that a′ semantically dominates a if we have a �A a′.
In the process of cleaning the data by enforcing matching
dependencies, we always replace two values a, a′, whenever
certain similarities hold, by the value mA(a, a

′) that seman-
tically dominates both a and a′. This notion of domination
is also related to relative information contents [11, 21, 22].

To define the semantics of query answering on instances
that have been cleaned with matching dependencies, we
might, in addition, need the existence of the greatest lower
bound (glb) for any two elements in the domain of an at-
tribute. We therefore assume that (DomA,mA) is a lattice
(i.e., both lub and glb exist for every pair of elements in
DomA w.r.t. �A). Moreover, there is a special element
⊥ ∈ DomA such that mA(a,⊥) = a, for every a ∈ DomA.
Notice that if we add an additional assumption to the semi-
lattice, which requires that for every element a ∈ DomA,
the set {c ∈ DomA | c �A a} (the set of elements c with
mA(a, c) = a), is finite, then glb�A

{a, a′} does exist for ev-



ery two elements a, a′ ∈ DomA and is equal to lub�A
{c ∈

DomA | c �A a and c �A a′}. We could also assume
the existence of another special element ⊤ ∈ DomA such
that mA(a,⊤) = ⊤, for every a ∈ DomA. This element
could represent the existence of inconsistency in data when-
ever matching dependencies force to match two completely
unrelated elements a, a′ from the domain, in which case
mA(a, a

′) = ⊤. However, the existence of ⊤ is not essen-

tial in our framework.

Example 3. We give a few concrete examples of match-
ing functions for different attribute domains. Our example
functions have all the properties I, C, and A.

Name, Address, Phone Each atomic value s of these string
domains could be treated as a singleton set {s}. Then
a matching function m(S1, S2) for sets of strings Si

could return S1 ∪ S2. E.g., when matching addresses,
m({‘2366 Main Mall’}, {‘Main Mall, Vancouver’}) could
return {‘2366 Main Mall’, ‘Main Mall, Vancouver’}.
(This union matching function is further investigated
in Section 7.) Alternatively, a more sophisticated match-
ing function could merge two input strings into a third
string that contains both of the inputs. E.g., the match
of the two input strings above could instead be ‘2366
Main Mall, Vancouver’.

Age, Salary, Price Each atomic value a in these numeri-
cal domains could be treated as an interval [a, a]. Then
the matching function m([a1, b1], [a2, b2]) would return
the smallest interval containing both [a1, b1] and [a2, b2],
i.e., m([a1, b1], [a2, b2]) = [min{a1, a2},max{b1, b2}].

Boolean Attributes For attributes which take either a 0 or
1 value, the matching function would return m(0, 1) =
⊤, where ⊤ shows inconsistency in the data, and fur-
thermore m(0,⊤) = ⊤ and m(1,⊤) = ⊤. In this case,
the purpose of applying the matching function is to
record the inconsistency in the data and still conduct
sound reasoning in presence of inconsistency.2 �

An additional property of matching functions worthy of con-
sideration is similarity preservation, that is, the result of
applying a matching function preserves the similarity that
existed between the old value being replaced and other val-
ues in the domain. More formally:

S (Similarity Preservation): If a ≈ a′, then a ≈ mA(a
′, a′′),

for every a, a′, a′′ ∈ DomA.

Unlike the previous properties (I, C, A), property S turns
out to be a strong assumption, and we must consider both
matching functions with S and without it. Indeed, notice
that since ≈ subsumes equality, and mA is commutative,
assumption S implies a ≈ mA(a, a

′) and a′ ≈ mA(a, a
′), i.e.,

similarity preserving matching always results in a value sim-
ilar to the value being replaced. In the rest of the paper, we
assume that for every comparable pair of attributes A1, A2,
there is an idempotent, commutative, and associative binary
matching function mA. Unless otherwise specified, we do not
assume that these functions are similarity preserving.

2Matching of boolean attributes requires the existence of the
top element ⊤.

Definition 2. Let D1, D2 be instances of schema R, and
t1, t2 be two R-tuples in D1, D2, respectively, with R ∈ R.
We write t

D1

1 � t
D2

2 if tD1

1 [A] �A t
D2

2 [A] for every attribute
A in R. We write D1 ⊑ D2 if for every tuple t1 in D1, there
is a tuple t2 in D2, such that tD1

1 � t
D2

2 . abc �

Clearly, the relation � on tuples can be applied to tuples in
the same instance. The ordering ⊑ on sets has been used
in the context of complex objects [6, 24] and also powerdo-
mains, where it is called Hoare ordering [11]. It is also used
in [8] for entity resolution (cf. Section 7). It is known that
for ⊑ to be a partial order, specifically to be antisymmetric,
we need to deal with reduced instances [6], i.e., instances D
in which there are no two different tuples t1, t2, such that
tD1 � tD2 . We can obtain the reduced version of every in-
stance D by removing every tuple t1, such that tD1 ≺ tD2 for
some tuple t2 in D.

Next we will show that the set of reduced instances with
the partial order ⊑ forms a lattice: the least upper bound
and the greatest lower bound for every finite set of reduced
instances exist. This result will be used later for query an-
swering. We adapt some of the results from [6], where they
prove a similar result for a lattice formed by the set of com-
plex objects and the sub-object partial order.

Definition 3. Let D1, D2 be instances of schema R, and
t1, t2 be two R-tuples in D1, D2, respectively, for R ∈ R.

(a) We defineD1gD2 to be the reduced version ofD1∪D2,
where D1 ∪ D2 refers to the instance that takes the
union of R-tuples from D1 and D2 for every R ∈ R.

(b) We define t1 f t2 to be tuple t, such that t[A] =

glb�A
{tD1

1 [A], tD2

2 [A]} for every attribute A in R.

(c) We define D1 f D2 to be the reduced version of the
instance that assigns the set of tuples {t1 f t2 | t1 ∈
D1, t2 ∈ D2, t1, t2 R-tuples} to every R ∈ R. abc �

Next we show that the operations defined in Definition 3
are equivalent to the greatest lower bound and least upper
bound of instances w.r.t. the partial order ⊑.

Lemma 1. For every two instances D1, D2 and R-tuples
t1, t2 in D1, D2, the following holds:

1. D1 gD2 is the least upper bound of D1, D2 w.r.t. ⊑.

2. t1 f t2 is the greatest lower bound of t1, t2 w.r.t. �.

3. D1 f D2 is the greatest lower bound of D1, D2 w.r.t.
⊑. abc �

In particular, we can see that � imposes a lattice structure
on R-tuples. Using Lemma 1, we immediately obtain the
following result.

Theorem 1. The set of reduced instances for a given
schema with the ⊑ ordering forms a lattice. abc �

4. ENFORCEMENT OF MDS AND CLEAN
INSTANCES

In this section, we define clean instances that can be ob-
tained from a dirty instance by iteratively enforcing a set of
MDs in a chase-like procedure. Let D,D′ be two database
instances with the same set of tuple identifiers, and t1, t2 be



an R1-tuple and an R2-tuple, respectively, in both D and
D′. Let Σ be a set of MDs, and ϕ : R1[X1] ≈ R2[X2] →
R1[A1] ⇋ R2[A2] be an MD in Σ.

Definition 4. Instance D′ is the immediate result of en-
forcing ϕ on t1, t2 in instance D, denoted by (D,D′)[t1,t2] |=
ϕ, if

1. tD1 [X1] ≈ tD2 [X2], but t
D
1 [A1] 6= tD2 [A2];

2. tD
′

1 [A1] = tD
′

2 [A2] = mA(t
D
1 [A1], t

D
2 [A2]); and

3. D,D′ agree on every other tuple and attribute value.

abc �

Definition 4 captures a single step in a chase-like procedure
that starts from a dirty instance D0 and enforces MDs step
by step, by applying matching functions, until the instance
becomes stable. We propose that the output of this chase
should be treated as a clean version of the original instance,
given a set of MDs, formally defined as follows.

Definition 5. For an instance D0 and a set of MDs Σ,
an instance Dk is (D0,Σ)-clean if Dk is stable, and there
exists a finite sequence of instances D1, . . . , Dk−1 such that,
for every i ∈ [1, k], (Di−1, Di)[ti

1
,ti

2
] |= ϕi, for some ϕi ∈ Σ

and tuple identifiers ti1, t
i
2. abc �

Notice that if (D0, D0) |= Σ, i.e., it is already stable, thenD0

is its only (D0,Σ)-clean instance. Moreover, we haveDi−1 ⊑
Di, for every i ∈ [1, k], since we are using matching functions
to identify values. In particular, we have D0 ⊑ Dk. In
other words, clean instance Dk semantically dominates dirty
instance D0, and we might say Dk it is more informative

than D0.

Theorem 2. Let Σ be a set of matching dependencies
and D0 be an instance. Then every sequence D1, D2, . . .
such that (Di−1, Di)[ti

1
,ti

2
] |= ϕi, for some ϕi ∈ Σ and tuple

identifiers ti1, t
i
2 in Di−1, is finite and computes a (D0,Σ)-

clean instance Dk in polynomial number of steps in the size
of D0. abc �

In other words, the sequence of instances obtained by chas-
ing MDs reaches a fixpoint after polynomial number of steps.
That is, it is not possible to generate a new instance, because
condition 1 in Definition 4 is not satisfied by the last gener-
ated instance, i.e., the last instance is stable w.r.t. all MDs.
This is the consequence of assuming that matching functions
are idempotent, commutative, and associative.

Observe that, for a given instance D0 and set of MDs Σ,
multiple clean instances may exist, each resulting from a dif-
ferent order of application of MDs on D0 and from different
selections of violating tuples. It is easy to show that the
number of clean instances is finite.

Notice also that for a (D0,Σ)-clean instance Dk, we may
have (D0, Dk) 6|= Σ (cf. Definition 1). Intuitively, the reason
is that some of the similarities that existed in D0 could have
been broken by iteratively enforcing the MDs to produce
Dk. We argue that this is a price we may have to pay if
we want to enforce a set of interacting MDs. However, each
(D0,Σ)-clean instance is stable and captures the persistence
of attribute values that are not affected by MDs. The follow-
ing example illustrates these points. For simplicity, we write
〈a1, . . . , al〉 to represent mA(a1,mA(a2,mA(. . . , al))), which is
allowed by the associativity assumption.

Example 4. Consider the set of MDs Σ consisting of
ϕ1: R[A] ≈ R[A] → R[B] ⇋ R[B] and ϕ2: R[B] ≈ R[B] →
R[C] ⇋ R[C]. We have the similarities: a1 ≈ a2, b2 ≈ b3.
The following sequence of instances leads to a (D0,Σ)-clean
instance D2.

D0 A B C

a1 b1 c1
a2 b2 c2
a3 b3 c3

D1 A B C

a1 〈b1, b2〉 c1
a2 〈b1, b2〉 c2
a3 b3 c3

D2 A B C

a1 〈b1, b2〉 〈c1, c2〉
a2 〈b1, b2〉 〈c1, c2〉
a3 b3 c3

However, (D0, D2) 6|= Σ, and the reason is that 〈b1, b2〉 ≈ b3
does not necessarily hold. We can enforce the MDs in an-
other order and obtain a different (D0,Σ)-clean instance:

D0 A B C

a1 b1 c1
a2 b2 c2
a3 b3 c3

D′
1 A B C

a1 b1 c1
a2 b2 〈c2, c3〉
a3 b3 〈c2, c3〉

D′
2 A B C

a1 〈b1, b2〉 c1
a2 〈b1, b2〉 〈c2, c3〉
a3 b3 〈c2, c3〉

D′
3 A B C

a1 〈b1, b2〉 〈c1, c2, c3〉
a2 〈b1, b2〉 〈c1, c2, c3〉
a3 b3 〈c2, c3〉

Again, D′
3 is a (D0,Σ)-clean instance, but (D0, D

′
3) 6|= Σ.

abc �

It would be interesting to know when there is only one
(D0,Σ)-clean instance Dk, and also when, for a clean in-
stance Dk, (D0, Dk) |= Σ holds. The following two propo-
sitions establish natural sufficient conditions for these prop-
erties to hold.

Proposition 1. Suppose that for every pair of compara-
ble attributes A1, A2, the matching function mA is similarity
preserving. Then, for every set of MDs Σ and every instance
D0, there is a unique (D0,Σ)-clean instance Dk. Further-
more, (D0, Dk) |= Σ. abc �

We say that a set of matching dependencies Σ is interaction-
free if for every two MDs ϕ1, ϕ2 ∈ Σ, the two sets of at-
tributes on the right-hand side of ϕ1 and left-hand side of
ϕ2 are disjoint. The two sets of MDs in Examples 2 and 4
are not interaction-free.

Proposition 2. Let Σ be an interaction-free set of MDs.
Then for every instance D0, there is a unique (D0,Σ)-clean
instance Dk. Furthermore, (D0, Dk) |= Σ. abc �

The chase-like procedure that produces a (D0,Σ)-clean in-
stance makes only those changes to instance D0 that are
necessary, and are imposed by the dynamic semantics of
MDs. In this sense, we can say that the chase implements
minimal changes necessary to obtain a clean instance.

Another interesting question is whether (D0,Σ)-clean in-
stances are at a minimal distance to D0 w.r.t. the partial
order ⊑. This is not true in general. For instance in Exam-
ple 4, observe that for the two (D0,Σ)-clean instances D2

and D′
3, D2 ⊑ D′

3, but D
′
3 6⊑ D2, which means D′

3 is not at
a minimal distance to D0 w.r.t. ⊑. However, both of these
clean instances may be useful in query answering, because,



informally speaking, they can provide a lower bound and
an upper bound for the possible clean interpretations of the
original dirty instance w.r.t. the semantic domination. This
issue is discussed in the next section.

5. CLEAN QUERY ANSWERING
Most of the literature on data cleaning has concentrated

on producing a clean instance starting from a dirty one.
However, the problem of characterizing and retrieving the
data in the original instance that can be considered to be
clean has been neglected. In this section we study this prob-
lem, focusing on query answering. More precisely, given an
instance D, a set Σ of MDs, and a query Q posed to D, we
want to characterize the answers that are consistent with
Σ, i.e., that would be returned by an instance where all the
MDs have been enforced. Of course, we have to take into
account that there may be several such instances.

This situation is similar to the one encountered in consis-

tent query answering (CQA) [3, 9, 13], where query answer-
ing is characterized and performed on database instances
that may fail to satisfy certain classic integrity constraints
(ICs). For such a database instance, a repair is an instance
that satisfies the integrity constraints and minimally differs
from the original instance. For a given query, a consistent

answer (a form of certain answer) is defined as the set of
tuples that are present in the intersection of answers to the
query when posed to every repair. A less popular alternative
is the notion of possible answer, that is defined as the union
of all tuples that are present in the answer to the query when
posed to every repair.

A similar semantics for clean query answering under match-
ing dependencies can be defined. However, the partial order
relationship ⊑ between a dirty instance and its clean in-
stances establishes an important difference between clean
instances w.r.t. matching dependencies and repairs w.r.t.
traditional ICs.

Intuitively, a clean instance has improved the information
that already existed in the dirty instance and made it more
informative and consistent. We would like to carefully take
advantage of this partial order relationship and use it in the
definition of certain and possible answers. We do this by
taking the greatest lower bound (glb) and least upper bound
(lub) of answers of the query over multiple clean instances,
instead of taking the set-theoretic intersection and union.

Let Σ be a set of MDs, D0 be a database instance, and
Q be a query posed to instance D0. We define certain and
possible answers as follows.

CertQ(D0) = glb⊑{Q(D) | D is a (D0,Σ)-clean instance}. (2)

PossQ(D0) = lub⊑{Q(D) | D is a (D0,Σ)-clean instance}. (3)

The glb and lub above are defined on the basis of the partial
order ⊑ on sets of tuples. Since there is a finite number of
clean instances for D0, these glb and lub exist (cf. Theorem
1). In Eq. (2) and (3) we are assuming that each of the
Q(D) is reduced (cf. Section 3). By Definition 3, CertQ(D0)
and PossQ(D0) are also reduced. Moreover, we clearly have
CertQ(D0) ⊑ PossQ(D0).

The following example motivates these choices. It also
shows that, unlike some cases of inconsistent databases and
consistent query answering, certain answers could be quite
informative and meaningful for databases with matching de-
pendencies.

Example 5. Consider relation R(name, phone, address),
and set Σ consisting of the following MDs:

ϕ1 : R[name, phone, address ] ≈ R[name, phone , address ] →
R[address ] ⇋ R[address ],

ϕ2 : R[phone, address ] ≈ R[phone , address ] →
R[phone] ⇋ R[phone ].

Suppose that in the dirty instance D0, shown below, the
following similarities hold:

“John Doe”≈ “J. Doe”,
“Jane Doe”≈ “J. Doe”,
“(613)123 4567”≈ “123 4567”,
“(604)123 4567”≈ “123 4567”,
“25 Main St.”≈ “Main St., Ottawa”,
“25 Main St.”≈ “25 Main St., Vancouver”.

Other non-trivial similarities that are not mentioned do not
hold. Moreover, the matching functions act as follows:

mphone(“(613)123 4567”, “123 4567”) =“(613)123 4567”,
mphone(“123 4567”, “(604)123 4567”) =“(604)123 4567”,
maddress(“Main St., Ottawa”, “25 Main St.”) =

“25 Main St., Ottawa”,
maddress(“25 Main St.”, “25 Main St., Vancouver”) =

“25 Main St., Vancouver”.

D0 name phone address

John Doe (613)123 4567 Main St., Ottawa
J. Doe 123 4567 25 Main St.
Jane Doe (604)123 4567 25 Main St., Vancouver

Observe that from D0 we can obtain two different (D0,Σ)-
clean instances D,D′, depending on the order of enforcing
MDs.

D name phone address

John Doe (613)123 4567 25 Main St., Ottawa
J. Doe (613)123 4567 25 Main St., Ottawa
Jane Doe (604)123 4567 25 Main St., Vancouver

D′ name phone address

John Doe (613)123 4567 Main St., Ottawa
J. Doe (604)123 4567 25 Main St., Vancouver
Jane Doe (604)123 4567 25 Main St., Vancouver

Now consider the queryQ : πaddress(σname=“J. Doe”R), asking
for the residential address of J. Doe. We are interested in
a certain answer. It can be obtained by taking the greatest
lower bound of the two answer sets:

Q(D) = {(“25 Main St., Ottawa”)},
Q(D′) = {(“25 Main St., Vancouver”)}.

In this case, and according to [6], and using Lemma 1,

glb⊑{Q(D),Q(D′)} = {a f a′ | a ∈ Q(D), a′ ∈ Q(D′)}
= {(“25 Main St., Ottawa”) f (“25 Main St., Vancouver”)}
= {(glb�Address

{“25 Main St., Ottawa”,“25 Main St.,
Vancouver”})}

= {(“25 Main St.”)}.

We can see that, no matter how we clean D0, we can say
for sure that J. Doe is at 25 Main St. Notice that the set-
theoretic intersection of the two answer sets is empty. If we



were interested in all possible answers, we could take the
least upper bound of two answer sets, which would be the
union of the two in this case. abc �

We define clean answer to be an upper and lower bound
of query answers over all possible clean interpretations of a
dirty database instance. This definition is inspired by the
same kind of approximations used in the contexts of partial
and incomplete information [29, 1], inconsistent databases [3,
9, 13], and data exchange [28]. These upper and lower
bounds could provide useful information about the value of
aggregate functions, such as sum and count [5, 18, 2].

Definition 6. For a query Q posed to a database in-
stance D0 and a set of MDs Σ, a clean answer is specified
by two bounds as

CleanQ(D0) = (CertQ(D0),PossQ(D0)). abc �

Notice, from the results in Section 4, that in the case of hav-
ing similarity-preserving matching functions or non-interacting
matching dependencies, these bounds would collapse into a
single set, which is obtained by running the query on the
unique clean instance.

Complexity of Computing Clean Answers
Here we study the complexity of computing clean answers
over database instances in presence of MDs. As with in-
complete and inconsistent databases, this problem easily be-
comes intractable for simple MDs and queries, which moti-
vates the need for developing approximate solutions to these
problems. We explore approximate solutions for queries that
behave monotonically w.r.t. the partial order ⊑ in Sec-
tion 6.2.

Theorem 3. There are a schema with two interacting
MDs and a relational algebra query, for which deciding
whether a tuple belongs to the certain answer set for an
instance D0 is coNP-complete (in the size of D0). abc �

6. MONOTONE QUERIES
So far we have seen that clean instances are a more infor-

mative view of a dirty instance obtained by enforcing match-
ing dependencies. That is, D0 ⊑ D, for every (D0,Σ)-clean
instance D. From this perspective, it would be natural to
expect that for a positive query, we would obtain a more
informative answer if we pose it to a clean instance instead
of to the dirty one. We can translate this requirement into
a monotonicity property for queries w.r.t. the partial order
⊑.

Definition 7. A query Q is ⊑-monotone if, for every
pair of instances D,D′, such that D ⊑ D′, we have Q(D) ⊑
Q(D′). abc �

Monotone queries have an interesting behavior when com-
puting clean answers. For these queries, we can under-
approximate (over-approximate) certain answers (possible
answers) by taking the greatest lower bound (least upper
bound) of all clean instances and then running the query on
the result. Notice that we are not claiming that these are
polynomial-time approximations.

Proposition 3. If D is a finite set of database instances
and Q is a ⊑-monotone query, the following holds:

Q(glb⊑{D | D ∈ D}) ⊑ glb⊑{Q(D) | D ∈ D}, (4)

lub⊑{Q(D) | D ∈ D} ⊑ Q(lub⊑{D | D ∈ D}). (5)

abc �

As is well known, positive relational algebra queries com-
posed of selection, projection, Cartesian product, and union,
are monotone. However, the following example shows that
monotonicity does not hold for very simple positive queries
involving selections.

Example 6. Consider instance D0 in Example 5 and two
(D0,Σ)-clean instances D and D′. Let Q be a query asking
for names of people residing at “25 Main St.”, expressed as
relational algebra expression πname(σaddress=“25 Main St.”(R)).
Observe that Q(D0) = {(“J. Doe”)}, and Q(D) = Q(D′)
= ∅. Query Q is therefore not monotone, because we have
D0 ⊑ D, D0 ⊑ D′, but Q(D0) 6⊑ Q(D), Q(D0) 6⊑ Q(D′).
abc �

It is not surprising that ⊑-monotonicity is not captured by
usual relational queries, in particular, by queries that are

monotone w.r.t. set inclusion. After all, the queries we have
considered so far do not even mention the �-lattice that is
at the basis of the ⊑ order. Next we will consider queries
expressing conditions in term of the semantic domination
lattice.

6.1 Query relaxation
As shown in Example 6, we may not get the answer we

expect by running a usual relational algebra query on an in-
stance that has been cleaned using matching dependencies.
We therefore propose to relax the queries, by taking ad-
vantage of the underlying �-lattice structure obtained from
matching functions, to make them ⊑-monotone. In this way,
we achieve two goals: First, the resulting queries provide
more informative answers; and second, we can take advan-
tage of Proposition 3 to approximate clean answers from
below and from above.

We introduce the (negation free) language relaxed rela-

tional algebra, RA�, by providing two selection operators
σa�A and σA1✶�A2

(for comparable attributes A1, A2), de-
fined as follows.

Definition 8. The language RA� is composed of rela-
tional operators π,×,∪ (with usual definitions), plus σa�A,
and σA1✶�A2

, defined by:

σa�A(D) = {tD | a �A tD[A]} (here a ∈ DomA),
σA1✶�A2

(D) = {tD | ∃a ∈ DomA s.t. a �A tD[A1],

a �A tD[A2], a 6= ⊥}. �

For string attributes, for instance, the selection operator
σa�A checks whether the value of attribute A dominates the
substring a, and the join selection operator σA1✶�A2

checks
whether the values of attributes A1, A2 dominate a com-
mon substring. Notice that queries in the language RA�

are not domain independent: The result of posing a query
to an instance depends not only on the values in the active
domain of the instance but also on the domain lattices. In
other words, query answering depends on how data cleaning
is being implemented.



It can be easily observed that all operators in the language
RA� are ⊑-monotone, and therefore every query expression
in RA� that is obtained by composing these operators is
also ⊑-monotone.

Proposition 4. Let Q be a query in RA�. For every
two instances D,D′ such that D ⊑ D′, we have Q(D) ⊑
Q(D′). abc �

Now suppose that we have a query Q, written in positive
relational algebra, i.e., composed of π,×,∪, σA=a, σA1=A2

,
the last two being hard selection conditions, which is to be
posed to an instance D0. After cleaning D0 by enforcing a
set of MDs Σ to obtain a (D0,Σ)-clean instance D, running
query Q on D may no longer provide the expected answer,
because some of the values have changed in D, i.e., they
have semantically grown w.r.t. �. In order to capture this
semantic growth, our query relaxation framework proposes
the following query rewriting methodology: Given a query
Q in positive RA, transform it into a query Q� in RA� by
simply replacing the selection operators σA=a and σA1=A2

by σa�A and σA1✶�A2
, respectively.

Example 7. Consider again instance D0 in Example 5
and (D0,Σ)-clean instances D and D′, and query Q ask-
ing for names of people residing at “25 Main St.”, expressed
as πname(σaddress=“25 Main St.”(R)). We obtain the empty an-
swer from each of D,D′. So, in this case the certain and the
possible answers are empty, a not very informative outcome.

However, after the relaxation rewriting of Q, we obtain
the query Q� : πname(σ“25 Main St.”�address(R)). If we pose
Q� to the clean instances, we obtain

Q�(D) = {(“John Doe”), (“J. Doe”), (“Jane Doe”)},
Q�(D

′) = {(“J. Doe”), (“Jane Doe”)},

and thus CertQ�
(D0) = {(“J. Doe”), (“Jane Doe”)}. This

outcome is much more informative; and, above all, is sensi-
tive to the underlying information lattice. abc �

Proposition 5. For every positive relational algebra query
Q and every instanceD, we haveQ(D) ⊑ Q�(D), where Q�

is the relaxed rewriting of Q. abc �

6.2 Approximating Clean Answers
Given the high computational cost of clean query an-

swering when there are multiple clean instances, it would
be desirable to provide an approximation to clean answers
that is computable in polynomial time. In this section,
we are interested in approximating clean answers by pro-
ducing an under-approximation of certain answers and an
over-approximation of possible answers for a given monotone
queryQ. That is, we would like to obtain (Q↓(D0),Q↑(D0)),
such that Q↓(D0) ⊑ CertQ(D0) and PossQ(D0) ⊑ Q↑(D0).

Since Q is a monotone query, by Proposition 3, we have
Q(glb⊑{D | D is (D0,Σ)-clean}) ⊑ CertQ(D0), and more-
over, PossQ(D0) ⊑ Q(lub⊑{D | D is (D0,Σ)-clean}). In
consequence, it is good enough to find under- and over-
approximations for the greatest lower bound and the least
upper bound, resp., of the set of all (D0,Σ)-clean instances,
and then pose Q to these approximations to obtain Q↓(D0)
and Q↑(D0).

The reason for having multiple clean instances is that
matching dependencies are not necessarily interaction-free
and the matching functions are not necessarily similarity

preserving. Intuitively speaking, we can under-approximate
the greatest lower bound of clean instances by not enforcing
some of the interacting MDs. On the other side, we can
over-approximate the least upper bound by assuming that
the matching functions are similarity preserving. This would
lead us to keep applying MDs on the assumption that un-
resolved similarities still persist. We present two chase-like
procedures to compute D↓ and D↑ corresponding to these
approximations.

Under-approximating the greatest lower bound.
To provide an under-approximation for the greatest lower
bound of all clean instances, we provide a new chase-like
procedure, which enforces only MDs that are enforced in
every clean instance. These MDs are applicable to those
initial similarities that exist in the original dirty instance,
which are never broken by enforcing other MDs during any
chase procedure of producing a clean instance.

Let Σ be a set of MDs, and ϕ,ϕ′ ∈ Σ. We say that ϕ

precedes ϕ′ if the set of attributes on the left-hand side of ϕ′

contains the attribute on the right-hand side of ϕ. We say
that ϕ interacts with ϕ′ if there are MDs ϕ1, . . . , ϕk ∈ Σ,
such that ϕ precedes ϕ1, ϕk precedes ϕ′, and ϕi precedes
ϕi+1 for i ∈ [1, k − 1], i.e., the interaction relationship can
be seen as the transitive closure of precedence relationship.

Let D0 be a dirty database instance. Let ϕ : R1[X1] ≈
R2[X2] → R1[A1] ⇋ R2[A2] be an MD in Σ. We say ϕ is

freshly applicable on t1, t2 in D0 if tD0

1 [X1] ≈ t
D0

2 [X2], and

t
D0

1 [A1] 6= t
D0

2 [A2]. We say ϕ is safely applicable on t1, t2 in
D0 if ϕ is freshly applicable on t1, t2 in D0, and for every
ϕ′ ∈ Σ that interacts with ϕ, ϕ′ is not freshly applicable on
t1, t3 or t2, t3 in D0 for any tuple t3 (see Example 8).

Definition 9. For an instance D0 and a set of MDs Σ,
an instance Dk is (D0,Σ)-under clean if there exists a finite
sequence of instances D1, . . . , Dk−1, such that

1. For every i ∈ [1, k], (Di−1, Di)[ti
1
,ti

2
] |= ϕi, for some

ϕi ∈ Σ and tuple identifiers ti1, t
i
2, such that ϕi is safely

applicable on ti1, t
i
2 in D0.

2. For every MD ϕ : R1[X1] ≈ R2[X2] → R1[A1] ⇋

R2[A2] in Σ and tuples t1, t2, such that ϕ is safely

applicable on t1, t2 in D0, we have t
Dk
1 [A1] = t

Dk
2 [A2].

abc �

Definition 9 characterizes a chase-based procedure that keeps
enforcing MDs that are safely applicable in the original dirty
instance until all such MDs are enforced. Notice that an
under clean instance may not be stable. Moreover, safely
applicable MDs never interfere with each other, in the sense
that enforcing one of them never breaks the initial similari-
ties in the dirty instance that are needed for enforcing other
safely applicable MDs.

Proposition 6. For every instance D0 and every set of
MDs Σ, there is a unique (D0,Σ)-under clean instance D↓.
abc �

Clearly, an under clean instance D↓ can be computed in
polynomial time in the size of the dirty instance D0. To
construct it, we first need to identify safely applicable MDs
in D0, and then enforce them in any arbitrary order until
no such MDs can be enforced. Next we show that D↓ is an



under-approximation to every (D0,Σ)-clean instance. Intu-
itively, this is because D↓ is obtained by enforcing MDs that
are enforced in every chase-based procedure of producing a
clean instance.

Proposition 7. (Soundness of under-approximation) For
every (D0,Σ)-under clean instance D↓ and every (D0,Σ)-
clean instance D, we have D↓ ⊑ D. abc �

Notice that an arbitrary (D0,Σ)-clean instance D may not
be a sound under-approximation for every other (D0,Σ)-
clean instances D′, because D ⊑ D′ may not hold.

Let D↓ be a (D0,Σ)-under clean instance. Then from
Propositions 7 and 3, we immediately obtain the following
result.

Theorem 4. For every monotone query Q, we have
Q(D0) ⊑ Q(D↓) ⊑ CertQ(D0). abc �

Example 8. Consider the instance D0 and set of MDs Σ
in Example 4. Observe that MD ϕ1 is safely applicable on
the first and second tuples in D0. Moreover, ϕ2 is freshly
applicable, but not safely applicable on the second and third
tuples. Accordingly, we obtain (D0,Σ)-under clean instance
D↓, shown below, by enforcing ϕ1 on the first two tuples.

D↓ A B C

a1 〈b1, b2〉 c1
a2 〈b1, b2〉 c2
a3 b3 c3

Notice that for the two (D0,Σ)-clean instances D2, D
′
3 in

Example 4, we have D↓ ⊑ D2 and D↓ ⊑ D′
3. Also notice

that D↓ is not a stable instance. Now consider the query
Q : πC(σA=a2

R). This query behaves monotonically for our
purpose, because the values of attribute A are not changing
by enforcing MDs. If we pose Q to D↓, we obtain Q(D↓) =
{c2}. Observe that CertQ(D0) = {〈c1, c2〉}, and thus Q(D↓)
provides an under-approximation for CertQ(D0). This ex-
ample also shows that an arbitrary clean instance, D′

3 here,
may not provide a sound approximation to certain answer
since Q(D′

3) = {〈c1, c2, c3〉} 6⊑ CertQ(D0). abc �

Over-approximating the least upper bound.
To provide an over-approximation for the least upper bound
of all clean instances, we modify every similarity relation so
that the corresponding matching function becomes similar-
ity preserving. For a similarity relation ≈A and the corre-
sponding matching function mA, we define ≈∗

A as follows:
For every a, a′ ∈ DomA, a ≈∗

A a′ iff there is a′′ ∈ DomA,
such that a ≈A a′′ and mA(a

′, a′′) = a′. Given a set of MDs
Σ, we obtain Σ∗ by replacing every similarity relation ≈A

in the MDs by ≈∗
A.

Definition 10. For an instance D0 and a set of MDs Σ,
an instance D↑ is (D0,Σ)-over clean if D↑ is (D0,Σ

∗)-clean.
abc �

By Proposition 1, for every instance D0 and set of MDs
Σ, there is a unique (D0,Σ)-over clean instance D↑, and
moreover, it can be computed in polynomial time in the
size of D0. To construct D↑, we first need to obtain Σ∗, as
described above, and enforce MDs in Σ∗ in any arbitrary
order until we get a stable instance w.r.t. Σ∗. Next we

show that D↑ is an over-approximation for every (D0,Σ)-
clean instance. Intuitively, this is because D↑ is obtained by
enforcing (at least) all MDs that are present in any chase-like
procedure of producing a clean instance.

Proposition 8. (Completeness of over-approximation)
For every (D0,Σ)-over clean instance D↑ and every (D0,Σ)-
clean instance D, we have D ⊑ D↑. abc �

Notice again that an arbitrary (D0,Σ)-clean instance D may
not be an over-approximation for every other (D0,Σ)-clean
instance D′, because D′ ⊑ D may not hold.

LetD↑ be a (D0,Σ)-over clean instance. Then from Propo-
sitions 8 and 3, we immediately obtain the following result.

Theorem 5. For every monotone query Q, we have
PossQ(D0) ⊑ Q(D↑). abc �

Example 9. (Example 8 continued.) By assuming that
old similarities hold after applying matching functions (e.g.,
〈b1, b2〉 ≈

∗ b3), we obtain the (D0,Σ)-over clean instance D↑

shown below.

D↑ A B C

a1 〈b1, b2〉 〈c1, c2, c3〉
a2 〈b1, b2〉 〈c1, c2, c3〉
a3 b3 〈c1, c2, c3〉

Notice that for the two (D0,Σ)-clean instancesD2, D
′
3 in Ex-

ample 4, we have D2 ⊑ D↑ and D′
3 ⊑ D↑. If we pose query

Q : πC(σA=a2
R) to D↑, we obtain Q(D↑) = {〈c1, c2, c3〉}.

Observe that PossQ(D0) = {〈c1, c2, c3〉}, and thus Q(D↑)
provides an over-approximation for PossQ(D0). It can be
seen that an arbitrary (D0,Σ)-clean instance, say D2 for in-
stance, may not provide a complete approximation to pos-
sible answer since PossQ(D0) 6⊑ Q(D2) = {〈c1, c2〉}. �

7. A CASE FOR SWOOSH’S ENTITY
RESOLUTION

In [8], a generic conceptual framework for entity resolu-
tion is introduced. It considers a general match relation M ,
which is close to our similarity predicates ≈, and a gen-
eral merge function, µ, which is close to our m functions.
In this section we establish a connection between our MD
framework and Swoosh. However, a full comparison is prob-
lematic, for several reasons, among them: (a) Swoosh works
at the record (tuple) level, and we concentrate on the at-
tribute level. (b) Swoosh does not use tuple identifiers and
some tuples may be discarded at the end, those that are
dominated by others in the instance. The main problem is
(a). However, to ease the comparison, we consider a partic-
ular (but still general enough) case of Swoosh, namely the
combination of the union case with merge domination. In
the following we embed this case of Swoosh into our MD
framework, thus showing the power of the latter.

Although it is not explicitly said in [8], it is safe to say
that the conceptual framework is applied to ground tuples of
a single relational predicate, say R, which are called records

there. In consequence, Rec denotes the set of ground tuples
of the form R(s̄). If the attributes of R are A1, . . . , An,
then the component si of s̄ belongs to an underlying domain
DomAi .

Relation M maps Rec×Rec into {true , false}. When two
tuples are similar and have to be merged, M takes the value



true . Moreover, µ is a partial function from Rec × Rec into
Rec. It produces the merge of the two tuples into a single
tuple, and is defined only when M takes the value true .

Now, the union case for Swoosh arises when the merge
function µ produces the union of the records, defined as the
component-wise union of attribute values. This latter union
makes sense if the attribute values are sets of values from
an even deeper data domain.

More precisely, for each of the n attributes Ai of R, we
consider n possibly denumerable domains DAi . (Repeated
attributes in R share the same domain, but it is concep-
tually simpler to assume that attributes are all different.)
Each DAi has a similarity relation ≈Ai , which is reflexive
and symmetric. Now, for each attribute Ai of R, its domain
becomes DomAi := ∪k∈NP

k(DAi), where k > 0 and Pk(DAi)
denotes the set of subsets of DAi of cardinality k. In con-
sequence, the elements of Rec are of the form R(s1, . . . , sn),
with each si being a set that belongs to DomAi . An initial
instance D, before any entity resolution, will be a finite sub-
set of Rec, and each attribute value in a record, say si for
Ai, will be a singleton of the form {ai}, with ai ∈ DAi .

The ≈Ai relation on DAi induces a similarity relation
≈{Ai} on DomAi , as follows: s1 ≈{Ai} s2 holds iff there
exist a1 ∈ s1, a2 ∈ s2 with a1 ≈Ai a2. Each ≈{Ai} is reflex-
ive and symmetric. (s ≈{Ai} s, because there is a ∈ s and
≈Ai is reflexive; and symmetry follows from the symmetry of
≈Ai .) We also consider matching functions m{Ai} : DomAi ×
DomAi → DomAi defined by m{Ai}(s1, s2) := s1 ∪ s2. The
structures 〈DomAi ,≈{Ai},m{Ai}〉 have all the properties de-
scribed in Sections 2 and 3.

Proposition 9. Each matching function m{Ai} is total,
idempotent, commutative and associative. It is also similar-
ity preserving w.r.t. the ≈{Ai} similarity relation. �

Now, based on [8], we are ready to define the “union match
and merge case” for Swoosh. Consider two elements of Rec,
say r1 = R(s̄1), r2 = R(s̄2): (a) M(r1, r2) := true iff for
some i, s1i ≈{Ai} s2i . (b)WhenM(r1, r2) := true , µ(r1, r2) :=

R(m{A1}(s
1
1, s

2
1), . . . , m{An}(s

1
n, s

2
n)).

Function M is reflexive and commutative, which follows
from the reflexivity and symmetry of the ≈{A}. From [8,
Prop. 2.4] we obtain that the combination of M and µ has
Swoosh’s ICAR properties, namely:3

Is: Idempotency: ∀r ∈ Rec,M(r, r) holds, and µ(r, r) =
r.

Cs: Commutativity: ∀r1, r2 ∈ Rec,M(r1, r2) iff M(r2, r1).
Also M(r1, r2) implies µ(r1, r2) = µ(r2, r1).

As: Associativity: ∀r1, r2, r3 ∈ Rec, if µ(r1, µ(r2, r3)) and
µ(µ(r1, r2), r3) exist, then they are equal.

Rs: Representativity: ∀r1, r2, r3, r4 ∈ Rec, if r3 = µ(r1, r2)
and M(r1, r4) holds, then M(r3, r4) also holds.

Now, Swoosh framework with M and µ on DomA can be
reconstructed by means of the following set ΣS of MDs: For
1 ≤ i, j ≤ n,

R[Ai] ≈{Ai} R[Ai] −→ R[Aj ] ⇋ R[Aj ]. (6)

3We use the superscript s, for Swoosh, to distinguish them
from the properties listed in Section 3.

The RHS of (6) has to be applied, as expected, with the
matching functions m{Aj}. From Propositions 1 and 9, we

obtain that there is a single (D,ΣS)-clean instance Dm.
Consistently with our MD framework, we will assume that
records have tuple identifiers. Actually, in order to make
more clear the comparison between the two frameworks, in
this section and for MDs, we will use explicit tuple ids. They
will be positioned in the first, extra attribute of each rela-
tion. When the MDs are applied, only the new version of a
tuple is kept.

In the case of Swoosh, the application of µ generates a
new, merged tuple, but the old ones may stay. However,
Swoosh applies a pruning process based on an abstract dom-
ination partial order between records, �S. The framework
concentrates mostly on the merge domination relation ≤,
which is defined by:

r1 ≤ r2 :⇐⇒ M(r1, r2) = true and µ(r1, r2) = r2. (7)

The IsCsAsRs properties make ≤ a partial order with some
pleasant and expected monotonicity properties [8].

According to Section 3, we may consider each of the par-
tial orders�{Ai} on theDomAi : s �{Ai} s′ :⇔ m{Ai}(s, s

′) =
s′. They induce a � relation on Rec (cf. Definition 2).

Proposition 10. The general dominance relation � on
Rec coincides with the merge domination relation ≤ ob-
tained from M and µ. abc �

Given a dirty instance D, it is a natural question to ask
about the relationship between the clean instance Dm ob-
tained under our approach, by enforcing the above MDs,
and the entity resolution instance Ds obtained directly via
Swoosh. The entity resolution Ds is defined in [8, Def. 2.3]
through the conditions: 1. Ds ⊆ D̄. 2. D̄ ≤ Ds. 3. Ds

is ⊆-minimal for the two previous conditions. Here, the
partial-order ≤ between instances is induced by the partial
order ≤ between records as in Definition 2. Instance D̄ is
the merge closure of D, i.e., the ⊆-minimal instance that in-
cludes D and is closed under M : r1, r2 ∈ D̄ and M(r1, r2) =
true ⇒ µ(r1, r2) ∈ D̄.

Notice that, in order to obtain Dm, tuple identifiers are
introduced and kept, whereas under Swoosh, there are no tu-
ple identifiers and new tuples are generated (via µ) and some
are deleted (those ≤-dominated by other tuples). In conse-
quence, the elements of D and Dm under the MD framework
are of the form R(t, s1, . . . , sn), and those inD andDs under
Swoosh are the records r of the form R(s1, . . . , sn). Since t

is a tuple identifier, for every R(t, s1, . . . , sn), r(t) denotes
the record R(s1, . . . , sn).

Proposition 11. (a) For every r in Ds there is a tuple
in Dm with tuple identifier t, such that r(t) = r.
(b) For every tuple t ∈ Dm, there is a record r ∈ Ds, such
that r(t) ≤ r. abc �

8. CONCLUSIONS
The introduction of matching dependencies (MDs) in [16]

has been a valuable addition to data quality and data clean-
ing research. They can be regarded as data quality con-

straints that are declarative in nature and are based on a pre-
cise model-theoretic semantics. They are bound to play an
important role in database research and practice, together
(and in combination) with classical integrity constraints.



In this work we have made several contributions to the
semantics of matching dependencies. We have refined the
original semantics introduced in [17], addressing some im-
portant open issues, but we have also introduced into the
semantic framework the notion of matching function. This is
an important ingredient in entity resolution since matching
functions indicate how attribute values have to be merged
or identified.

The matching functions, under certain natural assump-
tions, induce lattice-theoretic structures in the attributes’
domains. We also investigated their interaction with the
similarity relations in those same domains. This led us to
introduce a partial order of domination between instances.
This allows us to compare them in terms of information
content. This same notion was then applied to sets of query
answers.

On the basis of all these notions, we defined the class of
clean instances for a given dirty instance. They are the in-
tended and admissible instances that could be obtained after
enforcing the matching dependencies. The clean instances
were defined by means of a chase-like procedure that enforces
the MDs, while not making unjustified changes on other at-
tribute values. The chase procedure stepwise improves the
information content as related to the domination order.

The notion of clean answer to a query posed to the dirty
database was defined as a pair formed by a lower and an
upper bound in terms of information content for the query
answers. In this context we studied the notion of monotone
query w.r.t. to the domination order and how to relax a
query into a monotone one that provides more informative
answer than the original one.

The domination-monotone relational query language in-
troduced uses the lattice-theoretic structure of the domain,
and is interesting in its own right. It certainly deserves fur-
ther investigation, independently of MDs. It is an interest-
ing open question to explore its connections with querying
databases over partially ordered domains, with incomplete
or partial information [30, 22, 27, 26]. with query relaxation
in general [25, 19], and with relational languages based on
similarity relations [23].

We addressed some problems around the enforcement of
a set of matching dependencies for purposes of data clean-
ing based on the original proposal of [16, 17], by explicitly
making use of matching functions. We studied issues such
as the existence and uniqueness of clean instances, the com-
putational cost of computing them, and the complexity of
computing clean answers. We identified cases where clean
query answering is tractable, e.g., when there is a single
clean instance. However, we established that this problem
is intractable in general. We proposed polynomial time ap-
proximations.

Identifying other tractable cases and more efficient ap-
proaches to the intractable ones is part of ongoing research.
We are currently investigating the use of logic programs with
stable model semantics in the specification of clean instances
and in clean query answering. This idea has been investi-
gated in consistent query answering and has led to useful
insights and implementations [4, 20, 7, 14, 12]. This route
would avoid the explicit computation of the clean instances,
and clean query answering could be done on top of the pro-
gram. However, the lattice-theoretic structure of the do-
mains and the domination order create a scenario that is
substantially different from the one encountered in database

repairs w.r.t. classical integrity constraints.
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APPENDIX

A. SOME PROOFS
Proof of Lemma 1: (1) Let D be the instance D1 gD2.
Clearly, D1 ⊑ D and D2 ⊑ D. Now let D′ be an arbitrary
instance such that D1 ⊑ D′ and D2 ⊑ D′, and let t be a
tuple in D. Then, by definition, t is in D1 or in D2, and

hence there should be a tuple t′ in D′ such that tD � t′D
′

.
Therefore, we have D ⊑ D′, and thus D is the least upper
bound of D1, D2.
(2) Let t be the tuple t1 f t2. Clearly, t � t

D1

1 and t � t
D2

2 .

Let t′ be an arbitrary tuple such that t′ � t
D1

1 and t′ � t
D2

2 .

Then t′[A] � t
D1

1 [A] and t′[A] � t
D2

2 [A] for every attribute

A in the schema. Thus, t′[A] � glb(tD1

1 [A], tD2

2 [A]) for every
attribute A, and hence t′ � t.
(3) Let D be the instance D1 fD2. Let t be a tuple in D.
Then there exist tuples t1 in D1 and t2 in D2, such that
t = t1 f t2, and thus tD � t

D1

1 and tD � t
D2

2 . Therefore, it
holds D ⊑ D1 and D ⊑ D2.

Let D′ be an arbitrary instance such that D′ ⊑ D1 and

D′ ⊑ D2, and let t′ be a tuple in D′. Then there exist tuples

t1 in D1 and t2 in D2, such that t′D
′

� t
D1

1 and t′D
′

� t
D2

2 ,

and thus t′D
′

� glb(tD1

1 , t
D2

2 ), which exists in D. We thus
have D′ ⊑ D. abc �

Proof of Theorem 2: (sketch) It is easy to see that for
every i ∈ [1, k], we have Di−1 ⊑ Di and Di 6⊑ Di−1. That
is, Di strictly dominates Di−1 (for simplicity, assume that
the new generated tuples are not completely dominated by
other tuples). Consider a database instance Dmax that has
a single tuple in every relation, for which the value of every
attribute A is the result of matching all values of A (and
other attributes comparable with A) in the active domain
of D0. Clearly, Dmax provides an upper bound for the in-
stances in the sequence, and thus the sequence stops after
finite number of steps. Furthermore, the number of match-
ing applications needed to reach Dmax is polynomial in the
size of D0. abc �

Proof of Proposition 1: Let D,D′ be two (D0,Σ)-clean
instances. We use two lemmas.

Lemma 2. Let mA be a similarity preserving function,
and a1, a2, a3, a4 be values in the domain DomA, such that
a1 � a3 and a2 � a4. If a1 ≈A a2, then a3 ≈A a4.

Lemma 3. LetD1, . . . , Dk be a sequence of instances such
that D = Dk, and for every i ∈ [1, k], (Di−1, Di)[ti

1
,ti

2
] |= ϕi,

for some ϕi ∈ Σ and tuple identifiers ti1, t
i
2. Then for every

i ∈ [0, k], the following holds:

1. t
Di
1 [A1] � tD

′

1 [A1], for every tuple identifier t1 and every
attribute A1.

2. if t
Di
1 [A1] ≈ t

Di
2 [A2], then tD

′

1 [A1] ≈ tD
′

2 [A2], for ev-
ery two tuple identifiers t1, t2 and two comparable at-
tributes A1, A2.

We prove Lemma 3 by an induction on i. For i = 0, we

clearly have t
D0

1 [A1] � tD
′

1 [A1] since D′ is a (D0,Σ)-clean

instance. Moreover, if t
D0

1 [A1] ≈ t
D0

2 [A2], then tD
′

1 [A1] ≈

tD
′

2 [A2] by Lemma 2.
Suppose 1 and 2 hold for every i < j. If 1 holds for i = j,

then 2 also holds for i = j by Lemma 2. Suppose 1 does not

hold for i = j: t
Dj

1 [A1] 6� tD
′

1 [A1]. Since 1 holds for every i <

j, the value of t
Dj

1 [A1] should be different from t
Dj−1

1 [A1].
Therefore, there should be an MD ϕj : R1[X1] ≈ R2[X2] →
R1[A1] ⇋ R2[A2] in Σ and a tuple identifier t2, such that
Dj is the immediate result of enforcing ϕj on t1, t2 in Dj−1.

That is, t
Dj−1

1 [X1] ≈ t
Dj−1

2 [X2], t
Dj−1

1 [A1] 6= t
Dj−1

2 [A2],

and t
Dj

1 [A1] = t
Dj

2 [A2] = mA(t
Dj−1

1 [A1], t
Dj−1

2 [A2]). Since

t
Dj−1

1 [X1] ≈ t
Dj−1

2 [X2], by induction assumption, we have

tD
′

1 [X1] ≈ tD
′

2 [X2], and thus, tD
′

1 [A1] = tD
′

2 [A2], because
D′ is a stable instance. Again by induction assumption,

t
Dj−1

1 [A1] � tD
′

1 [A1] and t
Dj−1

2 [A2] � tD
′

2 [A2] = tD
′

1 [A1].

Therefore, t
Dj

1 [A1] = mA(t
Dj−1

1 [A1], t
Dj−1

2 [A2]) � tD
′

1 [A1]
since mA takes the least upper bound, which leads to a con-
tradiction.

To prove the first part of Proposition 1, notice that, from

Lemma 3, we obtain tD1 [A1] � tD
′

1 [A1] and tD
′

1 [A1] � tD1 [A1]
for every tuple identifier t1 and every attribute A1. Thus,
the two (D0,Σ)-clean instances D,D′ should be identical.



To prove the second part of the proposition, let ϕ : R1[X1] ≈
R2[X2] → R1[A1] ⇋ R2[A2] be an MD in Σ. By Lemma 3,

if tD0

1 [X1] ≈ t
D0

2 [X2], then tD1 [X1] ≈ tD2 [X2], for every two
tuple identifiers t1, t2. Since D is a stable instance, tD1 [A1] =
tD2 [A2], and thus (D0, D) |= ϕ and (D0, D) |= Σ. abc �

Proof of Proposition 2: Let D,D′ be two (D0,Σ)-clean
instances. It is enough to prove a lemma similar to Lemma 3.

Lemma 4. LetD1, . . . , Dk be a sequence of instances such
that D = Dk, and for every i ∈ [1, k], (Di−1, Di)[ti

1
,ti

2
] |= ϕi,

for some ϕi ∈ Σ and tuple identifiers ti1, t
i
2. Then for every

i ∈ [0, k], it holds

1. t
Di
1 [X1] = t

D0

1 [X1] and t
Di
2 [X2] = t

D0

2 [X2], whereX1, X2

are lists of attributes on the left-hand side of ϕi.

2. t
Di
1 [A1] � tD

′

1 [A1], for every tuple identifier t1 and every
attribute A1.

Notice that 1 trivially holds: since MDs are interaction free,
there is no MD ϕ ∈ Σ, such that the attributes on the right-
hand side of ϕ has an intersection with X1, X2, and therefore
no MD enforcement could change the values in t

Di
1 [X1] or

t
Di
2 [X2] into something different from the original values in
D0.

We prove 2 by an induction on i. For i = 0, we clearly

have t
D0

1 [A1] � tD
′

1 [A1] since D′ is a (D0,Σ)-clean instance.
Now suppose 2 holds for i < j, and it does not hold for

i = j: t
Dj

1 [A1] 6� tD
′

1 [A1]. Then there should be an MD
ϕj : R1[X1] ≈ R2[X2] → R1[A1] ⇋ R2[A2] in Σ and a
tuple identifier t2, such that Dj is the immediate result

of enforcing ϕj on t1, t2 in Dj−1. That is, t
Dj−1

1 [X1] ≈

t
Dj−1

2 [X2], t
Dj−1

1 [A1] 6= t
Dj−1

2 [A2], and t
Dj

1 [A1] = t
Dj

2 [A2] =

mA(t
Dj−1

1 [A1], t
Dj−1

2 [A2]). Since t
Dj−1

1 [X1] ≈ t
Dj−1

2 [X2], by

part 1 we have tD
′

1 [X1] ≈ tD
′

2 [X2], and thus tD
′

1 [A1] =

tD
′

2 [A2], because D′ is a stable instance. By induction as-

sumption, t
Dj−1

1 [A1] � tD
′

1 [A1] and t
Dj−1

2 [A2] � tD
′

2 [A2] =

tD
′

1 [A1]. Therefore, t
Dj

1 [A1] = mA(t
Dj−1

1 [A1], t
Dj−1

2 [A2]) �

tD
′

1 [A1], since mA takes the least upper bound, which leads
to a contradiction. abc �

Proof of Theorem 3: Consider relation schema R(C,V, L),
query Q : πL(R), and set Σ consisting of two MDs ϕ1 :
R[C] ≈ R[C] → R[C] ⇋ R[C] and ϕ2 : R[CV ] ≈ R[CV ] →
R[L] ⇋ R[L]. The domains of attributes, similarity re-
lations, and matching functions are as follows: DomC =
{⊥, c, c1, d1, c2, d2 . . .}, DomV = {⊥, y, x1, x2, . . .}, DomL =
{⊥,⊤,+,−}. For every ci, di ∈ DomC , ci ≈ di and mC(ci, di) =
mC(di, ci) = c. We also have mL(+,−) = mL(−,+) = ⊤.
Notice that similarity relations and match functions are not
fully described here. The full descriptions can be derived
using the reflexivity and symmetry of similarity relations
and idempotency, commutativity, and associativity of match
functions.

To prove membership in coNP, it is easy to see that given
a certificate, which is a (D0,Σ)-clean instance D, we can
check whether ⊤ 6∈ Q(D) in polynomial time. To prove
hardness, we reduce from 3SAT. Let C1 ∧ . . . ∧CN be CNF
formula, where each clause Ci, i ∈ [1, N ], is a disjunction of
three literals li1 ∨ li2 ∨ li3, and each literal lik, k ∈ [1, 3], is
either xj or ¬xj for some variable xj ∈ DomV . We create

an instance D0 of R as follows. For every clause Ci and
every literal lik of variable xj in Ci, there is a tuple t with
tD0 [C] = ci, t

D0 [V ] = xj , t
D0 [L] = + if lik = xj (a positive

literal), and tD0 [L] = − if lik = ¬xj (a negative literal).
Moreover, for every clause Ci, there is another tuple t with
tD0 [C] = di, t

D0 [V ] = y, and tD0 [L] = +.
We show that the CNF formula C is satisfiable if and

only if ⊤ 6∈ CertQ(D0). Let C be a satisfiable formula. For
each clause Ci, we pick a tuple corresponding to the literal
that is made true in the satisfying assignment and also the
only tuple with tD0 [C] = di, and enforce the MD ϕ1 on
these two tuples. It is easy to see that the result would be
a stable instance D. In particular, (D,D) |= ϕ2 since for
each variable the satisfying assignment has picked only one
of the positive or negative literals to be true. Therefore, we
do not need to enforce ϕ2, which means that ⊤ does not
appear for any value of attribute L, and hence ⊤ 6∈ Q(D),
and ⊤ 6∈ CertQ(D0).

Conversely, if ⊤ 6∈ CertQ(D0), there is a (D0,Σ)-clean
instance D in which ⊤ does not appear for any value of at-
tribute L. To obtain the clean instance D starting from D0,
we need to enforce ϕ1 once for each clause Ci, as described
above, before we can enforce ϕ2 on any tuple corresponding
to Ci. Moreover, for every two tuples in D that match the
left-hand side of ϕ2, we should have identical values for at-
tribute L (either + or −), otherwise we would get ⊤ when
enforcing ϕ2. Therefore, for each clause, we can make true
the literal corresponding to the tuple on which ϕ1 has been
enforced, and obtain a correct satisfying assignment. abc�

Proof of Proposition 3: For every instance D′ ∈ D, we
clearly have glb⊑{D | D ∈ D} ⊑ D′, since Q is a mono-

tone query, it holds Q(glb⊑{D | D ∈ D}) ⊑ Q(D′). Con-

sequently, Q(glb⊑{D | D ∈ D}) ⊑ glb⊑{Q(D′) | D′ ∈ D}.
With a similar argument, we can show that the second equa-
tion of Proposition 3 holds. abc �

Proof of Proposition 4: (sketch) We can prove the propo-
sition by an structural induction on the relational algebra ex-
pression. It is enough to show that every operation in RA�

is monotone. Projection, Cartesian product, and union are
clearly monotone operators w.r.t. ⊑. Now let D,D′ be two
instances such that D ⊑ D′. Consider query Q : σa�AR
for relation R in the schema. Let t be an R-tuple in Q(D).
Clearly t is an R-tuple in D. Therefore, there is an R-tuple

t′ in D′ with t � t′. Now it holds a � tD[A] � t′D
′

[A], and
thus t′ is in Q(D′).

Now consider the query Q′ : σA1✶�A2
R, and let t be an

R-tuple in Q′(D). Then there is a ∈ DomA s.t. a � tD[A1],
a � tD[A2], and a 6= ⊥. SinceD ⊑ D′, there should be anR-

tuple t′ inD′ with t � t′. Now it holds a � tD[A1] � t′D
′

[A1]

and a � tD[A2] � t′D
′

[A2]. Therefore, t
′ is in Q(D′).

abc �

Proof of Proposition 6: The proof of this proposition
is very similar to that of Proposition 2. Let D↓, D

′
↓ be two

(D0,Σ)-under clean instances. It is enough to prove the
following lemma.

Lemma 5. Let D1, . . . , Dk be a sequence of instances for
deriving D↓ as described in Definition 9. Then for every
i ∈ [0, k], it holds



1. t
Di
1 [X1] = t

D0

1 [X1] and t
Di
2 [X2] = t

D0

2 [X2], whereX1, X2

are lists of attributes on the left-hand side of ϕi.

2. t
Di
1 [A1] � t

D′
↓

1 [A1], for every tuple identifier t1 and ev-
ery attribute A1.

Suppose that for some i ∈ [0, k], tDi
1 [X1] 6= t

D0

1 [X1]. Then
there exists j < i, tuple t3, and MD ϕj ∈ Σ, such that
(Dj−1, Dj)[t1,t3] |= ϕj , with attribute B1 ∈ X1 on the right-

hand side of ϕj . MD ϕj has to be safely applicable on t1, t3
in D0, which means that ϕi cannot be safely applicable on
t1, t2 in D0, a contradition. The proof of part 2 is similar to
the proof of part 2 in Lemma 4. abc �

Proof of Proposition 7: Let D↓ be a (D0,Σ)-under clean
instance, and D be a (D0,Σ)-clean instance. The proof fol-
lows from the following two lemmas.

Lemma 6. For every two tuples t1, t2 and MD ϕ : R1[X1] ≈
R2[X2] → R1[A1] ⇋ R2[A2] in Σ, such that ϕ is safely

applicable on t1, t2 in D0, it holds tD1 [X1] = t
D0

1 [X1] and

tD2 [X2] = t
D0

2 [X2].

Lemma 7. Let D1, . . . , Dk be a sequence of instances for
deriving D↓ as described in Definition 9. Then for every

i ∈ [0, k], it holds tDi
1 [A1] � tD1 [A1], for every tuple identifier

t1 and every attribute A1.

The proof of lemma is by induction on i and is very similar
to the proof part 2 in Lemma 4.

abc �

Proof of Proposition 9: In fact: If s1 ≈{A} s2, then there
are a1 ∈ s1, a2 ∈ s2 with a1 ≈A a2. Since a2 also be-
longs to s2 ∪ s3, for every s3 ∈ DomA, it holds s2 ∪ s3 =
m{A}(s2, s3) ≈{A} s1. abc �

Proof of Proposition 10: For �{A} on DomA it holds:
s �{A} s′ :⇔ m{A}(s, s

′) = s′ ⇔ s ∪ s′ = s′ ⇔ s ⊆ s′.

Now, for records r1 = R(s11, . . . , s
1
n), r2 = R(s21, . . . , s

2
n), it

holds r1 � r2 :⇔ for every i, s1i �{A} s2i ⇔ for every i, s1i ⊆

s2i .
On the other side, from (7) we obtain that, for records

r1 = R(s11, . . . , s
1
n), r2 = R(s21, . . . , s

2
n), it holds: r1 ≤ r2 ⇔

M(r1, r2) = true and for every i, s1i ⊆ s2i . Since the s
j
i are

non-empty, the first condition on the RHS is implied by the
second one. abc �

Proof of Proposition 11: (sketch) As a preliminary and
useful remark, let us mention that the IsCsAsRs proper-
ties make ≤ a partial order with the following monotonicity
properties [8]: (A)M(r1, r2) = true =⇒ r1 ≤ µ(r1, r2) and
r2 ≤ µ(r1, r2). (B) r1 ≤ r2 and M(r1, r) = true =⇒
M(r2, r) = true . (C) r1 ≤ r2 and M(r1, r) = true =⇒
µ(r1, r) ≤ µ(r2, r). (D) r1 ≤ s, r2 ≤ s and M(r1, r2) =
true =⇒ µ(r1, r2) ≤ s.

More specifically for our proof, first notice that every ap-
plication of µ can be simulated by a finite sequence of en-
forcement of the MDs in (6). More precisely, given two tu-
ples R(t1, s̄

1), R(t2, s̄
2) in an instance D, such that M(r(t1),

r(t2)) holds, then µ(r(t1), r(t2)) = r(t) for some tuple R(t,
r(t)) of the form m{Ai1

} · · ·m{Ain}(R(t1, s̄
1), R(t2, s̄

2)), i.e.,

obtained by enforcing the MDs. Furthermore, it holds r(t1)
≤ r(t) and r(t2) ≤ r(t).

Conversely, every enforcement of an MD in (6) is dom-
inated by a tuple obtained through the application of µ.
More precisely, for tuples R(t1, s̄

1), R(t2, s̄
2) in an instance

D for which s1j ≈{Aj} s2j holds, it also holds M(t1(r), t2(r)),

and m{Aj}(R(t1, s̄
1), R(t2, s̄

2)) ≤ R(t, µ(t1(r), t2(r)) for some
tuple id t (actually, t1 or t2).

Now, for (a), consider Dm↓ := {r(t) | R(t, s̄) ∈ Dm}
(from where duplicates are eliminated). It is good enough
to prove that Ds ⊆ Dm↓. For this it suffices to prove that
Dm↓ satisfies conditions 1. and 2. on the entity resolution
instance, namely: 1. Dm↓ ⊆ D̄ and 2. D̄ ≤ Dm↓. The
first condition follows from the definition (or construction)
of Dm as a stable instance obtained by minimally applying
the MDs and when justified only. The second condition
follows from the simulation and properties of µ as a finitely
long enforcement of the MDs.

Now (b) follows from the domination of a tuple obtained
by applying one MD by a tuple obtained applying µ as de-
scribed above. abc �
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