Optimizing the Evaluation of Patterns in Pointcuts

Remko Bijker, Christoph Bockisch
Software Engineering Group
University of Twente
P.O. Box 217
7500 AE Enschede

.. The Netherlands
r.bijker@student.utwente.nl,

c.m.bockisch@cs.utwente.nl

ABSTRACT

Pointcuts in aspect-oriented programming languages specify
runtime events which cause execution of additional function-
ality. Hereby, pointcuts typically have a pattern-based static
component selecting instructions whose execution triggers
an event, e.g., a pattern that selects method-call instructions
based on the target method’s name. Current implementa-
tions realize identification of matching instructions by exam-
ining all instructions in the executed program and matching
them against all patterns found in the program’s pointcuts.
But such an implementation is slow. An optimized imple-
mentation is therefore highly desirable in runtime environ-
ments which support the dynamic deployment of aspects;
slow pattern evaluation invariably causes a slowdown of the
entire application.

The patterns used in pointcuts as well as the signatures
against they are matched, i.e., method, constructor, and
field signatures, are well structured. We present two case
studies that survey patterns and signatures actually occur-
ring in the wild. From the resulting data we derive several
heuristics that can drive pattern-evaluation optimizations,
both by creating indexes over the relevant instructions and
by optimizing the order in which the sub-patterns are eval-
uated.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs
and Features— Procedures, functions, and subroutines

General Terms

Languages, Measurement

Keywords

Aspect-oriented programming, patterns, signatures, pattern
matching, pointcuts

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

VMIL’10, 17-OCT-2010, Reno, USA

Copyright 2010 ACM 978-1-4503-0545-7/10/10 ...$10.00.

Andreas Sewe
Software Technology Group
Technische Universitat Darmstadt
Hochschulstr. 10
64289 Darmstadt
Germany

sewe@st.informatik.tu-darmstadt.de

1. INTRODUCTION

In many flavors of aspect-oriented programming languages
behavior is specified by pairs of pointcuts and advice [13].
Advice define some functionality and pointcuts are Boolean
predicates which are evaluated against events, called join
points, which occur during the execution of the program;
whenever a pointcut evaluates to true at a join point, the
associated advice is executed. Join points are associated
with join-point shadows, i.e., sequences of instructions exe-
cuting during the join point in question. Join-point shadows
are in turn associated with a member. The list of a method
body’s instructions can, e.g., be a join-point shadow, but so
can a single method-invocation instruction or an instruction
accessing a field. The join-point shadows most commonly
supported refer to a method, field, constructor, or static ini-
tializer.

The primitive predicates in pointcut expressions are called
pointcut designators. They fall into two categories: those
that are evaluated solely based on syntactic, lexical, and
type-based properties of a join point’s shadow and those
that are evaluated based on the dynamic state in which the
join point is executed. The prevalent implementation [14, 1,
6, 5, 10] of aspect-oriented languages is to partially evaluate
all static pointcut designators against all join-point-shadow
instructions in the program. This determines the join-point
shadows whose execution may potentially be matched by the
whole pointcut. At the corresponding instructions, residual
code is inserted that tests whether the part of the pointcut
not statically evaluable also evaluates to true. Only if this
is the case, the advice’s functionality is executed.

The statically-evaluable pointcut designators specify the
kind of join-point shadow they match, e.g., methods calls,
together with a pattern for the associated member’s signa-
ture. Evaluating the patterns of all static pointcut designa-
tors against the associated members of all join-point shad-
ows in a program can be costly. In execution environments
that support aspect deployment at runtime, pattern evalu-
ations are also performed at runtime and consequently slow
down the application as a whole; thus, optimizations are
desirable.

In this paper we present a case study that makes it pos-
sible to estimate the potential benefit of optimizations ap-
plied to pattern evaluation. The targeted optimizations ex-
ploit the structured nature of member signatures and pat-
terns: Method, constructor, and field signatures are com-
prised of multiple sections and for every section of a signa-
ture a pattern defines a sub-pattern. Only when all sub-

patterns match the corresponding sections of a signature,
the pattern matches as a whole.

What exactly comprises the signature, and what can be
referred to in a pattern, depends on the concrete pointcut
language. For instance, a method signature always has a
name, parameter types, and a return type, while some lan-
guages also allow to pattern-match against, e.g., the declar-
ing class or the modifiers of a method.

We propose to treat signatures similar to entries in a
database table and patterns similar to queries of these en-
tries; for each kind of signature one table exists with the
different sections of the signature as columns. Two mecha-
nisms known from query optimization for databases are then
explored to assess their value in optimizing pattern evalu-
ation: the use of indexes on the signature tables and the
ordered evaluation of sub-patterns according to their indi-
vidual selectivity.

After presenting the relevant optimization mechanisms,
we present our survey of signatures and patterns found in
real-world applications. This shows how the selectivity of
sub-patterns can be heuristically estimated and which sub-
patterns are actually common. This allows to judge whether
the additional effort of maintaining an index will eventually
pay off.

2. BACKGROUND

In this section we will first describe the structure of sig-
natures and patterns relevant to our survey (cf. Section 3).
We will then discuss database query optimization techniques
that are applicable to the domain of pointcut matching.

2.1 Signatures and Patterns

The survey presented in this paper is based on the seman-
tics of signatures and patterns in the ALTA4J' approach 4,
6]. As we have shown in the past, the meta-model of as-
pects and the associated execution semantics are able to sup-
port, e.g., the languages AspectJ, Compose*, and JAsCo [7].
Thus, basing this work on ALIA4J allows us to draw con-
clusions that are applicable to multiple aspect-oriented lan-
guages at once.

ALIA4J supports five kinds of patterns: the method
pattern, the constructor pattern, the static initializer
pattern, the field read pattern, and the field write pat-
tern. The sub-patterns used by them are as follows:

Modifiers patterns are used to match the modifiers of a
method, constructor, or field. Examples are private,
public, but also static, final, and many more. It is
possible to specify an inverse modifier, e.g., !final.

Type patterns are used to match parameter types as well
as the return type of methods or the type of fields. The
type is matched by either its class or primitive name,
package name, or by being a subclass of another class.

Class type patterns are used to match the enclosing type
of accessed methods, constructors, static initializers,
and fields. They are equivalent to type patterns, ex-
cept that primitive types are not allowed.

Name patterns are used to match the name of a method
or field. Matching can be done with exact matches or
by means of regular expressions.

!See http://www.aliadj.org/.

Parameters patterns are used to match the parameters
of a method or constructor. Matching is done by means
of matching type patterns for the parameters including
a wild card type that greedily matches any number of
parameters.

Exceptions patterns are used to match the checked ex-
ceptions that can be thrown by a method or construc-
tor. Matching is done by means of matching type pat-
terns for the exceptions.

All sub-patterns can be composed by means of logical con-
nectives. It is thus possible to negate the whole pattern,
requiring matching multiple patterns, or requiring one of a
set of patterns to match.

ALIA4J treats call sites as join-point shadows, i.e., in-
structions that either invoke a method or constructor, or
read or write a field. At these points, only the name of the
accessed method or field as well as the parameter types, the
return type (for fields also the field type) are known. To
evaluate patterns referring to the declaring class, modifiers
or declared exception types, it is necessary to resolve the
actual method that is executed at a call, as only the method
declaration contains this information. But because method
calls are polymorphic in Java, the method actually executed
upon a call depends on the receiver object and is not known
statically.

As a compromise, ALIA4J organizes methods into sets,
called generic functions, and matches patterns against the
top method of a called generic function. A generic func-
tion [15] is the logical combination of all non-private meth-
ods with the same name and parameter types that are de-
clared in the same type hierarchy. The top method is the
method definition contained in the class closest to the root
of the type hierarchy; all other methods in the generic func-
tion override the top method (and possibly each other). The
declaring class, modifiers, and declared exceptions are all
matched against the top method. This is a reasonable se-
mantics as all overriding methods must conform to the top
method’s contract to some degree. For instance, the visibil-
ity of a method cannot be reduced by an overriding method
and the overriding method cannot declare exceptions beyond
the ones declared by the top method.

2.2 Database Query Optimization Techniques

There are several database optimization techniques that
might be used to speed up finding the projection of point-
cuts. These techniques will be explained and evaluated in
this section. This evaluation strongly depends on the kind
of queries that are performed. In the context of this paper,
queries are coarsely separated into those using an exact pat-
tern and those using a pattern using wildcards. The reader
is assumed to be familiar with basic SQL as documented in
the literature [2, 9].

2.2.1 Indices

Rows in a database table are generally unsorted. Thus,
finding an entry that matches a query requires visiting each
row and evaluating the query. As a faster alternative, an
index can be used to find the matching rows in the table
when evaluating a pattern. Essentially, an index is a data
structure that allows to quickly map from a key value to a
row in a table. There are many different ways to implement

indices, but the most common ones are based on sorted B+
trees or hashing [2].

The chosen implementation has an effect on the perfor-
mance of maintaining the index as well as of evaluating ex-
act patterns and patterns with wildcards. We thus must
discuss the computational complexity of the different oper-
ations and also the space overhead required for storing the
index. While the theoretical complexities of the necessary
operations on the different data structures are known (e.g.,
[2] of [16, Page 267], another survey is needed to determine
their actual impact in practice. We, therefore, leave a dis-
cussion about the trade-offs of the different data structures
as a subject of future work.

2.2.2 Search-Plan Optimization

The generic-function lookup, i.e., the pattern matching,
corresponds to a selection on the call-sites table. It is to
be expected that the content of this table is not random
and that therefore not all entries have the same probabil-
ity. The different probabilities for certain entries can be
derived from statistical data about the different (sub-)parts
of generic-function signatures. These statistics lead to the
“selectivity factor” (F') for certain sub-patterns which can
be exploited in search-plan optimization. This is compara-
ble to the selectivity of predicates of a WHERE clause in a
SQL statement [17]. The F of each sub-pattern in a con-
crete pattern can then be used to order the predicates so
the ones with the lowest F' are evaluated first; the plan is to
remove as many rows from the resultset as early as possible.
The F for a predicate is determined based on the estimated
uniqueness of the values in the table.

3. A SURVEY OF REAL-WORLD SIGNA-
TURES AND PATTERNS

In the previous section we have presented indexes and
search-plan optimization as possible optimizations for pat-
tern evaluations. In order to apply these mechanisms some
knowledge about the structure of the data on which queries
are performed is needed. For instance, it must be known
for which sections of signatures the effort of keeping an in-
dex may pay off; for search-plan optimization, heuristics are
needed to estimate the selectivity of certain sub-patterns. In
this section a survey of real-world applications and aspects
is presented to discuss common structures of signatures and
patterns that can drive these optimizations.

Section 3.1 discusses what are the general characteristics
of call sites and generic functions in real-world applications.
Section 3.2 discusses what are the general characteristics of
patterns in real-world aspects. Finally Section 3.3 formu-
lates optimization strategies based on the findings of both
sections.

3.1 Call site characteristics

For determining what performance optimizations are suit-
able for pattern matching it is necessary to analyze real-
world applications. From these applications the call sites
need to be extracted to determine the data that is signifi-
cant for the optimizations like the selectivity of parts of a
signature. For example, when all functions return the same
type the selectivity of that return type is low. For any other
type, however, the selectivity is very high as it would never
select anything.

3.1.1 Methodology

To acquire the call-site information a small tool, called
Extract, has been written to extract the information from
Java class files. Extract uses ASM,? a Java bytecode engi-
neering framework, to read the Java class files and ALTA4J
to determine what generic function a call site belongs to.

The input to Extract is a list of Java class files or Java
archives with class files of a particular application. All
Java class files and all classes they reference are analyzed
recursively. Examples of referenced classes are the super
class, classes used as return or parameter type, classes of in-
stance variables and classes used in the implementation of a
method. The final result of Extract is a list with all generic
functions and the number of times they were referenced.

The recursive behavior of the analysis means that a large
part of the Java API’s implementation will be part of the
output. However, the implementation of the Java API should
be seen as a black box and one would generally not want
to add aspects that modify the API’s implementation. As-
pectJ, e.g., thus applies aspects only to the files that it com-
piles itself; this excludes the class files of the Java API. These
internal calls are therefore ignored by this survey. Never-
theless, calls to the Java API from the application are of
importance. After the extraction the data is analyzed us-
ing common data mining techniques to find correlations and
significant information. The applications that have been an-
alyzed in this survey are the following four:

ANTLRv3 A tool to construct parsers, compilers and trans-
lators.

FreeCol A turn-based strategy game.
LIAM A major part of the implementation of ALTA4J.

Tight VINC A remote control software package.

These applications are varied in nature in an attempt to
get a general view of the call-site characteristics instead of
only getting a view of non-graphical applications that do
not use a network connection, as is commonly the case for
benchmark suites used in performance evaluation [3].

Larger applications such as Eclipse, an integrated devel-
opment environment, and OpenOffice, an office suite, have
been considered. But these applications have a complex
system of plug-ins and dependencies which makes it hard
for Extract to cover all referenced classes. (Tools like Tami-
Flex [8] can alleviate this problem, but were not yet available
when the study was conducted.)

3.1.2 Acquired information

Statistics.

The analyzed applications have 2432 classes containing a
total of 28065 generic functions and 150432 call sites. The
following sections will discuss the most salient features sep-
arately for each generic function kind; only the breakdown
on class names is presented in a single section as it is almost
the same in all cases.

Storage.
Per generic function kind there is also a discussion on the
best storage technique for quickly retrieving call sites per

2See http://asm.ow2.org/.

sub-pattern kind on the basis of the information gathered.
The techniques considered here are “bucket arrays,” like hash
tables, and “sorted collections,” like B+-trees.

3.1.3 Class names

Statistics.

The combined test input consists of 2432 different classes
spread over 147 packages, on average placing roughly 16.5
classes in each package.

Depth Amount Percentage
0 20 0.8%
1 135 5.6%
2 414 17.0%
3 479 19.7%
4 333 13.7%
5 525 21.6%
6 526 21.6%

Table 1: Package depth for class names

Table 1 shows the classes’ package depth, i.e., the number
of super packages a class has before reaching the “unnamed”
default package. The 20 classes with depth 0, i.e., the ones
placed in the unnamed package, and 135 classes with depth 1
do not comply with the standard practice of using a reverse
DNS name. The classes at depth 2 are primarily from the
Java API, whereas classes at depths of 4 and more are almost
exclusively used by applications.

Due to the practice of using a reverse DNS name the first
few levels of package naming do not help in quickly reduc-
ing the search space. The way package names are generally
constructed, however, makes it reasonably easy to deter-
mine a start and end point in a sorted set and thus reduce
the amount of checks: Assume the classes of the Java API
are lexically sorted by their fully qualified name and are put
in a sorted set. Then all classes that match the java.lang..x
pattern can be found by calculating a subset: The starting
point of the range is constructed by removing .x from the
pattern, the end point is constructed by replacing ..* with
/ (U4002F), whose codepoint the Unicode character encod-
ing places immediately after the . (U+002E). Calculating
the subset only requires two O(log n) comparisons.

Storage.

When looking at the storage techniques the first option is
using a sorted collection. This has the benefit of ordering
all classes lexically by name; thus, the aforementioned tech-
nique can be used. However, storing all classes into buckets
by package can be used to efficiently look up all classes in a
given package, but due to the use of sub-packages one has
to determine how to find all classes that are in a particular
package or sub-package. Either the buckets also contain ref-
erences to sub-packages which are then recursively searched
or each class gets inserted into its package and all ancestor
packages. A major drawback of the latter technique is the
fact that the number of times the class is referenced is equiv-
alent to the package depth plus one. The former technique
resembles the behavior of a sorted collection.

3.1.4 Static initializers

Statistics.

A total of 571 static initializer were found. The static
initializers do not have a call site, i.e., they are called im-
plicitly, and the name, modifiers, return type, parameters,
and exceptions are the same for every static initializer. As
such the only way to distinguish between static initializers
is their containing class.

Storage.

Static initializers only have one sub-pattern: the declar-
ing-class pattern. Thus, the same considerations as in Sec-
tion 3.1.3 apply.

3.1.5 Constructors
Statistics.

A total of 3034 constructors were found; on average about
1.25 constructors have been found per class.

Modifier Amount Percentage
package visible 759 25.0%
public 1971 65.0%
private 151 5.0%
protected 153 5.0%
transient 14 0.5%
annotation 53 1.7%
deprecated 7 0.2%

Table 2: Modifier usage for constructors

Table 2 shows how often a particular modifier is used for
a constructor. The first set of four modifiers, the ones that
govern access to the constructor, are mutually exclusive and
cover all constructors. As a result the total of the first four
modifiers is always exactly 100%. The other modifiers are
optional and multiple of them can be used per constructor.

Parameters Amount Percentage
0 669 22.1%
1 1171 38.6%
2 720 23.7%
3 241 7.9%
4 144 4.7%
5+ 89 2.9%

Table 3: Parameter usage for constructors

Table 3 relates the number of parameters to the amount of
constructors having such a parameter count. The 3 034 con-
structors declare a total of 4420 parameters, giving about
1.5 parameters per constructor. Of all these parameters 588
are of type java.lang.String, 564 are of type int and 158 are
of type boolean, from a total of 518 parameters types.

Of the 3034 constructors 2 855 do not throw an exception,
leaving 179 that do throw at least one. A total of 188 excep-
tions is declared; a few constructors declare more than one
exception. The exceptions most frequently thrown by the
programs surveyed are javax.xml.stream.XMLSteamException

(84 times) and java.io.|OException (40 times), which are both
part of the Java APL.

A total of 14526 call sites of constructors were found. Of
these 64% call a constructor from the Java API; only 36% of
the calls are for creating application-specific classes. Classes
from the java.lang package are constructed 39% of the time,
with the StringBuffer/Builder being responsible for over 50%
of the calls.

Storage.

For the modifiers a bucket array is best as there are only
a few valid different buckets to consider. However, there
are sometimes multiple buckets a constructor would match
against. In that case they have to be put in all, but this
is not a big problem as a relatively small amount would be
placed in multiple buckets. It has to be considered whether
physically storing the public modifiers bucket is needed at
all, as it matches the vast majority of constructors.

We consider three techniques to store parameters: First,
the number of parameters can be used to determine the
bucket. Second, the first parameter type can be used. (If a
function has no parameters, void is used as first parameter.)
Third, the concatenation of all parameter-type names can
be stored lexically sorted.

The benefit of the first technique is that searching for
a particular amount of parameters is extremely efficient,
whereas the second is efficient in finding constructors that
have a particular type as first parameter. The third tech-
nique is well suited for finding constructors that start with
particular parameters, but finding constructors with a given
length requires looking through the whole collection.

Finally the exceptions can best be stored in a bucket as
well. Here, each declared exception is put into a bucket.
Given the low amount of actually declared exceptions and
the low amount of constructors with more than one declared
exception this does not impact storage much. The construc-
tors that do not throw an exception are not stored specially.

3.1.6 Field reads and writes

Statistics.

In total, 3884 fields have been found, yielding 1.6 fields
per class. We furthermore found 27979 field reads and 9 752
field writes, respectively 7.2 and 2.5 per field. Roughly
16.4% are reads from and 12.4% are writes to classes from
the Java API. (All static final reads are ignored because
the majority of call sites can optimized them away by the
compiler.)

In total, there are 2697 different field names. The most
frequently used field name logger is used 38 times; thus, the
field names themselves are all quite selective. The majority,
95.9%, of the field names start with a lower case letter. Of
the 3.2% of field names that start with an upper case letter
55.6% are static. About 0.9% of all names start with either
a $ (U+0024) or a _ (U4005F).

The field names have an average length of 9.7 characters.
Around 99% of these characters are letters. Looking at the
first three characters does not show any discernible patterns;
the most common prefix, can, is used in less than 1.75%
of the field names. This means that field names diverge
relatively fast.

The length and divergence of the field names can be used
to estimate the time required for one comparison of two

strings. If, e.g., at most 1.75% of the field names start with
the same three letters one knows that in three comparisons
there is at most a 1.75% chance that further characters have
to be examined.

14%
12%
10%

8%

6%

1%
“ il
oo JELLLULL LR,

abcdefghijklmnopgqrstuvwxyz

’ IR Field names English ‘

Figure 1: Letter frequencies of field names compared
to English

Figure 1 shows the letter frequencies in the field names
which are fairly similar to the letter frequencies of English,
although there are a few letters whose frequency differs sig-
nificantly.

Modifier Amount Percentage
package visible 862 22.1%
public 236 6.1%
private 2189 56.4%
protected 597 15.4%
static 395 10.2%
volatile 8 0.2%
transient 50 1.3%
annotation 22 0.6%
deprecated 9 0.2%

Table 4: Modifier usage for fields

Table 4 shows how often a particular modifier is used for
a field. This table is almost identical to Table 2 with the ex-
ception that the percentages for public and private modifiers
are switched; fields are about ten times more often private
than constructors are. (The situation is reversed for public.)

Of the field types 53% are either a primitive or comes from
the java.lang package, with int, boolean and java.lang.String
taking respectively 22%, 12%, and 10% of the total.

Field reads and writes cannot throw checked exceptions.

Storage.

For storing the name a sorted collection makes finding
a particular name or a range easy. Using a bucket array is
possible, but either the whole name has to be hashed or only

the first character is taken into account. In the former case
doing a name range lookup becomes expensive, whereas in
the latter case one still has to go through a long list of items
after the first bucket. If one were to chain the buckets per
character one would in effect be building a sorted collection.

The modifiers can only be stored in a bucket array due
to the limited amount of options. It can be considered to
not create a physical bucket for the private fields as they
match more than half of the fields and as such are not very
selective.

The type of the field can best be stored in a sorted col-
lection. There are quite a number of types, although it is
very conceivable that a set of types from one package is con-
sidered. In that case having a collection sorted on the type
name would make getting those ranges work in the same
way as for class names. However, it is conceivable to store
the data in a bucket array if there can be, e.g., due to a less
powerful pointcut language, no range lookups on the type of
a field.

3.1.7 Methods

Statistics.

A total of 17294 methods were found, which means about
7.1 methods have been found per class. There are 6812
different names for the methods, yielding 2.5 methods with
the same name.

The average length of a method name is 12.3 characters;
almost 3 characters more than field names. Around 99% of
the characters are a letter.

14%
12%
10%
8%
6%
4%
2%

o L |‘| lh . L.

abcdefghijklmnopqrstuvwxyz

’ll Method names " I English ‘

Figure 2: Letter frequencies of method names com-
pared to English

Figure 2 shows the letter frequency in the method names
which is less similar to the letter frequency in English. Let-
ters “c”, “e”, and “t” are used significantly more often whereas
the usage of letters such as “h”, “w”, and “y” have dropped
by up to 75%.

Contrary to the insignificance of the first three letters of
field names the first three letters of method names are signif-

Name Amount Percentage
get 4596 25.6%
set 1346 7.8%
cre 541 3.1%
acc 499 2.9%
add 413 2.4%

Table 5: Frequency of first three letters in method
name

icant as can be seen in Table 5. What has to be noted is that
417 of the 499 methods that start with “acc” are access$n
functions created by the compiler for inner classes that try
to access outer classes.

Modifier Amount Percentage
package visible 1022 5.9%
public 13399 77.5%
private 1450 8.4%
protected 1423 8.2%
static 2178 12.6%
final 1527 8.8%
synchronized 315 1.8%
volatile 127 0.7%
transient 62 0.4%
native 58 0.3%
abstract 1623 9.4%
annotation 558 3.2%
deprecated 24 0.1%

Table 6: Modifier usage for methods

Table 6 shows how often a particular modifier is used for a
method. As multiple modifiers can be used at the same time
the total is more than 100%. What immediately catches
one’s eye is that almost 80% of the methods are public and
that furthermore a large portion is static.

Modifier Amount Percentage
package visible 545 25.1%
public 1331 61.1%
private 301 13.8%
protected 1 0.0%
final 353 16.2%
synchronized 23 1.1%
volatile 1 0.0%
transient 8 0.4%
native 25 1.1%
annotation 432 19.8%
deprecated 7 0.3%

Table 7: Modifier usage for static methods

Table 7 shows the modifiers, but only for static methods.
What stands out is the majority of package visible methods
are also static and that there are almost no protected static
methods. (Note that abstract static methods are impossible
as you cannot override static methods.)

Of 37.7% of the methods the return type is void. About
36.4% are a primitive type or come from the java.lang pack-

age, with int, boolean and java.lang.String respectively tak-
ing 10.4%, 10.1%, and 7.7%. When ignoring the void return
type, these numbers are similar to the type of fields.

When considering the methods starting with “get” and
“set” more closely, one finds that there are 6 (0.01%) of the
former methods have a return type of void and 49 (3.6%)
of the latter have a return type different from void. This
means that when encountering a pattern matching meth-
ods that start with “get” or “set” in an aspect one can be
fairly sure the method respectively returns or does not re-
turn something. Consequently, the return-type check should
be done last.

Parameters Amount Percentage

0 6568 38.0%
1 7115 41.1%
2 2247 13.0%
3 728 4.2%
4 342 2.0%
5+ 293 1.7%

Table 8: Parameter usage for methods

Table 8 relates the number of parameters to the amount
of methods having such a parameter count. With 16838
parameters there are roughly 0.94 parameters per method.
That is about 0.5 less parameters per method than param-
eters per constructor.

Of all passed parameters 11 595 (68.9%) have a type which
is part of the Java API, so 5243 (31.1%) have a custom type.
Of the parameters from the Java API 8335 (49.5%) are ei-
ther a primitive or from the java.lang package. Looking at
the specific types of parameters the following can be gath-
ered: 3218 (19.1%) are int, 1859 (11.0%) are java.lang.String,
970 (5.7%) are boolean and 734 (4.4%) are java.lang.Object.

About 7.6% of the methods declare an exception. Of these
1317 methods 992 declare one exception, 129 declare two,
191 declare three, and 5 declare four. Of the declared ex-
ceptions 44% are application-specific and the remaining 56%
are exceptions taken for the Java API. The majority, about
70%, of the methods that declare an exception are applica-
tion methods. About 7.1% of the application-specific meth-
ods declare an exception.

A total of 98175 call sites of methods have been found.
Of these, 46.7% call a method from the Java API; 53.3%
of the calls are directed at application-specific classes. The
java.lang package is called in 21.8% of the cases. Hereby,
the classes StringBuffer/Builder are responsible for over 50%
of those calls. Most of these string-building calls are gener-
ated automatically by the compiler when it encounters the
concatenation of strings using the + operator. Other Java
API packages that are commonly called are javax.swing and
java.awt at 13.9%, and java.util at 9.9%.

Storage.

The storage techniques suitable for the sub-patterns of
methods are mostly described above for other generic func-
tion types. The name pattern is described in the section
about fields, whereas the modifier, parameter and exception
pattern are described in the constructor section. The re-
turn type, however, should be handled in a unique fashion:
While it follows the same technique as the type pattern of

fields, it also has a void type which the type pattern does not
have. As this matches a large part of the methods it should
be considered whether actually storing the bucket for void
types is of use.

3.2 Aspect characteristics

To be able to tell how often a particular part of a pointcut
pattern is used one needs to look at real-world aspects and
the patterns they use in their pointcuts. For example, if
none of the aspects specify a class-name pattern it would be
of little use to build up a sorted list of class names.

3.2.1 Methodology

The following AspectJ applications and libraries and the
patterns used in them are analyzed:

ajlib-incubator A library with reusable aspects.

Contract4J 5 aspects to support “design by contract” in
Java.

Glassbox An application for monitoring other applications
by using aspects.

NVersion, RecoveryCache Generic aspects for fault tol-
erance.

Sable Benchmarks Set of generic aspects used for bench-
mark purposes.

3.2.2 Acquired information

In total, 170 different patterns have been found in 242 dif-
ferent aspects. What is noteworthy about the found patterns
is that 35.6% of them were found within code that limits the
call sites for a particular pattern to a specific class or pack-
age. In these cases doing a full search of all call sites would
be a waste of time; only looking at an unsorted list of call
sites within a particular class or package would suffice.

3.2.3 Static initializers

Two patterns have been found that look at static initializ-
ers. One matches for all static initializers, whereas the other
matches exactly one class.

3.2.4 Constructors

In total, ten patterns matching a constructor have been
found. Of these, four have an “any class” pattern, one has a
“any class in package” pattern and the remaining five match
a particular class. Two patterns match the native modifier
and one matches the public modifier. It has to be noted,
however, that the former two patterns do not make sense,
as the native modifier is prohibited for constructors by the
Java language specification [11, Chapter 8.8.3]; thus these
patterns can never match. Furthermore there is one pattern
that requires an exception to be declared.

The ten patterns are used by sixteen different pointcuts;
six pointcuts use the “match any constructor” pattern, two
times a “match any public constructor” pattern. All other
patterns have been found only once.

3.2.5 Field reads and writes

We found five field read and four field write patterns. Of
these, four matched “any class,” three “any class in pack-
age,” and two patterns matched a specific class. The latter

two patterns furthermore matched a specific “name” pat-
tern. Two modifiers patterns matched public methods, and
two others matched on method respectively being static or
not being static.

Only the “match any field read /write” patterns were found
multiple times; three and two times for field reads and field
writes, respectively.

3.2.6 Methods

The majority of patterns are method patterns; 149 of the
found patterns match a method call. 36 of these match “any
class,” 2 match “any class in package,” and the remaining
111 match a specific class. Of these, 75 classes match a
class from the Java APIL.

18 patterns match a method with “any name,” 23 match
the “first few characters of a name,” one matches the “last
characters of a name,” and the remaining 107 match a spe-
cific name. A small number of the same name patterns were
found in different patterns, however, none in more than three
patterns. In total there are 103 unique patterns.

10 patterns match on the public, 2 on the native, and 1 on
the static modifier. Also, 3 patterns match methods without
the static modifier. One of the methods matches both the
public and the static modifier.

13 return type patterns match void, 13 match a specific
type and one matches all non-void return types. The re-
maining patterns match any return type.

41 parameter patterns specify that there may be no pa-
rameters, 4 specify that there must be exactly one parame-
ter regardless of type, 12 parameters have a specific pattern
for the parameters, 3 describe the first parameter but allow
more parameters, and the remaining 89 patterns match any
parameters.

In total, 4 patterns match declared exceptions; in 2 of
these cases any exception suffices whereas in the others a
specific exception must be declared to be thrown.

Of the 212 found aspects 67 match any class. Of these, 23
match any name, resulting in 44 cases that describe at least
a partial name. The former all match on either public, non-
static or “any” modifiers. Furthermore the matched return
types of these 23 are void, non-void and “any.” This means
that in the case no class and no name is given the pattern
can be considered to be a “match any” pattern in view of
using sorted data sets for lookup.

For patterns that match “any class in a package” the other
sub-patterns are generally match “any” sub-patterns with
the exception of an occasional match public or match “throws
java.lang. Throwable”. This means that in that case the pack-
age could be used as initial data set.

Of the 212 found patterns 143 match a specific class and
two match a class within a specific package. Of these, 143
only six have a match “any method name” pattern. 44 of
the remaining 67 patterns match on the method name. This
leaves 23 patterns that do not match on the class or method
name. Of these, 23 patterns, four are fairly selective as
they specify selective parameter types, modifiers or declared
exceptions.

3.3 Optimization strategies

This section describes the default optimization strategies
that can be extracted from the Sections 3.1 and 3.2. As
in those sections the optimization strategy will be discussed
per generic-function kind.

3.3.1 Static initializers

Static-initializer patterns can only be evaluated in one
way: looking at the class name. To optimize this, the generic
functions could be sorted by their full class name to aid the
lookup speed. Due to the small amount of patterns match-
ing on static initializers found in the case study it is unclear
whether an index data structure can pay off. If such pat-
terns occur sufficiently often, a sorted collection can offer
quick access.

3.3.2 Constructors

For constructors there are basically two sub-patterns that
can be used for optimization: A sorted collection with the
full class names when a class name is known and a bucket
array with the call sites per modifier otherwise. Hereby,
the sorted list of class names would be the primary way of
searching; only if there is no class name to match, one can
consider using the bucket array.

In cases where modifiers other than public are used in
method patterns, matching that modifier using the bucket
array should be considered due to the high selectivity of
those modifiers. However, when the full class name is very
selective, i.e., the class name has no wildcards in it, that
would still take precedence.

There are no aspects referring to declared parameters and
exceptions of a constructor. Therefore, we cannot deduce an
optimal lookup and storage strategy. Until sufficient data
is available, we assume that carrying over the results for
methods is a reasonable starting point.

3.3.3 Field reads and writes

For field reads and writes the main optimization point is
the class name as well. Nevertheless, the modifiers are also
useful, as the ones found in the survey are also very selective,
with the exception of the private modifier.

In contrast, the field name and the type are not worth
considering, even though the name is actually very selective
in this case. This is due to the fact that it is rarely used
and thus the overhead of building the index outweighs the
small extra selectivity over the class name which can be used
much more often. Alas, a majority of the patterns found in
the survey match everything; thus, in these cases there is
little to optimize.

3.3.4 Methods

Most methods can be matched by their name. They are
matching a specific pattern making them not that selective,
e.g., getx and setx. So in reality they match more cases,
first checking the class name will yield better initial selec-
tivity unless the class name can be anything. Parameter and
return types are the next most selective.

The modifiers of a method are in most cases not selective
at all; most of them match more than 75% of the methods.
This actually makes the return type more selective than the
modifiers for the case where there are no class or method
names to match.

Exceptions are rarely used in patterns. Effectively, pat-
terns that do refer to declared exceptions just require that at
least one exception is thrown but they do not further spec-
ify patterns for the exception types. In the two patterns
we found in the case study that do specify a required ex-
ception type, the sub-pattern for the declaring class is more

Sub-pattern Storage Static init. Constructor Field Method
class name sorted 1 1 1 1
name sorted - - 3 2
modifiers bucket - 2 2 4
type bucket - - 4 -
return type sorted - - - 3
parameters sorted - 3 5
exceptions bucket - 4 - 6

Table 9: Best storage techniques per sub-pattern and order of use by type

selective than the exceptions sub-pattern. As such, the ex-
ceptions sub-pattern should not be evaluated early.

3.3.5 Conclusion

Taking the above analysis into account, we now give a
summary of the best storage techniques for improving the
performance of the pattern matching in Table 9. Hereby,
the numbers represent the order in which to evaluate the
sub-patterns.

As can be seen, the class name is the best sub-pattern to
start with. This is usually followed by the modifiers, except
for the case of methods; here, the name of the method is
a more selective secondary search parameter. Methods also
have a third search parameter, the return type.

Note, however, that this data depends on the generic func-
tions used by the actual applications and on the aspects used
to search for a subset of these. If an application, for exam-
ple, declares only a few checked exceptions and all aspects
look for a particular exception, then a simple bucket array
could be the most selective and thus best way to start the
search. Another example would be a pattern matching all
public static methods starting with get. In that case the
name sub-pattern would match around 25% of the meth-
ods whereas the modifiers sub-pattern matches only 8% and
thus the modifiers pattern would be the most selective.

4. RELATED WORK

Masuhara et al. have discussed the implementation of the
weaver component in the AspectJ compiler [14]. In partic-
ular, they also discuss the algorithm used for finding join-
point shadows for pointcuts. As mentioned in the introduc-
tion, this entails an evaluation at all join-point shadows in
the program. The authors also suggest a mechanism they
call fast match to rule out the matching on a per-class-basis.
This mechanism builds on the fact that each Java class is
represented in one bytecode file which contains the so-called
constant pool, i.e., a table of symbols used in the class. The
symbols include all signatures of methods and fields accessed
by instructions in this class.

In the fast match approach, patterns are first evaluated
against the signatures in the constant pool. If no match was
found, the class cannot contain matching join-point shad-
ows. Thus, no expensive parsing of the method bodies’ in-
structions is required in order to find the location of join-
point shadows.

This approach does not consider the structure of signa-
tures and patterns themselves, but groups join-point shad-
ows according to the locations in which they occur. The
constant pool is a summary of the occurring join-point shad-
ows and is used to exclude some locations from the search as

shortcut. Our approach is orthogonal to that and exploits
common structures in signatures and patterns themselves.

The STEAMLOOM VIRTUAL MACHINE [12] supports dynamic
aspect deployment and therefore also seeks to improve per-
formance of partial pointcut evaluation. STEAMLOOM im-
plements an indexing mechanism that allows to quickly map
from matched signatures to the locations of the correspond-
ing join-point shadows. This is similar to the fast match in
the AspectJ compiler, but also does not consider heuristics
of common signature and pattern structures.

5. CONCLUSIONS AND FUTURE WORK

In this work, we have presented indexes and search-plan
optimization as potential mechanisms to optimize partial
evaluation of patterns as found in the pointcuts of aspect-
oriented languages. Both kinds of optimizations require
knowledge of the structure of data against which patterns
are evaluated; commonalities in method, constructor, or
field signatures and the selectivity of sub-patterns must be
known a priori. To develop heuristics about both, we have
performed a survey on four applications written in Java and
five written in AspectJ.

The results of this survey show that depending on the
kind of join-point shadow matched by a pattern (method
call, field read, etc.) different sub-patterns are reasonably
selective. For instance, the sub-pattern on modifiers is very
selective for constructors, but in general not very selective
for methods. These observations can be used for a context-
insensitive search-plan optimization that always orders the
evaluation of sub-patterns in the same way for a given kind
of pattern.

When the actual pattern is considered in the search-plan
optimization, better optimizations are possible. For instance,
a modifiers sub-pattern that only matches for transient or
volatile methods is very selective, i.e., it selects less than
1% or the method signatures. In such cases, the modifiers
sub-pattern should be evaluated early, although this is not
the best strategy in general.

The survey has also shown which kinds of indexes are suit-
able. For example, a sorted tree allows to efficiently find a
range of entries with a common prefix. This means that
such an index is beneficial for exact patterns and patterns
ending with a wildcard. Another beneficial index structure
are buckets which map one key to a collection of rows, e.g.,
buckets can be created that store a list of all method signa-
tures that contain a certain modifier.

In future work, we will extend the presented survey and
consider additional, larger programs, both object-oriented
and aspect-oriented ones. It is especially desirable to add
aspect-oriented programs that use constructor patterns more

extensively. We will also investigate using automatic data
mining approaches to identify correlations that can be ex-
ploited in optimizating the pattern evaluation.
Furthermore, we will implement the optimization strate-
gies and required index data structures in the ALIA4J ap-
proach. This will enable us to benchmark the actual im-
pact of these optimizations at runtime. In this future case
study, we will compare different implementation strategies
for index data structures and evaluate their impact, in both
memory usage and execution time, on dynamic operations
like insertion of new signatures when classes are loaded.

6. REFERENCES

[1] P. Avgustinov, A. Christensen, L. Hendren, S. Kuzins,
J. Lhoték, O. Lhotédk, O. de Moor, D. Sereni,

G. Sittampalam, and J. Tibble. abc: An extensible
AspectJ compiler. In TAOSD. 2006.

[2] A. J. Bernstein and M. Kifer. Databases and
Transaction Processing: An Application-Oriented
Approach. Addison-Wesley, 2001.

[3] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan,
K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking,

M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,

D. Stefanovic, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo benchmarks: Java
benchmarking development and analysis. In
Proceedings of OOPSLA, 2006.

[4] C. Bockisch. An Efficient and Flexible Implementation
of Aspect-Oriented Languages. PhD thesis, Technische
Universitit Darmstadt, 2009.

[5] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann.
Virtual machine support for dynamic join points. In
AOSD ’04: Proceedings of the 3rd international
conference on Aspect-oriented software development,
pages 83-92, New York, NY, USA, 2004. ACM.

[6] C. Bockisch and M. Mezini. A flexible architecture for
pointcut-advice language implementations. In
Proceedings of VMIL, 2007.

[7] C. Bockisch, A. Sewe, M. Mezini, A. de Roo,

W. Havinga, L. Bergmans, and K. de Schutter.
Modeling of representative AO languages on top of the
reference model. Technical Report
AOSD-Europe-TUD-9, Technische Universitéit
Darmstadt, 2008.

[8] E. Bodden, A. Sewe, J. Sinschek, and M. Mezini.
Taming Reflection (Extended version). Technical
Report TUD-CS-2010-0066, CASED, 2010.

[9] S. Chaudhuri. An overview of query optimization in
relational systems. In PODS ’98: Proceedings of the
seventeenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems, pages
34-43, New York, NY, USA, 1998. ACM.

[10] A. de Roo, M. Hendriks, W. Havinga, P. Diirr, and
L. Bergmans. Compose*: A language- and
platform-independent aspect compiler for composition
filters. In Proceedings of WASDeTT, 2008.

[11] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java
Language Specification. Addison-Wesley, 3rd edition,
2005.

[12] M. Haupt. Virtual Machine Support for
Aspect-Oriented Programming Languages. PhD thesis,
Technische Universitdt Darmstadt, 2006.

[13] H. Masuhara and G. Kiczales. Modeling crosscutting
in aspect-oriented mechanisms. In Proceedings of
ECOOP, 2003.

[14] H. Masuhara, G. Kiczales, and C. Dutchyn. A
compilation and optimization model for
aspect-oriented programs. In Proceedings of CC, 2003.

[15] R. Muschevici, A. Potanin, E. Tempero, and J. Noble.
Multiple dispatch in practice. In Proceedings of
OOPSLA, 2008.

[16] R. Ramakrishnan and J. Gehrke. Database
Management Systems. McGraw-Hill, 1999.

[17] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selection in
a relational database management system. In
Proceedings of SIGMOD, 1979.

