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Strategies for Incorporating
Check for

= Formal Specifications
in Software Development

formal software specification is a specification expressed in a language
whose vocabulary, syntax, and semantics are formally defined, and
which has a mathematical, usually formal logic, basis. (See the box
“A Sketch of Formal Specification” for a short introduction to formal
specification methods. For a more detailed introduction to formal
methods see [24].)

The growing importance of formal specification methods is reflect-
ed in recently published special issues of journals dealing with these
methods (e.g., IEEE Software and [EEE Transactions on Software
Engineering} Furthermore, a number of authors have advocated the use
of formal specification methods in the software development process.
Included among the justifications suggested by these authors are that
the use of formal specification methods in software development
enhances the insight into and understanding of software requirements,
helps clarify the customer’s requirements by revealing or avoiding con-
tradictions and amhiguities in the specifications, enables rigorous veri-
fication of specifications and their software implementations, and facil-
itates the transition from specification and design to implementation.
Thus the use of formal methods is expected to lead to increased soft-
ware quality and reliability, Moreover, early verification of specifica-
tions would increase specification quality thereby reducing life cycle
costs. Hall [12] suggests that benefits of using formal specifica-
tions are obtainable without an increase in, and possibly at lower,
development costs,

However, Sommerville [23] has indicated that formal specification
methods have not been widely accepted in industrial software develop-
ment. One of the main reasons for the lack of use of formal specifica-
tions in industrial projects is that reports about formal specifications
have dealt mostly with the languages, not with the elicitation process [6,
9, 18]. Recently, however, a number of strategies have been proposed
for incorporating formal specifications methods into the software
development process. With the proliferation of these strategies we have
reached a stage in the development of formal specification methods
where there is a need for organizing and classifving the proposed strate-
gies. Such an organization is a necessary step for understanding
the potental usefulness of these strategies, identifying commeoenali-
ties and differences among them, and assessing their applicability to
different contexts.

A definition and classification scheme for strategies that incorporate
formal specification methods into the software development process is
useful from both a practitioner as well as a researcher perspective. From
a practitioner perspective, the framework will help practicing software
engineers make sense of competing proposals for using formal methods
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in the soltware development process,
and help them identily the strengths
and  weaknesses of each proposal.
Furthermore, a deeper understand-
ing ol these strategies will help the
practitioners adopt and adapt the
proposed strategies to their own soft-
ware development environments.
From a rescarcher perspective, an
understanding and assessment of the
generic strategies suggested by the
framework would help identify gaps
in the currently proposed strategies,
thus suggesting directions for future
development. Additionally, a com-
prehensive  classilication scheme
would provide the basis for further
empirical investigatons of the effec-
tiveness (i.e., quality and efficiency
consequences) of cach strategy.

Benefits and Problems with
Formal Specifications
A variety of advantages have been at-
tributed to the use of formal software
specifications. These advantages in-
clude enhanced insight into and un-
derstanding of specifications [23, 24,
help in verification of the specifica-
tions and their programming imple-
mentations [12, 14, 15, 24], and possi-
ble assistance in moving  from
requirements specilication to their
programming implementation [9].
I'he enhanced insight and under-
standing  into  specilications s
achieved in a number of ways. Wing
suggests that
help crystallize the customer’s vague

formal specifications

ideas, and reveal or avoid contradic-
tions, ambiguities, and incomplete-
ness 1n the speafications thereby
helping clarify the customer’s re-
quirements [24]. Sommerville sug-
gests that formal specifications, by
providing a unified and concise view
of the syntactic and semantic aspects
of the specifications, provide insights
into and understanding of the soft-
ware requirements, insights which
are not normally possible from infor-
mal specifications [23]. Finally, de-
pending on the formal specification
language used, it may be possible to
animate a formal system specification
to provide a prototype system [23].
The prototype can be used by both
engineers and  end
users to gain further insights into the
behavior of the specified system.

l‘C(llli rements

Second, as Hormal spealtications
can be analyzed using mathematical
operators, mathematical proot proce-
dures can be used to test (and prove)
consistency  and
correctness of specifications [9, 14,

15, 24]. Furthermore, the complete-

internal Syntactic

ness of the specilications can be
checked in the sense that all enumer-
ated options and elements have been
specified.” The formal proof proce-
dures can also be used o verily i a
design or its implementation satishies
its antecedent specifications [1, 24].

Third, from an implementation
point of view, as the final problem
solution—the implementaton—will
be in a formal language (ie., pro-
gramming language). it is easier to
avoid misconceptions and ambigui-
ties in crossing the divide from formal
specifications to formal implementa-
tions [1]. Given a lormal system speci-
fication and a complete formal pro-
gramming language dehinition, 1
becomes possible o prove that the
programming implementation con-
forms to its specification [23]. Fur-
thermore, compilers for rapid proto-
typing and  for  transforming
specifications into code have heen
imvestigated for some traditonal for-
mal specilication languages such as
VDM/Meta-1V. "This raises the possi-
bility ol automatc code generation
from formal specifications. Finally,
formal specifications can be used as a
guide to the testers of software com-
ponents in identifving and generat-
ing appropriate test cases. Thus, the
use of formal methods can lead to
higher-quality  specifications  and
implementations.

Sommerville suggests that formal
techniques
been widely used in industrial soft-

specification have not

ware  development  environments
[23]. (For an account ol projects
where formal methods have been

used successtully in industrial envi-
ronments, see [12].) A number of rea-
sons by various authors have been

'Note: Completeness is used here in the sense that
the specification includes all enumerated system
components, elements, and options. However
due 1o the human-intention natures of func-
tional requirements, no specification language,
imcluding a formal language, can ensure com-
pleteness i the sense that all of the user’s func-
tional requirements are included in the specifi-
cation document.

suggested tor this Lack of use:

1. In the past, most effort m tormal
specification rescarch has been con-
cerned with the development of for-
mal notation and inference rules.
Relatively little effort has been de
voted to the development of method
ological and ool support [18]. This
lack of methodology and tools has
two adverse  consequences.  First,
though the current state of formal
methods provide elaborate notational
and conceptual structures to express
the formal specifications, only mini-
mal guidelines are provided for elicit-
ing and structuring the requirements
before they are expressed in the for
mal notation [ 14]. As a result, the solt-
ware engineer is left to his or her own
devices to discover the software re
quirements and structure them into «
requirements architecture. Lack of
guidance for this crucial front-end
activity makes it difficult to use formal
methods on their own. Second. the
lack of tool support makes it difficult
todevelop, analyze, and  process
large-scale specifications using formal
specification languages.

2. The notaton and the conceptual
grammar of formal specilication lan-
guages require familiarity with dis-
crete mathematics and symbolic logic
which most practicing software engi-
neers, designers, and implementors do
not currently have. Most software en-
gineers have not been trained in tech-
niques required to develop formal
software specifications, and their inex
perience in these techniques makes
formal  specification
appear difficult [23]. Additonally, as
most of the programmers who would

development

be implementing the formal specifi

cation are themselves not familia
with these techniques, implementa-
non-related benefits of formal specifi-

cations are not currently attainable.

3. The very formality which makes
formal specilications desirable during
the later phases of requirements spec-
ification makes them an inappropri-
ate tool for communicating with the
end user during the earlier require-
ments elicitation and  confirmation
stages. More so than the
engineers, most end users who pro-

software
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vide the requirements and approve
the requirement specifications  are
neither familiar nor comfortable with
the formal specification languages
[6]. This makes it ditficult for such
end users who are not mathemati-
cally trained to understand and ap-
prove specifications expressed in a
formal language.
4. Preliminary evidence
from cognitive science [10] suggests
that in the early stages of problem

empirical

solving, when the problem area s rel-
atively ill structured, the use of for-
mal representations inhibits the ex-
ploration of alternatives
detrimental to the quality of the out-
come. Thus, due to the requirement
of a formally defined vocabulary, syn-
tax, and semantics, formal specifica-
tion languages may not be an ideal
tool for exploring and discovering
the problem structure during  the
problem vefinement process.

and s

5. Sommerville suggests that man-
agement is - generally
and unwilling to use new techniques
whose benefits are not yet established
[23]. The payoft of the upfront invest-
ment in developing formal software is
not immediate and difficult to quan-
tify. However, Sommerville goes on

conservative

subsequently to indicate that “with
formal specification, specification and
implementation costs are comparable
[to when a conventional process is
used] and system validation costs are
significantly reduced.” Hall discusses
evidence that is beginning to accumu-
late on the costs of projects using for-
mal specification methods. Hall re-
ports that “none of this evidence
supports the idea that development
costs are higher if you use formal
specification; if anything, it suggests
they are lower”™ [12, p. 17].

Given these difficulties in using
formal methods, challenges remain in
integrating formal methods with the
system development effort and in
scaling up formal method techniques
to large-scale real-world develop-
ment projects [18, 23, 24]. Unless vi-
able strategies for incorporating for-
mal
development process are developed,

methods in the software
it may be ditficult to attain the prom-
ise of formal methods in real-world
software development projects.

SPECIFICATIONS

A Framework for Classifying
Strategies

We now develop a framework for
classifving and contrasting strategies
for using formal specifications in soft-
ware development. This framework
is developed using an organizing
methodology  called  morphological
analysis. Morphological analysis 1s a
technique  for

building  structures
(morphologies) of existing informa-
ton in a subject area. With this taxon-
omy, formal specification methods
can be classified, difterences and simi-
larities among methods recognized,
and future rescarch topics identified.

As the first step in conducting a
morphological analysis is to identily
currently  known dimensions and
parameters in a subject area. ow
analysis begins with a review ol rele-
vant research describing the strate-
gies for developing formal specifica-
tions. (The Appendix gives a briel
overview of the rescarch which pro-
vided the basis for the morphological
analysis. Table 1 summarizes this re-
search.) This research represents a
cross-section  of  currently available
strategies. Each article in Table | pro-
poses strategies for using formal spec-
ifications in the software develop-
ment process. A set of dimensions for
classifying strategies are abstracted
from an analysis of these strategies.

The Formalization Process
Dimension

First, the strategies can be seen o dif-
fer according to the process by which
formalization  of  specifications  is
achieved. Some
moving directly from high-level, -
formal (i.c., natural language) specifi-
cations to a fully developed set of for-
mal Thus the
representation and specification ac-

st rategies propose

specifications.

tivity is in the formal domain. For
example, the “Integrated™ approach
of Kemmerer, Kemmerer (¢) in Table
1, proposes that the high-level formal
specification of the system be derived
directly from a precise English state-
ment of critical requirements [15].
Jones uses a similar process when he

suggests that the proof obligations of

VDM decomposition rules can stimu-
late design steps [14]. Miriyala and
Harandi propose a strategy to derive
formal specifications  from  limited
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natural  language speaticatons  di-
rectly [21]. Wing also suggests an in-
teraction process between the cus-
tomer and the specifier to produce
formal specilications divectly [24].

In contrast 1o this “direct formali-
zation process.” other strategies use
intermediate representations of soft-
ware specifications to help move from
mitial natural language o formal
specifications. In such a strategy, one
or more semiformal specifications
provide mediating increments of for-
mality between the informal natural
language specification and the formal
specifications. Andrews and Gibbins
use an abbreviated bottom-level
Structured Analysis structure chart to
guide the operational decomposition
of a high-level VDM specification [1]
The “After-the-Fact” and “Parallel”
Kem
merer (¢) and (b), respectively, in
Table 1,
development methods as intermedi-
ate steps in deriving formal specifica-
tions [153]. Babin, Lustman, and
Shoval use an extended Structured
Analysis approach to transform con-
trol
representations by applying a set of

approaches  of  Kemmerer,

mvolve the use of standard

flows into finite-state  machine
rules [2]. Conger ¢ al. produce for-
mal specifications by using Struc-
tured Analysis representations and
tracking the hierarchical partinoning
ot high-level data-flow transforms
with VDM specifications [4]. Fraser,
Kumar, and Vaishnavi also generate
tormal specifications trom Structured
Analysis specifications [9]. Kung com-
bines Structured Analysis and Entity
Relationship models in sequence with
a number of formal modeling meth-
ods [16].

Thus, a strategy for using formal
methods can be located in a formaliza-
tion process dimension according to
whether or not the strategy transi-
tions through intermediate models of
requirements as intermediate steps in
producing formal specifications and
designs. A strategy which begins with
an informal model and transitions
through intermediate, more formal
models to arrive at a formal specifica-
uon uses a transitional  formalization
prrocess, while one which moves from
an mmformal representation to a for-
going
through transitional steps uses a direct

mal  specilication without



TABLE 1. A cross-section of published strategies for using formal methods

A Sketch of Formal Specification

Formal Specification Languages

“To achieve precision, a specification must be written in a language which has a formal basis” [14]. “A formal specification

language provides a formal method'’s mathematical basis. . .

. A formal specification language provides a notation (its syntactic

domain), a universe of objects (its semantic domain), and a precise rule defining which objects satisfy each specification™

[24].

Some Classifi ons of Formal Spec ation Methods

Modeling the system using mathematical entities (e.g., sets) vs. specifying an object class in terms of rela-

Model Ori-

ented vs. Al- tionships between the operations defined on that class [23].

gebraic

Sequential vs. Methods used to specify sequential systems (e.g., VDM, Z, Larch, and FSMs) vs. methods used primarily to
Concurrent specify concurrent and distributed systems (e.g., Petri Nets, Temporal Logic, Transition Axioms, CSP, CCS, and

PAISLey) [22, 24].

Some imples of Formal Specification Methods

Meta-1V VDM supports a model-oriented, sequential specification and includes built-in data types (e.g., sets, lists, and
(VDM meta- mappings) which can be used to define other data types. Meta-IV is used to specify, independent of im-
language) plementation, the software architecture [14].

Z [Zed] Z is a madel oviented, sequential language based on typed set theory because sets are mathematical entities
whose semantics are formally defined. Z allows specifications to be integrated (reused) and has graphical
highlighting (human interface presentation).

Larch Larch is an algebraic, sequential language in which there are no built-in types; a mnemonic notation rather

than specialized symbols is used. The user need not learn special vocabulary or mathematical notation
and introduces (typically many) relevant symbols with defining equations. Specifications can be expressed
with a standard keyboard [11].

Finite-State

FSM is a model-oriented, sequential method for functional specification consisting of a set of states, a set of

Axioms (TA)

Machines inputs, a transition function which specifies the next state given the current state and input, an output

(FSM) function which specifies actions associated with transitions, the initial state, and the final state.

Petri Nets Petri Nets provide a model-oriented, concurrent method for specifying timing and parallelism. A Petri net is
typically represented as a bipartite digraph whose nodes represent places (marked by tokens) and transi-
tions (which are enabled by a firing rule to change markings).

Temporal TL is a model-oriented, concurrent modal logic language that supports statements about properties of states

Logic (TL) without requiring arguments which specify the time at which a statement is true. Program behavior is
specified by interpreting formulas involving temporal operators (e.g., “next”) over structures of states, the
computations executed by a program, which gives a programming language temporal semantics [19].

Transition This model-oriented, concurrent method combines an axiomatic method to describe the behavior of opera-

tions with temporal logic assertions which specify safety and liveness [17].

Communicat-
ing Sequential
Processes

(CSP)

CSP is a model-oriented, concurrent language in which information is transmitted from one process to an-
other through a communication line (channel). Two processes rendezvous if one is prepared to send in-
formation over the channel and simultaneously the other is prepared to receive from the channel. Ren-
dezvous achieves communication (e.g., of a value of a variable) and provides synchronization during
message transmission [13].

Calculus of

CCS is an algebraic, concurrent alternative to TL, TA, and CSP. The notation describes concurrent functions

Communical- and arguments competing and choosing interactions. Denotational semantics are provided by a communi-
ing Systems cation tree of evaluation paths of an expression [20].

(CCS)

PAISLey A model-oriented, concurrent executable specification language which provides for internal consistency check-

ing via a simulation of the software system run by an interpreter [25].
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SPECIFICATIONS

TABLE 1. A cross-section of published strategies for using formal methods

A Sketch of Formal Specification

D. Andrews Develop formal specifications using an informal Structured Analysis structure chart to guide operation

and P. Gib- decomposition.

bins [1]

G. Babin, F. Beginning with an extension of Structured Analysis, Finite-State Machine (FSM) representations are used

Lustman, and to formally describe control flows; transformation of control flows into FSM representations is achieved

P. Shoval [2] using a set of rules; a decomposition algorithm is used to refine the FSM specification into a hierarchical
set of FSMs.

S. A. Conger Formal specifications are developed by tracking, at each level, the hierarchical partitioning of high-level

el al. [4] Structured Analysis data-flow transforms with VDM specifications; data flows are represented in an ab-
stract syntax, and a VDM specification is given for each transform in the DFD set; VDM specifications are
combined according to the architecture provided by the leveled DFD set.

M. D. Fraser, | Control processes in the Structured Analysis specifications are identified as while-structures through ana-

K. Kumar, lyst interaction; bottom-level processes are described with decision tables which are mapped into VDM

and V. K. specifications using a conversion rule; the resulting VDM specifications are composed bottom-up using

Vaishnavi [9] | sequence and while-structure composition rules based on the precedence analysis of the DFD.

C. B. Jones Abstract models of data types are chosen using natural language problem representations; proof obliga-

[14] tions of VDM decomposition rules can be used to stimulate and guide intuition about program design
(i.e., operation decomposition) steps; decomposition proof obligations provide a framework into which
design commitments can be recorded.

R. A. Kem- (a) “After-the-Fact”: after the system is built with a standard method, a formal specification is derived,

merer [15] and formal verification of the implementation may be done.
(b) “Parallel”: formal specification and verification are carried out in parallel with a standard development
method.
(¢) “Integrated”: the formal method is completely integrated into the development cycle; critical require-
ments, usually an English statement of what is desired, are stated in precise mathematical terms; a high-
level formal specification is then produced which gives a precise mathematical description of the system’s
behavior without many implementation details; less abstract specifications implement the next higher-level
specifications, with increasing detail, until the system can be coded in a high-level language and the im-
plementation is shown to satisfy the original critical requirements.

C. H. Kung A number of modeling techniques (DFDs, Petri nets, Entity-Relationship models, and relational calculus)

[16] are combined in sequence to develop a conceptual model of the system.

K. Mirtyala A user interacts with a knowledge-based assistant which derives formal specifications from informal de-

and M.T. . scriptions expressed in a restricted subset of natural language; the assistant makes all decisions, prompts

Harandi [21] | the user for information needed, and operates by schemas, analogy, and difference-based reasoning.

J- M. Wing A mapping between informal and formal requirements specifications can be achieved iteratively through

[24] interaction between the customer and the specifier.

Sformalization process.

Locating a strategy in the formali-
zation process dimension can be
made more precise by defining de-
grees of formalism. This categoriza-
tion is defined in the upper panel of
Table 2. The definitions are adapted
from two sources. Dart ef al. propose
definitions of informal, semiformal, and
Sformal specification and design meth-
ods [5]. Similarly, in discussing the
suitability of techniques for meta-
modeling, Brinkkemper defines infor-
mal, structured, and formal techniques
[3]. Both Dart et al. and Brinkkem-

per use their definitions to classify
and organize discussions of a variety
of specification and design methods
along the formalization process di-
mension. Schach cites the work of Dart
et al. and uses their definitions to cate-
gorize and differentiate specification
methods [22]. The lower panel of Ta-
ble 2 gives examples of methods cate-
gorized by their degree of formalism.

Table 3 gives the definition of the

formalization process dimension. Direct

process strategies are characterized
by the absence of any intermediate
use of semiformal representations. In
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the case of transitional process strate-
gies, the analyst produces and uses
semiformal representations as inter-
mediate steps which aid in producing
a formal specification and design.
The degree of completeness and pre-
ciseness of the semiformal model var-
ies and may focus on key aspects
(constructs and rules) of the semifor-
mal representation that aid in the
derivation of formal specifications
and designs; Andrews and Gibbins’
use of an informal structure chart is
an example [1].

An inspection of the strategies pro-



posed by Kemmerer (Table 1) sug-
gests a further refinement of this defi-
nition. The transitional process
strategy can be partitioned into se-
quential and parallel successive-refine-
ment approaches. In a sequential ap-
proach, the complete semiformal
models are produced first, from
which the formal specifications fol-
low. (See [1, 2, 9], approach (a) of [15,
16].) Other approaches suggest that
semiformal and formal representa-
tions may be produced in parallel
through successive refinements ([4]
and approach (b) of [15]).

Refining the transitional strategy
into the sequential and parallel suc-
cessive refinement approaches com-
pletes the definition of the formaliza-
tion process (Table 3).

The Formalization Support
Dimension

The strategies in Table 1 can be seen
also to differ according to the com-
puter support that a strategy uses for
producing formal specifications. On
one hand the process of producing
formal specifications may be unas-
sisted, relying only on the innate
problem-solving capabilities of the

TABLE 2. Definitions of specifications and design methods with examples

requirements engineer. On the other
hand the strategy can use computer-
based assistance.

For example, the strategies of [1,
14], all three approaches of [15, 16,
24] rely only on human problem-
solving capability to produce the for-
mal specifications. In contrast, the
strategy proposed by Miriyala and
Harandi uses an automated knowl-
edge-based assistant to derive formal
models [21]. Such a strategy uses heu-
ristics and human knowledge, usually
domain specific, for guiding the for-
malization process. Finally, [2] and
[9] propose strategies which provide
an algorithmic approach to deriving
formal specifications. These strategies
use transformational, computer-
executable procedures for formaliz-
ing a specification. In either case,
given that we are starting from infor-
mal or semiformal specifications
which may be ambiguous or incom-
plete, the computer support needs to
be interactive.

Thus, a strategy for using formal
methods can be located in a second
dimension, the formalization support
dimension, according to the com-
puter-based assistance that the strat-

. . . 1
Categories of Formalism

egy uses in producing formal specifi-
cations (Table 4).

The cross-product of the two di-
mensions, formalization process and
formalization support, thus provides
our framework for strategies for in-
corporating formal specifications in
software development (Table 5). This
framework identifies four generic
strategies: direct unassisted, direct
computer-assisted, transitional unas-
sisted, and transitional computer-
assisted. The two transitional generic
strategies are further subdivided into
transitional-sequential and transi-
tional-parallel unassisted and com-
puter-assisted strategies, respectively.
The framework is populated by map-
ping the 11 strategies used in the
morphological analysis (Table 1) into
the framework.

An Exercise in Validating the
Framework

Table 5 shows 13 strategies cross-
classified into the framework. Eleven
of these are the strategies used origi-
nally in the morphological analysis
(Table 1) which lead to the definition
of the framework, and two are strate-
gies not discussed before. The two

Formal

These techniques have rigorously
defined synlax and semantics.
There is an underlying theoretical
model against which a description
expressed in a mathematical
notation can be verified.
Specification languages based on
predicate logic are typical

instances.

Petri Nets (B, D, §)
State Machines (D, S)
Executable Specifications (S)
GIST (D)

Refine (D)

VDM (B, D, §)

Anna (D)

Z [Zed] (B, D)

CSP (5)

GIST (D)
Predicate-Transition-Nets (B)

Notes: 'adapted from Dart et al. [5] and Brinkkemper [3]
?Brinkkemper (B), Dart et al. (D), Schach (S)
*ISD is not classified by B, D, or S. Wing [24] includes JSD among semiformal and informal methods. We would further
classify JSD as semiformal.
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recent strategies reported in Fields
and Elvang-Ggransson [7] and
Franice [8] were appraised using the
framework. These strategies were
classifiable on each of the two dimen-
sions of the framework. This small
exercise in validating the framework
is a step toward demonstrating the
robustness of our framework.

Fields and Elvang-Ggransson pro-
pose that “the development of a small
safety critical system, like most com-
puter systems begins . . . as an infor-
mal description written in a natural
language. Using this as a guide, a for-
mal specification is written ...,
which, it is intended, captures the es-
sence of the informal description” [7].
Although they propose an ingenious,
useful tool, mural, for working with
VDM, the computer support pro-
posed takes over some of the labor-
intensive aspects of entering a formal
specification into a usable theorem
prover. That is, the high-level formal
specification is generated first, using
the informal description as a guide,
and then refined with the help of the
theorem prover. Thus, the strategy
proposed is to generate directly the
first, high-level formal specification
from an informal, natural language
specification without automated tool
assistance, placing the strategy in the
direct unassisted cell of the proposed
framework.

On the other hand, France devel-
ops an extended Data Flow Diagram
(DFD) formal specification which
generates a formal specification with
a “technique for associating semantics
with control-extended DFD’s. The
specification characterizing the se-
mantics of a C-DFD can be viewed as
formal design specification of the
application modeled by the C-DFD
. . . We are currently working on de-
veloping a specification-development
tool based on DFD’s, consisting of an
informal ‘front-end’ supported by a
formal ‘back-end.” The front-end
supports the creative development of
DFD specifications ., while the
back-end supports the generation of
formal specifications from DFD’s and
the rigorous investigation of semantic
properties” [8]. The characterization
of the technique as one which associ-
ates (and hence as one which is algo-
rithmic) semantics with control-

SPECIFICATIONS

extended DFD’s to produce a formal
specification places this strategy in
the transitional-sequential computer-
assisted cell of the framework.

Discussion and Assessment of
Strategies

This framework can be useful for de-
scribing, understanding, and com-
paring strategies for incorporating
formal specifications in software de-
velopment. As an illustration of this
usefulness, we use the framework to
assess the generic strategies gener-
ated by combining the process and
support dimensions of the frame-
work. Such assessments can, in turn,
be a guide to evaluating the applica-
bility of the strategies proposed in the
literature to specific development
contexts.

Note, however, that ultimately the
assessment of these generic strategies
should be based on large amounts of
data collected from a number of proj-
ects that are representative of appli-
cation domains of interest. Judging
from the limited number of pub-
lished case studies, it is apparently
still too early to develop a significant
base of empirical data about strate-
gies that have been used a substantial
number of times with projects repre-
sentative of the general categories of
software development.

Worse, most published accounts of
the use of formal methods do not de-
scribe explicitly the strategies fol-
lowed to produce formal specifica-
tions. For example, [12] describes a
variety of projects that use formal
specification methods, but does not
include an explicit description of the
strategies used to produce these spec-
ifications. Such omissions cannot be
taken to mean that no strategies were
followed. Rather, the issues of the for-
malization strategy used and its re-
source rtequirements might have
been simply considered as details in
comparison with larger issues such as
describing the specification language
and providing fragments of formal
specifications to illustrate the formal
method in action. In any case, such
omissions make it all the more diffi-
cult to assess the reported experi-
ences with formal methods with re-
gards to the strategies used to
produce the formal specifications.
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The following discussion relies
mainly on broad deductive reasoning
to provide at least preliminary evalu-
ations of the generic strategies sug-
gested by the framework.

Direct Unassisted Strategy. Refer to
the upper left corner of the two-
dimensional framework (Table 5).
The generic strategy defined by this
cell—the direct unassisted strategy—
is characterized by a direct formaliza-
tion process that relies entirely on the
problem elicitation, structuring, and
requirements specification skills of
the requirements engineer unassisted
by any computer-based support. For
the strategy to be successful, it re-
quires first that the requirements
engineer has a thorough knowledge
of the application domain, and sec-
ond, that she or he can grasp and for-
malize the whole of the problem in its
entirety. Furthermore, as the re-
quirements elicitation is primarily in
an informal (natural) language,
whereas the specification is produced
in a formal language, the require-
ments specification and validation
process requires close collaboration
between the user and the require-
ments engineer.

Taken together, these considera-
tions point to small, well-structured
problems with which the analyst is
completely at ease, and to users who
are either mathematically sophisti-
cated enough to understand and vali-
date the formally stated specifications
or are willing to rely upon informal
restatements of the formal specifica-
tions for validation. This general in-
ference is not contradicted by the case
studies in [7] and [15]. (Of the four
strategies classified in this cell, only
these two strategies were published
with accompanying case studies.)
Fields and Elvang-Ggransson illus-
trate the use of their strategy by
specifying a “small and easy to
understand” safety-critical reactor
watchdog system [7]. Similarly, Kem-
merer illustrates the use of his “inte-
grated” (direct) strategy by specifying
a small, well-defined secure release
terminal [15].

Another possible use of this strat-
egy would be in prototypical situa-
tions where the focus is on the
“proof-of-concept” (as in the early



days of aviation when “a good land-
ing was one you walked away from™),
rather than on the usual project ac-
countability considerations of indus-
trial-strength projects (e.g., traceabil-
iy, project cost, manpower
availability, and resource efficiency).
Such situations would be character-
ized by the use of highly trained and
motivated research or leading-cdge
professional personnel (who may be
in short supply) and relatively less
restrictive  resource  constraints.
Again, the projects described in
Fields and Elvang-Geransson and
Kemmerer are examples of such pro-
totypical situations.

However, the transitton from
small, well-structured, or prototypical
projects endemic to this cell, to indus-
trial-commercial projects introduces
additional considerations. First, the
large size and complexity of typical
industrial projects may make it diffi-
cult for the requirements engineer to
elicit and structure the informal (and
I some cases as yet to be discovered
and therefore unexpressed) require-
ments into formal specilications di-
rectly [1, 4, 14]. Second, in the semi-
to ill-structured  situations  encoun-
tered in real-world applications, the
problem structure may not be evi-
dent, and the analyst may need inter-
mediate representations to help her
or him discover the underlving prob-
lem structure [10]. Third, as typical
users (especially in other than engi-
neering and scientific domains) are
likely to be unfamiliar with the math-
ematical notation ol formal specifica-
tion languages, requirements elicita-
tion and verification of such large and
complex applications using formal
specification models may not be prac-

tical. Finally, the small likelihood of

finding requirements engineers who
are both comfortable with the appli-
cation domain and are wrained in for-
mal methods, coupled with the large
personnel requirements in typical
industrial projects, makes it impracti-
cal to use formal methods in these
projects in a direct unassisted man-
ner. Taken together, the above con-
siderations  constitute  a  scalability

problem.

Direct Computer-Assisted Strategy. A
direct computer-assisted strategy re-

TABLE 3. Definition of formalization process

Formalization Process

= Transitional moving from informal to formal specili
the use of (semiformal) imtermediate representations

Transitional Approaches

= Direct moving from informal to formal specifications without
the use of (semiformal) intermediate specifications.

sations through

formal specilications are derived from a

the semiformal and formal specifications

are produced through successive refine-

= Sequential
final set of semiformal models.
= Parallel
Successive
Refinement ments of each simultaneously.

TABLE 4. Definition of the support dimension

Formalization Support

= Unassisted human problem solving.

= Computer Assisted human problem solver is supported by computer-
based methods which use heuristics and knowledge
(knowledge-based) or transformational computer-
executable procedures (algorithmic).

TABLES. Taxonomy for strategies for producing formal specifications

Formalization

Support

Unassisted

Computer
Assisted

Jomes [14];
Kemmerer (c) [15];

Miriyala and

Direct Wing [24]; Harandi {21]
Fields and Elvang-
Goransson [7]*
Andrews and Gibbins Babin, Lustman, and
[ Shoval [2];
Sequential Kemmerer (a) [15]; Fraser, Kumar, and
Kung [16] Vaishnavi [9];
France [8]*
Transitional
Parallel Kemmerer (b) [15];
Successive Conger el al. [4]
Refinement

#These two strategies were not used in the morphological development of the
framework, but were added as a

been delined.
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lies on computer-based support to
develop formal specifications directly
from informal natural language spec-
ifications. Given the somewhat pre-
liminary, vague, and abstract nature
of informal specifications, such com-
puter assistance is usually in the form
of knowledge-based support for elic-
iting, discovering, and creating the
formal specifications. The domain-
dependent nature of knowledge
bases, however, could limit the appli-
cability of such assistance. For exam-
ple, SPECIFIER, a natural-to-formal
language  “specification-derivation
system” developed by Mirayala and
Harandi, uses concepts extracted
from informal specifications as a
guide to derive specifications in a for-
mal specification language similar to
the Larch Shared Language. It does this
by recognizing and instantiating sche-
mas, by applying analogy mapping, and
by performing difference-based reason-
ing. However, given the domain-
dependent nature of analogies, and
the primitive (syntactic) level of com-
monly occurring operations for
which the schemas are currently
available, the scaling up of this strat-
egy for real-world applications would
require a large amount of work in
amassing a variety of analogies and
acquiring and encoding myriad sche-
mas [21, p. 1141). Given further
progress in such support, in the fu-
ture it may be possible to employ di-
rect-assisted strategies in eliciting and
discovering requirements in specific
application domains. In the mean-
time, the use of direct-assisted strate-
gies would be limited to a restricted
set of small syntactic-level problems.

Transitional Unassisted Strategies. In
a transitional unassisted strategy one
or more semiformal specifications
provide mediating increments of for-
mality between the informal natural
language specifications and the for-
mal specifications. The transitional
unassisted strategy, however, relies
entirely on the formal language skills
of the requirements engineer to
translate between semiformal and
formal requirement specifications.
The transition through semiformal
specifications has a number of advan-
tages over a direct strategy. First, re-
cent research from cognitive science

SPECIFICATIONS

[10] suggests that semiformal repre-
sentations which mediate in the tran-
sition process may be better suited
than formal representations to ex-
ploring and discovering the problem
structure in ill-structured problems.
Second, Denning states that “the lan-
guage used to describe businesses
and organizational processes is differ-
ent from the language used for for-
mal specification” [6]. Denning fur-
ther suggests that end users and
requirement engineers would be in a
better position to know if they are in
agreement if the language of the
specifications is closer to the semifor-
mal language of business. Semiformal
specifications, thus, provide a useful
bridge between users and require-
ments engineers. Third, as shown in
[1] and [4], semiformal specifications
can guide the stepwise refinement of
formal specifications. Thus, transi-
tional strategies can provide elicita-
tion, structuring, and validation ad-
vantages over direct strategies in the
case of large or semistructured appli-
cations in problem domains with rela-
tively mathematically unsophisticated
users.

Transitional unassisted strategies
may be further subdivided into tran-
sitional-sequential and transitional-
parallel (successive refinement) un-
assisted strategies. In the case of
transitional-sequential  unassisted
strategies, complete semiformal spec-
ifications are produced first, from
which formal specifications follow.
This approach is feasible in those sit-
uations where detailed and complete
requirements are either previously
known or are easily discovered. Semi-
formal specifications then become the
means for structuring and validating
the complete requirements prior to
their manual (unassisted) translation
to formal specifications. An example
of this strategy would be the reengi-
neering (i.e., respecifying) of specifi-
cations from existing software (e.g.,
[12]).

Alternatively, in cases where the
problem domain is either ill defined
or ill structured, and therefore, the
requirements are yet to be discov-
ered, a transitional-parallel unas-
sisted strategy would be appropriate.
In this strategy synchronized semifor-
mal and formal system representa-
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tions are produced through parallel
concurrent refinements of the specifi-
cations. During the refinement pro-
cess, the partitioning and decomposi-
tion heuristics of the semiformal
methods guide the stepwise refine-
ment of the semiformal specifications.
At each new level, the newly refined
semiformal specifications are manu-
ally translated into their correspond-
ing formal specifications. The refined
formal specifications, in turn, can be
formally verified against the higher-
level formal specifications, thus en-
suring that the refined specifications
actually represent the higher-level
requirements. Thus, the transitional-
parallel strategy has the potential of
letting semiformal and formal specifi-
cations aid each other in a synergistic
fashion during the requirements dis-
covery and refinement process.

In either case, the translation from
semiformal to formal specifications is
performed by the requirements engi-
neer without computer assistance.
The manual (human) translation pro-
cess would require additional time
and resources over and above those
required for producing the semifor-
mal specifications. Thus, Kemmerer
argues that due to the duplication of
effort in producing both semiformal
and formal specifications, a direct (in-
tegrated) strategy has time and cost
advantages over sequential (“after-
the-fact”) and parallel strategies [15,
p. 37]. He observes further that in the
case of a parallel strategy, if the semi-
formal and formal specifications are
developed by two parallel require-
ments specification teams, problems
of communication between the two
teams and synchronization between
the semiformal and formal specifica-
tions can arise [15, p. 38].

Transitional Computer-Assisted Strat-
egies. These strategies are the last set
of generic strategies suggested by the
framework. Like the transitional un-
assisted strategies, these strategies too
are characterized by the use of semi-
formal specifications to mediate be-
tween informal natural language
specifications and formal language
specifications. Therefore, they have
the same advantages over the direct
strategies as discussed in the case of
transitional unassisted strategies.



However, unlike the transitional
unassisted strategies, in the case of
transitional computer-assisted strate-
gies, computer assistance would be
available to move back and forth be-
tween semiformal and formal specifi-
cations. Leveson [18] and Som-
merville [23] suggest that for formal
methods to become practical in real-
world projects, computer-assisted
tools are needed. The use of com-
puter assistance would provide a
number of advantages. First, com-
puter assistance, by supporting the
requirements engineer in require-
ments elicitation and problem-struc-
turing tasks and by replacing human
labor for routine translation tasks,
would ameliorate the time and cost
disadvantages of transitional strate-
gies suggested by Kemmerer. Sec-
ond, Mirayala and Harandi suggest
that “writing formal specifications is a
knowledge-intensive  and  error-
prone activity” [21, p. 1126]. The use
of computer assistance in the deriva-
tion of formal specifications would
tend to reduce these errors. Third,
computer support in translating be-
tween semiformal and formal specifi-
cations would eliminate the synchro-
nization problems between parallel
semiformal and formal specifications
[15] which can arise in a transitional-
parallel strategy. Finally, as the ma-
jority of elicitation and problem-
structuring tasks can now be per-
formed in the semiformal domain,
this would reduce the need for ex-
pensive highly trained personnel in
the tormal specifications domain.
Thus, it would be possible to staff
large industrial-strength formal spec-
ification projects adequately.

Finally, like the transitional unas-
sisted strategies, transitional com-
puter-assisted strategies are also
further subdivided into transitional-
sequential and transitional-parallel
(successive refinement) computer-
assisted strategies. In the case of tran-
sitional-sequential computer-assisted
strategies, first a complete set of semi-
formal specifications are produced.
Next, a computer-based tool is used
to translate the set of semiformal
specifications into their correspond-
ing formal specifications, usually with
some interactive help from the ana-
lyst. The computer assistance could

be in the form of a computer algo-
rithm or a knowledge-based system
(2, 9].

Alternatively, in the case of a tran-
sitional-parallel computer-assisted
strategy, synchronized semiformal
and formal system representations
are produced through parallel con-
current refinements of the specifica-
tions. During the refinement process,
the partitioning and decomposition
heuristics of the semiformal methods
guide the stepwise refinement of the
semiformal specifications. At each
new level, computer-based support
can be used to translate the newly re-
fined semiformal specifications into
the corresponding formal specifica-
tions. The refined formal specifica-
tions, in turn, can be formally verified
against the higher-level formal speci-
fications thus ensuring that the re-
fined specifications truly represent
the higher-level specifications. Any
problems discovered in this verifica-
tion process can be relayed back to
the semiformal domain where they
can be used to correct the semiformal
specifications. Thus, the transitional-
parallel strategy has the potential of
letting semiformal and formal specifi-
cations aid each other in a synergistic
fashion during the requirements dis-
covery and refinement process. At
this time no examples of computer-
assisted transitional-parallel formali-
zation strategies have been reported.

Ssummary and Conclusions

In this article, we have developed a
two-dimensional framework for de-
scribing and assessing strategies for
incorporating formal specifications in
software development. The frame-
work identifies four generic strate-
gies: direct unassisted, direct com-
puter assisted, transitional unassisted,
and transitional computer assisted.
Each of the two generic transitional
strategies are further subdivided into
transitional-sequential transi-
tional-parallel (successive refinement)
unassisted and computer-assisted
strategies respectively.

An examination of these strategies
suggests the direct unassisted strategy
is most appropriate for small, well-
structured, or prototypical problems
with which the analyst is completely
at ease and in projects where close

and

collaboration between users and ana-
lysts exists. However, due to the scal-
ability problems endemic to the direct
unassisted strategy its use in indus-
trial-strength projects is impractical.
The direct computer-assisted strate-
gies currently deal with syntactic-
level domain-specific problems only.
Much work needs to be done before
they could become useful in nontriv-
ial industrial-commercial applica-
tions.

The two generic transitional strate-
gies, unassisted computer-
assisted, provide elicitation, problem
structuring, and validation advan-
tages over direct strategies for large
or semistructured applications or
applications in problem domains with
relatively mathematically unsophisti-
cated users. The unassisted transi-
tional strategies, however, are labor
intensive and can be subject to
human error in translating between
semiformal and formal specifications.
On the other hand, in the case of
transitional computer-assisted strate-
gies, the use of computer-based assis-
tance maintains the advantages of
transitional strategies while amelio-
rating the manpower requirements
and human error disadvantages of
the transitional unassisted strategies.
Thus, transitional computer-assisted
strategies provide most promise in
addressing the scalability problem.

Within the transitional computer-
assisted strategies, transitional-
sequential strategies are useful in sit-
uations where detailed and complete
requirements are either known up
front or are easily discovered (e.g. in
software . reengineering). Alterna-
tively, in cases where the problem
domain is either ill defined or ill
structured, and therefore, the re-
quirements are yet to be discovered, a
transitional-parallel stepwise refine-
ment strategy would be appropriate.

An examination of strategies pro-
posed in literature (Table 5) shows
most of the recent work in develop-
ing and using strategies for formal
specifications has been primarily in
the direct unassisted and transitional-
sequential unassisted and computer-
assisted strategies. At this time no
examples of transitional-parallel com-
puter-assisted formalization strate-
gies have been reported. However,

and
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given the promise of such strategies,
work in developing them is needed.
The authors of this article are cur-
rently working on developing such
strategies. @
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Andrews and Gibbons [11,

ndrews and Gibbins use Struc-
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Babin, Lustman, and Shoval [2].

abin, Lustman, and Shoval pro-
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method, a transaction-oriented refine-

ment and extension of Structured Sys-
tems Analysis. The internal architecture
of the system Is a set of transactions
which are activated by events and user
requests. The strategy Is to develop a
complete ADISSA representation, and
then use a finite-state machine to repre-
sent the flow of control of a transaction.
The representation is achleved by apply-
ing a set of rules to map the control
portion of a transaction to a finite-state
machine. Thus, the strategy produces
formal specifications by a rule-based
transformation of semiformal specifica-
tions.

Conger et al. [4].

onger et al. provide a cognitive
c (computer-unassisted) transfor-

mation of Structured Analysis
Data Flow Diagrams (DFDs) to VDM speci-
fications. The strategy is first to obtain a
top-down hierarchically partitioned
data-flow diagram using Structured Anal-
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ysis heuristics. The DFDs provide a guide
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Fraser, Kumar, and Vaishnavi (9]
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flow diagrams and decision ta-
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specifications are then translated into
VDM specifications using an interactive
rule-based algorithmic method. Bottom-
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level processes are described with deci-
sion tables which are mapped into VDM
specifications using a decision table con-
version rule. The resulting VDM specifica-
tions are composed bottom-up using
sequence and while-structure composi-
tion rules based on the precedence anal-
ysis of the DFD. Iterative control pro-
cesses (while-do and repeat-until) in the
DFD specifications are identified as
while-structures by the analyst in exam-
ining the DFDs. Thus, the strategy is to
produce formal specifications algorithmi-
cally from Structured Analysis specifica-
tions.

Jones 114].

ones proposes a ''style of formal
J specification [which] uses (ab-

stract) models of data types and
implicit specification by pre- and post-
conditions. High-level design decisions
normally involve choosing the represen-
tation of data . . . Operation decomposi-
tion . . . is the process of choosing, and
justifying, a sequence of transformations
which can be [ultimately] expressed in
the implementation language" (p. 180).
In several specification examples in
Chapters 4, 6, and 7 (e.g., see pages 103,
104, and 148) Jones directly chooses ini-
tial models (i.e., the models of data types
and invariants) to underlie specifications
using natural language expressions of
problems. Operation decomposition is
guided by “proof obligations to stimu-
late design steps [decompositionl.”
Jones cautions, however, not “to expect
too much from this idea. Design [decom-
position] requires intuition and cannot,
in general, be automated. What is of-
fered is a framework into which the de-
signer's commitments can be placed.”

Kemmerer [15].

Three strategies are discussed for
using formal specification meth-
ods. (a) The after-the-fact, or
sequential, strategy consists of building
the system "‘using a standard approach,
and, after it is completed, a formal speci-
fication for the system Is written.” Kem-
merer notes that this strategy Iis costly
and generally has been used to “increase
assurance of a critical system'’s reliabil-
ity.” (b) The verification-in-parallel strat-
egy calls for “performing the formal
specification and verification effort in
parallel with the [standard] develop-
ment.” Kemmerer envisions two teams.
The development team uses a standard
method, and, at the same time, the
formal-verification team writes and veri-
fies formal specifications. The two-team
approach is both costly and highly de-
pendent on good Interteam communica-
tion for success. (c} The Integrated verifi-
cation strategy is the focus of
Kemmerer’s article.

Formal methods are completely inte-
grated into the development process.
The two teams should be one, and
"there should not be two separate pro-
cesses, but rather a single integrated
process where the developers use for-
mal specifications as their design nota-
tion.” This strategy incurs less time pen-
alty than the after-the-fact approach and
a lower cost than either of the two pre-
vious approaches. Kemmerer outlines
the strategy: "First, you state the critical
requirements, which are usually an En-
glish statement of what is desired, in
precise mathematical terms. . . . Next,
you provide a high-level formal specifica-
tion of the system. This specification

gives a precise mathematical description
of the system’s behavior . . . You may
follow this by less-abstract specifications
that implement the next higher level
specification . . .” That Is, the formal
specifications are developed directly
from an informal description of the sys-
tem by the requirements engineer.

Kung [161.

ung proposes a strategy for
using formal specification
methods based on conceptual

modeling which “emphasizes active par-
ticipation of users In requirements speci-
fication.” Static aspects of the applica-
tion domain are modeled in an ER-like
language, and dynamic aspects are mod-
eled by the traditional DFD technigue.
Process interface models “describe the
communication or synchronization
among the processes [in the dynamic
modell and can be regarded as modeling
of the external logic of the processes.”
The strategy is to first obtain static and
dynamic models, and then to model the
process interfaces to provide a basis for
formal checking of such qualitative as-
pects as consistency.

Miriyala and Harandi [21].

Irlyala and Harandi present
an automated tool for de-
riving formal specifications.

The strategy Is to provide computer as-
sistance in producing formal specifica-
tions in the form of an interactive sys-
tem that provides intelligent assistance
to the requirements analyst. The tool
guides the analyst through the deriva-
tion of formal specifications from an in-
formal requirements document ex-
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SOFTWARE

pressed in a restricted subset of natural
language. The strategy here is to pro-
duce formal specifications directly from
the informal requirements statement by
augmenting the capabilities of the ana-
lyst with a computerized tool that gives
schema-based (domain-independent
knowledge of commonly occurring oper-
ations) and analogy-based (past analo-
gous specifications are used in the deri-
vations of new specifications) assistance.
In either case, a "structure tree' of the
informally stated problem is first devel-
oped. The structure tree is a hierarchical
organization of information present in
the informal specifications and is used
by both schema-based and analogy-

SPECIFICATIONS

based approaches to derive the formal
specification.

wing [24].

n addition to providing noteworthy
I introductory treatments of a num-

ber of important formal specifica-
tion methods, Wing presents a strategy
for using formal methods that recog-
nizes that '‘formal methods are based on
mathematics but are not entirely mathe-
matical. Formal methods users must ac-
knowledge two important boundaries
between the mathematical world and
the real world.” These boundaries span
the mappings from the informal require-
ments to a formal specification and from

the real world to an abstract model.
Wing recognizes that the informal-to-
formal mapping is fundamental to the
task of producing formal specifications.
The user's requirements are mapped
from an informal expression into a for-
mal one through an iterative process
between specifier and user that is not
subject to proof. Wing explains this pro-
cess as one in which "a specifier might
write an initial specification, discuss its
implications with the customer, and re-
vise it as a result of the customer’s feed-
back.” On the other hand, Wing points
out that formal specification languages
encode abstractions that must be reified
in a computer representation. 3
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