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The software to be presented is an implementation of the algorithms in [1], [2], and [3]. (This
software is available at [4].) The main algorithm in [3] is currently implemented with additional
base equations beyond what appear in [3] and will be part of the software demonstration in July.

Common to each algorithm is a transformation from a base equation to the input using
transformations that preserve order and homogeneity (referred to as gt-transformations). Before
calling any of these algorithms we first check currently available algorithms for a solution in the
form of a first order right hand factor or some other general term solution.

Algorithm ‘Find 2F1’ will find a gt-transformation to a recurrence relation satisfied by a
hypergeometric series u(n) = 2F1

(
a+n b

c

∣∣∣ z), if such a transformation exists. As an exam-
ple, sequence A005572 = [1, 4, 17, 76, 354, 1704, 8421, . . . ] from the OEIS ([5]) represents the
“Number of walks on cubic lattice starting and finishing on the xy plane and never going below
it.” A005572 has offset 0 (i.e. the first entry in the list is A005572(0)) and satisfies:

12(n + 1)A005572(n) − (20 + 8n)A005572(n + 1) + (n + 4)A005572(n + 2) = 0.

The output from our program is: A005572(n) =

2n+1
√

3(n + 2)

(
2 · hypergeom([1/2, n + 2], [1], 2/3) −3 · hypergeom([1/2, n + 1], [1], 2/3)

)
, n > 0.

The algorithm ‘Find Liouvillian’ will find a gt-transformation to a recurrence relation of
the form u(n + 2) + b(n)u(n) = 0 for some b(n) ∈ C(n), if such a transformation exists. ‘Find
Liouvillian’ is not unique in terms of its purpose but, for second order recurrence relations, it
is faster than prior algorithms. As an example, for the recurrence relation satisfied by A099364
from the OEIS, our program produces the solution:

A099364(n) =

(
1
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n +
5
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)
v(n) −

(
1

12
n +
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2

)
v(n + 1),

where v(n + 2) −
4(n + 2)

n + 7
v(n) = 0.

The algorithm ‘Database Solver’ takes advantage of a large database of sequences, the OEIS
mentioned above, by using the recurrence relations that they satisfy as base equations. We have
already partitioned the database into subsets such that there exists a gt-transformation between
any two members of the same subset. For each subset there exist invariant properties shared by
all members which we compare to the invariant properties of the input to narrow the search for
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a relationship. If the input is a recurrence relation with initial conditions defining a sequence
then the output will be a transformation from a representative sequence (if there is a match in
the database). The output could be useful since the representatives are chosen, in large part, for
how much information there is about that sequence (formulas, papers citing the sequence, . . . ).

As an example of this algorithm, suppose we were working with the “Number of nXn sym-
metric (0, 1)-matrices with exactly n + 1 entries equal to 1 and no zero rows or columns” (se-
quence A135593 from the OEIS). This sequence, [2, 9, 36, 140, 540, 2142, . . . ] has offset 2 and
satisfies:

n(n − 3)A135593(n + 2) − (n + 2)(n − 4)A135593(n + 1) − (n − 2)(n + 2)(n + 1)A135593(n) = 0.

We enter the following into our program:

n(n − 3)u(n + 2) − (n + 2)(n − 4)u(n + 1) − (n − 2)(n + 2)(n + 1)u(n), u(n), {u(2) = 2, u(3) = 9}

and the following output is returned:

u(n) = A000085(n) +
n − 2

2
A000085(n + 1), n > 2.

There is much information in the form of formulas, comments, references, cross-references to
other sequences, and world wide web URL links on A000085’s page and not much (currently)
on the page for A135593. A000085 is the “number of self-inverse permutations on n letters,
also known as involutions” and just as interesting are the many additional definitions, from the
comments, such as “the number of graphs on n labeled nodes with degrees at most 1” and “the
number of partitions of a set of n distinguishable elements into sets of size 1 and 2.”

By computing local data of a recurrence equation (see [3] for details) the program can find
gt-transformations to many different known functions. Currently in our table of known func-
tions are Bessel (first and second kind), Whittaker (W and M), and types of Jacobi, Legendre,
Laguerre, and Gegenbauer functions. As an example, for the recurrence equation satisfied by
the interesting sequence A143415 from the OEIS, the program will return the solution:

A143415(n) =
1
2

√
e
π

BesselK(n − 1
2 ,
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2 ) + (2n − 1)BesselK(n + 1

2 ,
1
2 )

n(n + 1)

 , n > 1.
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