
Maintaining Trustworthiness of Service Compositions

Zaki Malik
Department of Computer Science

Wayne State University
Detroit, MI. 48202, USA

zaki@wayne.edu

Brahim Medjahed
Department of Computer Science

University of Michigan
Dearborn, MI. 48120, USA

brahim@umd.umich.edu

ABSTRACT
We present a model for managing the trustworthiness of Web
services involved in service compositions. We introduce the
propagation of reputation information throughout the com-
position to aid all the services involved, in making informed
decisions regarding the selection of their respective compo-
nent services. In decreasing/increasing service reputations,
our aim is to ensure that no service is wrongfully blamed.
Our model is based on the “statistical cloud model” defined
for uncertain situations. The model can uniformly describe
the concepts of randomness, fuzziness, and their relationship
in quantitative terms. Experiment results show the appli-
cability of the proposed model in selecting and maintaining
an optimal composition of services.

1. INTRODUCTION
High volatility of demand and constant change in user needs
have prompted providers to undertake new forms of collab-
orations in which the providers are not tied down to a fixed
list of suppliers. This new paradigm allows providers to form
“dynamic partnerships with suppliers” (known as virtual en-
terprises) according to the particular needs of a customer,
and disband the partnership after customer demands are
met. With the introduction of Web services, applications
can now be automatically invoked by other Web clients. A
Web service is a self-describing software application that can
be advertised, located, and used across the Web using a set
of standards (such as WSDL, UDDI, and SOAP) [9].

It is expected that future Web enterprises would exhibit a
loose coupling of smaller applications offered by autonomous
providers [7][9]. A primary goal of the Web services tech-
nology is therefore enabling the use of Web services as in-
dependent components in Web enterprises, that are auto-
matically (i.e., without human intervention) formed as a
result of consumer demand and which may dissolve post
demand-completion [7]. The component service responsible
for “forming” the VE, i.e., invoking and integrating other
services to fulfill a certain task, is known as the orchestrator.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FIT’10, December 21-23, 2010, Islamabad, Pakistan.

As Web services proliferate, several services may provide the
functionalities requested by an orchestrator. Naturally, the
orchestrator should select a Web service that provides the
“best” service in comparison with other candidates. How-
ever, the selection process is not straightforward and is not
based only on how or what the service offers. Component
services may make promises about the provided service and
its associated quality but may fail partially or fully to de-
liver on those promises. Thus, the challenge lies in providing
a framework for enabling the selection and composition of
Web services based on trust [6].

Research results show that reliable reputation systems in-
crease users’ trust in the Web [10]. We also anticipate that
reputation will play a key role in the selection of component
services, as the higher the reputation of a service provider,
the better the service (high expectance for performance and
delivery) [5]. The accurate management of component rep-
utations is therefore a requirement for the optimal working
of a composition (e.g., a VE). In this paper, we study the
relationship between the reputation of a VE (the composed
service) and its components. We attempt to provide an ac-
curate assessment of the real culprit (i.e., the component
service that performed badly in the overall composition of
services albeit the fact that its own direct reputation is con-
sidered satisfactory by the orchestrator). In doing so, we
also aim to ensure that no service is wrongfully blamed and
persecuted.

In recent years, research regarding reputation-based trust
has been primarily rooted in probability theory, evidence/
belief models, or fuzzy logic. Probability based models usu-
ally do not consider the element of fuzziness in building
trust [1] [12]. Since the reasoning is done in a purely statisti-
cal manner, they tend over-formalize trust’s subjectiveness.
For example, Bayesian systems take binary ratings as input
and assess trust through updating of the beta probability
density function [13] [11]. This process is fairly complex
to comprehend and implement, and loses the component of
fuzziness inherent in trust assessment. Models based on ev-
idence and belief theory exhibit similar characteristics with
added complexity [12]. On the other hand, fuzzy logic based
systems use precise set memberships for defining fuzziness
of subjective trust. However, these solutions fail to consider
the randomness and uncertainty of membership in those
fuzzy sets [2] [8]. We propose a solution that incorporates
uncertainty and fuzziness of trust to provide a more unified
and holistic assessment. Our model employs the statistical

Copyright 2010 ACM 978-1-4503-0342-2/10/12 ...$10

cloud model which defines a way for modeling the transition
between a linguistic term of a qualitative concept and its
quantitative representation under uncertain and fuzzy con-
ditions.

The paper is organized as follows. In Section 2, we moti-
vate the problem with the help of a scenario. In Section
3, we present our reputation propagation model to maintain
optimal trust in service compositions, along with some back-
ground of our chosen approach. Section 4 provides experi-
ment results, and verifies the applicability of our proposed
model, while Section 6 concludes the paper.

2. REPUTATION-BASED SERVICE INTER-
ACTIONS

In traditional Web service models, service selection is not
trust-based. Web service consumers discover a list of providers
that can provide the required functionality through service
registries, select a provider arbitrarily, and then invoke, i.e.
communicate with the provider, expecting to retrieve the de-
sired results. However, in our model we use service providers’
reputations as the fundamental selection criteria. Service
consumers gather feedbacks of providers from their peers, as-
similate this information and derive corresponding provider
reputations, and sort the providers according to the as-
sessed reputations. The higher the reputation of a service
provider, the better the service is expected to behave. Ser-
vice consumers then invoke the best available Web service,
and at the end of the interaction, service consumers rate
the providers according to pre-determined criteria. These
service ratings are used to compute provider reputations ac-
cordingly.

Each service consumer records its own perceptions of the
reputation of only the services it actually invokes. This
perception is called personal evaluation. For each service
𝑠𝑗 that it has invoked, a service consumer 𝑡𝑥 maintains a
𝑝-element vector 𝑃𝑒𝑟𝐸𝑣𝑎𝑙𝑥𝑗 representing 𝑡𝑥’s perception of
𝑠𝑗 ’s behavior. Different strategies may be adopted in up-
dating 𝑃𝑒𝑟𝐸𝑣𝑎𝑙𝑥𝑗 . A simple one may be a per-invocation
update. Upon an invocation of service 𝑠𝑗 , the delivered
quality 𝑄𝑅𝑒𝑓𝑑 is compared to service 𝑠𝑗 ’s promised qual-
ity 𝑄𝑅𝑒𝑓𝑝 and, if necessary, a trust updating algorithm is
run to compute the new personal evaluation of service 𝑠𝑗 .
In essence, personal evaluation reflects the 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 perfor-
mance of the provider in consumer’s views. The personal
evaluation 𝑃𝑒𝑟𝐸𝑣𝑎𝑙𝑥𝑗 , represents only consumer 𝑡𝑥’s percep-
tion of the provider 𝑠𝑗 ’s reputation. Other service consumers
may differ or concur with 𝑡𝑥’s observation of 𝑠𝑗 . A service
consumer that inquires about the reputation of a given ser-
vice provider from its peers may get various differing per-
sonal evaluation “feedbacks.” To get a correct assessment of
the service provider’s behavior, all the personal evaluations
for 𝑠𝑗 need to be aggregated. Assume L denotes the set
of service consumers which have interacted with 𝑠𝑗 in the
past and are willing to share their personal evaluations of
𝑠𝑗 . We assume that 𝐿 is not empty, i.e., some service willing
to share information can be found. Thus, 𝐿 ⊆ 𝑇 with 𝐿 ∕= ∅
and each service 𝑥 in 𝐿 has 𝑃𝑒𝑟𝐸𝑣𝑎𝑙𝑥𝑗 values for 𝑠𝑗 . Then,
consumer 𝑥’s trust over 𝑠𝑗 ’s ability to deliver is defined as:

𝑇𝑟𝑢𝑠𝑡(𝑠𝑗) = Γ𝑥∈𝐿(𝑃𝑒𝑟𝐸𝑣𝑎𝑙
𝑥
𝑗) (1)

where Γ represents the aggregation function. Equation 1
provides a first approximation of how the trust may be as-
sessed. However, it involves various factors that need to be
precisely defined and measured. We have previously defined
such a model in [6].

In service compositions, service orchestrators need to be
aware of their own (i.e., the composition’s) reputation so
that in cases where the component services negatively ef-
fect the reputation of the orchestrator, it can take suitable
actions like replacing the component service, penalizing the
defaulting component, etc. In other words, the orchestra-
tor should transfer the (part of the) blame, incurred in the
form of loss in reputation to the actual component service
responsible (defined: culprit). Similarly, the orchestrator
should also recognize the component services working hon-
estly, thereby increasing the orchestrator’s reputation. This
recognition can come in the form of reputation increment
for the component services responsible. In this paper we
focus on “blame sharing.” The findings are also potentially
applicable to reputation increment scenarios.

A service composition may involve component services that
are themselves compositions. Thus, we may have nested
compositions, and a composition orchestrator may not be
aware of all the services involved. In these situations, blame
sharing is not straight forward as there are many “hidden”
variables involved. For example, consider Figure 1, where
a user plans to attend a conference at City-X, which is to-
tally new to the user. Since the user does not have enough
time to invest in planning the whole trip, the Trip Planner
(TP) virtual enterprise is consulted. The user communi-
cates some constraints to TP. For example, the user may
be interested in (a) touring the city using a bus tour guide
(no cruise required), (b) be interested in watching a movie,
and (c) plan to go to a good theater in the vicinity, and
(d) be keen on exploring the area museums also. The ser-
vices selected to meet the user’s demands are represented by
straight lines in Figure 1. Note that Museums, Downtown
Tours, Cinema and Theatre are individual services that do
not outsource any functionality, while Sightseeing Service,
Area Tours, Arts, Bus Tour are composed services that del-
egate some part of their assigned work to other services (all
services not mentioned here). Since the user only interacts
with Trip Planner, it is unaware of other services due to
privacy, trade secrets, etc. considerations. Similarly, Trip
Planner is unaware that which of its component services is
a composed service.

It may happen that the services chosen by Trip Planner
do not provide an optimal combination when invoked to-
gether, and the quality (hence reputation) of the Trip Plan-
ner -composition drops. Note that although a component
service’s selection is based on its reputation (i.e. highly rep-
utable services are selected), the combination thereof may
not prove to be ideal due to a variety of reasons (as trade
constraints, legislative or geographical incompatibilities, etc).

We identify the reputation of composed services in a top-
down manner. This means that post-transaction comple-
tion, apart from rating the component services, the invok-
ing service (Trip Planner in the running example) identifies
the operations that did not meet its expected QoWS values.

Figure 1: Sample Composition

Based on this experience, the invoker adjusts the reputation
of the component service(s) in its knowledge scope respon-
sible for delivering that operation. For example, suppose
Trip Planner identifies that something went wrong with the
user’s sightseeing experience which causes a degradation in
Trip Planner ’s reputation. We assume that Bus Tour is the
real “culprit”, but since Trip Planner only communicates
with Sightseeing Service, it transfers the blame to the Sight-
seeing Service by reducing its reputation. Since we assume
the services can observe their reputations (through indirect
means), Sightseeing Service would in turn calculate the dif-
ference in its reputation. Based on the percentage decrease
in its reputation, Sightseeing Service would then transfer the
blame to its component services. Each service that trans-
fers or propagates the blame down the composition chain
may deploy a different strategy in calculating the amount of
blame to be transferred. For example, Sightseeing Service
may decide to decrease the reputation of component ser-
vices linearly, exponentially, etc. The component services
would in turn employ similar procedures of transferring the
blame down to their component service(s). The rationale for
employing such a reputation degradation chain is that each
component service is held responsible for the composition’s
reputation degradation.

In situations where a single operation branches into sev-
eral sub-operations, the blame has to be transferred to the
actual culprit and service(s) responsible for other sub- op-
erations should not take undue blame. However, since the
invoker only rates the operations atomically, the component
service cannot determine which sub-operation defaulted. In
our example, Sightseeing Service outsources the sightseeing
activities to three component services namely Area Tours,
Arts, andMuseums. If Trip Planner labels sightseeing as the
faulty operation, it will decrement Sightseeing Service’s rep-
utation as it outsources this functionality only from Sight-
seeing Service. Since sightseeing is outsourced to three ser-
vices (Area Tours, Arts, and Museums), Sightseeing Service
has no way of identifying the culprit sub-operation directly.
Hence Area Tours, Arts, and Museums would all be blamed

for the fault. Since, in the discussion above we assumed Bus
Tour was the real culprit, Arts, and Museums are blamed
unjustly (Area Tours should be responsible because of Bus
Tour). In other words, blaming each component service
equally may not prove to be the ideal solution in terms of
fairness.

3. TRUST MAINTENANCE IN COMPOSI-
TIONS

We propose to optimize fairness in blame-forwarding through
historical knowledge. Due to the subjective nature of trust,
uncertain and incomplete trust information regarding all
component services, this is not a straight forward task. Thus,
we employ a statistical model to incorporate fuzziness and
randomness in trust as complementary and essentially in-
separable concepts. In the following, we first give a brief
overview of this approach, and then describe our model.

3.1 Background
The statistical cloud model (or simply, the cloud model)
states that the concept of fuzzy membership functions is not
sufficient for representing the uncertainty and imprecision in
real world settings, and probability theory needs to be in-
corporated to overcome this inadequacy. In essence, a cloud
model can uniformly describe the concepts of randomness,
fuzziness, and their relationship in quantitative terms. Ex-
periment results have shown that the cloud model exhibits
higher levels of simplicity and robustness in comparison with
traditional fuzzy logic and probability based methods [3] [4].
In the following, we provide a brief overview of the cloud
model.

Let 𝑈 be the quantitative universe of discourse, and 𝐶 de-
note a qualitative concept associated with 𝑈 . If 𝑥 ∈ 𝑈 is a
random realization of 𝐶, and 𝜇(𝑥) ∈ [0, 1] is a random vari-
able with stable tendency denoting the degree of certainty
for 𝑥 belonging to 𝐶, that is:

𝜇 : 𝑈 [0, 1] ∀𝑥 ∈ 𝑈 𝑥 → 𝜇(𝑥)

The distribution of 𝑥 in 𝑈 is called the cloud (denoted
𝐶(𝑋)) and each 𝑥 is called a cloud drop. Note that in prob-
abilistic terms, 𝑥 ∈ 𝑈 is not a simple random number but
it has a certainty degree, which itself is also random and
not a fixed number. The cloud is composed of a number of
drops, which are not necessarily ordered. The underlying
character of the qualitative concept is expressed through all
cloud drops. Hence the overall feature of the concept is more
precisely represented by a large number of drops. The cer-
tainty degree of each cloud drop defines the extent to which
the drop can represent the concept accurately. Formally, a
cloud’s quantitative representation is defined over a set of
𝑁 ordered pairs (𝑥𝑖, 𝑦𝑖), where 𝑥𝑖 is a cloud drop, and 𝑦𝑖 is
its certainty degree, with 1 ≤ 𝑖 ≤ 𝑁 .

A one-dimension normal cloud model’s qualitative represen-
tation can be represented by a triple of quantitative char-
acteristics: Expected value (𝐸𝑥), Entropy (𝐸𝑛) and Hyper-
Entropy (𝐻𝑒). 𝐸𝑥 is the expectation of the cloud drops’ dis-
tribution, i.e., it corresponds to the center of gravity of the
cloud (containing elements fully compatible with the quali-
tative concept). 𝐸𝑛 represents the uncertainty measurement
of a qualitative concept. It is determined by both the ran-
domness and fuzziness of the concept. 𝐸𝑛 indicates how

many elements could be accepted to the qualitative linguis-
tic concept. 𝐻𝑒 is a measure of the dispersion on the cloud
drops. It can also be considered as 𝐸𝑛’s uncertainty. Vector
�⃗� = (𝐸𝑥,𝐸𝑛,𝐻𝑒) is called the eigenvector of a cloud [3].

The transformation of a qualitative concept expressed by
𝐸𝑥, 𝐸𝑛, and 𝐻𝑒 to a quantitative representation expressed
by the set of numerical cloud drops is performed by the for-
ward cloud generator [4]. Given these three digital charac-
teristics (𝐸𝑥,𝐸𝑛,𝐻𝑒), and the number of cloud drops to be
generated (𝑁), the forward cloud generator can create these
N cloud drops in the data space with a certainty degree for
each drop that each drop can represent the qualitative con-
cept. The procedure is:

1. Generate a normally distributed random number 𝐹
with mean 𝐸𝑛 and standard deviation 𝐻𝑒.

2. Generate a normally distributed random number 𝑥
with mean 𝐸𝑥 and standard deviation 𝐹 .

3. Calculate 𝑦 = 𝑒
− (𝑥−𝐸𝑥)2

2(𝐹)2 .

4. (𝑥, 𝑦) represents a cloud drop in the universe of dis-
course.

5. Repeat Steps 1-4 until 𝑁 cloud drops are generated.

Figure 2: Normal Cloud with Same Ex and En, but
Different He Values

Figure 2(a) shows the graph of a one-dimensional cloud
whose digital characteristics are (0.7, 0.1, 0.01). A simi-
lar cloud with same 𝐸𝑥 and 𝐸𝑛, but a different 𝐻𝑒 (0.7,
0.1, 0.5) is shown in Figure 2(b). As defined in the above al-
gorithm, the quantitative value of cloud drops is determined
by the standard normal form distribution function. Hence,
the certainty degree function adopts a bell-shaped curve.
This is similar to the one adopted in fuzzy set theory. As
mentioned earlier, the normal cloud model is therefore an
inclusive model based on probability theory and fuzzy set
theory, and is able to depict randomness in the former and
fuzziness in the latter.

3.2 Reputation Propagation
The premise behind our approach is that past defaulters
are likely to defect again in a composition. We assume
that composition orchestrators can monitor their own rep-
utations throughout the community, in a manner similar to

obtaining the reputations of other service providers. A nega-
tive change in the orchestrator reputation indicates that one
(or more) of the component services did not function as ex-
pected in the final composition. When the amount of change
is above a defined threshold, the orchestrator transfers the
blame to the component services involved. The statistical
cloud defined above is used to assess the amount of blame to
be transferred (in form of reputation loss), and the “inferred
identity” of the real culprit component service. After blame
is forwarded, the orchestrator monitors the reputations of
the component services for a defined time period to ascer-
tain the validity of its decision. The objective of this activity
is two-fold: First, to assess whether the blame was assigned
to the correct component. Second, to establish that blame
forwarding helped in correcting the component’s behavior.
If the component service does not ameliorate its behavior,
the amount of blame is increased.

The model’s recommendations are guided by the compo-
nent services’ profiles maintained by the orchestrator. The
profile consists of the component services invoked by the or-
chestrator, the interaction time-stamp, component reputa-
tions, and the sequence in which those component services
were invoked. Since outsourced operations are not equal
in terms of impact in a composition (some operations are
more important than others), amount of blame to be trans-
ferred should also reflect that. The orchestrator also assigns
an “operational significance” (𝑂𝑝𝑆𝑖𝑔𝑛) to each outsourced
sub-operation, denoting the importance of the sub-operation
in completing the parent operation, with

∑
𝑂𝑝𝑆𝑖𝑔𝑛𝑘 = 1.

𝑂𝑝𝑆𝑖𝑔𝑛 for each component is also part of its historical pro-
file.

We incorporate 𝑂𝑝𝑆𝑖𝑔𝑛 with the stored reputations for pre-
vious interactions to produce the three digital characteristics
of the cloud (𝐸𝑥,𝐸𝑛,𝐻𝑒). The backward cloud generator
allows transformation of the cloud model from its quantita-
tive representation to a qualitative one. Given a set of 𝑁
ratings for a component service 𝑃𝑒𝑟𝐸𝑣𝑎𝑙𝑥𝑗 (𝑥 = 1, 2, ..., 𝑁),
we can extract the three characteristics as:

1.

𝐸𝑥 =

∑𝑁
𝑥=1(𝑂𝑝𝑆𝑖𝑔𝑛𝑥𝑃𝑒𝑟𝐸𝑣𝑎𝑙

𝑥
𝑗)∑𝑁

𝑥=1𝑂𝑝𝑆𝑖𝑔𝑛𝑥

2.

𝐸𝑛 =

√
𝜋

2
×

∑𝑁
𝑥=1𝑂𝑝𝑆𝑖𝑔𝑛𝑥∣𝑃𝑒𝑟𝐸𝑣𝑎𝑙𝑥𝑗 − 𝐸𝑥∣∑𝑁

𝑥=1𝑂𝑝𝑆𝑖𝑔𝑛𝑥

3.

𝐻𝑒 =

√∑𝑁
𝑥=1𝑂𝑝𝑆𝑖𝑔𝑛𝑥(𝑃𝑒𝑟𝐸𝑣𝑎𝑙𝑥𝑗 − 𝐸𝑥)2

𝑂𝑝𝑆𝑖𝑔𝑛𝑥
− (𝐸𝑛)2

The next step is using the three discovered characteristics
to make a subjective assessment of the component’s role in
orchestrator’s reputation degradation. Since 𝐻𝑒 is a mea-
sure of 𝐸𝑛’s uncertainty, we only use 𝐸𝑥 and 𝐻𝑒 to quantify
the provider’s trust and the associated uncertainty. This al-
lows us to consider the latest majority view of the provider’s
reputation and the decentralization of ratings from it. A

higher value of 𝐸𝑥 therefore indicates high reputation, i.e.,
the component service is not blame-worthy, while a small
𝐻𝑒 indicates the stability of the ratings around this deci-
sion. Intuitively this makes sense, but for a large 𝑁 , making
these comparisons is non-trivial. For instance, 𝐸𝑥 and 𝐻𝑒
can occur together in one of four forms: one is high/low the
other is low/high, both are high, or both are low. Therefore,
to quantify the relationship between the two characteristics,
i.e., the component (𝑠𝑗)’s assessment, we use:

𝑃𝑟𝑜𝑓𝑖𝑙𝑒𝑇𝑟𝑢𝑠𝑡(𝑠𝑗) =

⎧⎨
⎩
1− 𝐻𝑒

𝐸𝑥+𝐻𝑒
𝑖𝑓𝐸𝑥 ∕= 0 � 𝐻𝑒 ∕= 0;

𝐸𝑥 𝑖𝑓𝐻𝑒 = 0;

0 𝑖𝑓𝐸𝑥 = 0;

(2)

where both 𝐸𝑥 ∕= 0 and𝐻𝑒 ∕= 0. The component service (𝑠𝑗)
with the lowest ProfileTrust is thus considered “at fault”. In
cases where multiple services have equally low values, blame
is shared. Moreover, in cases where no profile information
is available (e.g. first time interactions with components),
blame is shared between the “new” component(s), and the
existing lowest performing one (if any exists).

The next step is assessing the amount of blame to be trans-
ferred. The orchestrator (Sightseeing Service in this case)
may use a number of strategies: Assume that Trip Plan-
ner ’s feedback about Sightseeing Service reduces its reputa-
tion by a factor Δ. In order to “forward” this blame, Sight-
seeing Service may use: a constant strategy (i.e., component
service’s reputation is reduced by at least Δ), a linear strat-
egy (i.e., component service’s reputation is reduced by at
least 2Δ), an exponential strategy (i.e., component service’s
reputation is reduced by at least Δ2), etc. The component
services will also choose a strategy to share the blame with
their component services (if any).

There are no hard and fast rules for deciding which strat-
egy is the best. It is thus at the discretion of the invoking
service to decide which strategy suits its business model.
We propose to use the rate of maliciousness in the service
community as a measure of which strategy to use. The rate
of maliciousness (denoted ℜ) is defined as the ratio of the
number of transactions where the providers defect, to the to-
tal number of transactions (ℜ thus lies in the range [0, 1]).
A provider’s “defection” is measured after each individual
transaction, by the service consumer (denoted rater). If the
provider performs satisfactorily in the transaction, the rater
can label the transaction as “acceptable.” Alternatively, the
transaction is labelled as “defective.” Thus, defection (de-
noted𝐷) can be represented as a binary. Since service raters
can differ in their total number of transactions, and the num-
ber of defective transactions experienced, we can expect a
variation in the value of ℜ across different service raters.
In essence, the value of ℜ would depend on each rater’s
personal experience, and the manner in which it estimates
𝐷 after each transaction. The basic idea of the proposed
scheme is for the component service invoker to forward less
blame when ℜ is low, and higher degrees of blame when ℜ
is high. This allows the consumer to adapt to the current
state of the system (i.e., defective vs. acceptable transac-
tions). Formally, for each service consumer 𝑖, ℜ is defined
as:

ℜ𝑖 =
𝐷𝑖

𝑇𝑖
(3)

where𝐷𝑖 is the number of transactions where providers have
defected for consumer 𝑖, and 𝑇𝑖 is the total number of trans-
actions that consumer 𝑖 has undertaken. Since the severity
of defective transactions varies, the service rater can also
assign relative weights to the transactions. For example, in
a “high impact” transaction where the consumer suffers a
huge loss as a consequence of the provider’s defection, the
consumer may count two (or more) defective transactions
instead of one (while increasing the 𝑇𝑖 count by only one),
to increase ℜ𝑖. The assignment of such weights is left at the
discretion of the service rater.

4. EXPERIMENTS
We have performed preliminary experiments to show the
applicability of the proposed model. We assume that repu-
tations for services are evaluated and available using assess-
ment techniques defined for individual services (e.g. [6] [13]
[11], etc). Through these experiments we intend to answer
two main questions: (1) Does blame propagation help? (2)
What is the impact of wrongfully blaming a component ser-
vice, i.e., when the service is not at fault but gets punished
anyhow? Due to space restrictions, complete details of the
experiment environment are not listed here. The interested
reader is referred to [6].

We assume that each service can obtain a measure of its
“true” reputation. After any dissatisfying transaction, the
composition orchestrator Web service (acting as the invoker)
may leave a negative feedback for the component service,
thereby reducing its reputation. Since reputation is defined
as an aggregation of a number of feedbacks, the effect of a
single composition orchestrator may not be profound. How-
ever, for experimental purposes we assume that a negative
feedback by even one rater reduces the reputation of the
component service. Moreover, if more than one operation
are outsourced from one service, the invoker leaves feed-
back for each operation. This allows the component service
to know which of its operations defaulted in the invoker’s
view. To the best of our knowledge, no comparable work
for “reputation propagation” in service compositions exists
yet. Thus, experiment results cannot be validated against
an existing model.

Reputation Building under Various Scenarios

0
0.1
0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9

1

1 5 9 13 17 21

Transactions

R
ep

u
ta

ti
o

n

Share the Blame
Usual
No Awareness

Figure 3: Reputation Propagation Effects on a Com-
posed Service’s Reputation

Figure 3 shows the effects of blame propagation on the ser-
vices involved in a composition. The reputation building
process is shown for three scenarios namely share the blame,
usual, and no awareness. The process is shown for a single
service in a composition of ten or more services for each
scenario. The services experience a (forced) drop in their

reputation in the 650th., 1350th. and 2000th. transaction.
In Share the Blame scenario, the composed service iden-
tifies the faulty service based on the information received,
and propagates the “blame” to its components. In these
experiments we force the assumption that once a service be-
comes aware of its reputation loss due to blame propagation
(reputation assessment through direct monitoring is differ-
ent from this), it does not repeat its mistake and rectifies its
behavior. This causes a gradual elevation in the composed
service’s reputation right after it suffered a degradation. In
the Usual case, the service does not identify the faulty ser-
vice immediately, and thus experiences a loss in its reputa-
tion due to the faulty operation for extended periods. Upon
identification, and new service selection, the composed ser-
vice starts its gradual reputation ascend. In the third case,
since the service is not aware of the fault, it keeps repeating
its mistake and hence keeps losing its reputation. When the
reputation reaches a very low value, the service is not se-
lected again, and its (low) reputation remains constant. We
can clearly see from Figure 3 that our proposed technique
produces favorable results in terms of the composition’s rep-
utation.

Composition Orchestrator's Decision Impact

0
0.1

0.2
0.3

0.4
0.5
0.6

0.7
0.8

0.9
1

1 5 9 13 17 21

Transactions

R
ep

u
ta

ti
o

n

Right Decision

Wrong Decision

Figure 4: Impact on the Composition’s Reputation
because of Right/Wrong Decision

Figure 4 shows the impact of a correct or an incorrect de-
cision on part of the composition orchestrator, on the rep-
utation of the composition. Here also, the composition ex-
periences a drop in reputation at the 650th., 1350th. and
2000th. transaction (enforced). When the faulty opera-
tion is identified correctly, the composition reevaluates itself
(through propagation) quickly and the reputation is main-
tained/increased. Alternatively, the composition takes some
time to recover from a wrong decision. The reputation keeps
declining in face of the wrong decision for sometime, and
only when the correct fault is detected, does the reputation
starts increasing. Although the proposed technique provides
a reasonable solution, the decision of the composition orches-
trator does play an important role in propagating and hence
defining the correct reputation.

5. CONCLUSION
We have presented a framework for managing reputations
of Web service compositions. The framework is based on
previous recommendations from supply-chain management
studies, and uses the propagation of reputation information
throughout the composition as the primary tool in deterring
malicious behavior by component services. The results in-
dicate the usefulness of the proposed approach. We focused
on an environment where Web services can act as both con-
sumers (i.e., requesters) and providers of services, without

the need of a trusted third party. We have also conducted
preliminary experiments to verify the proposed model. Re-
sults exhibit strong evidence that our approach provides a
fairly accurate assessment of provider trust. In the future,
we intend to implement the model in a real Web services
environment.

6. REFERENCES
[1] K. Bharadwaj and M. Al-Shamri. Fuzzy

computational models for trust and reputation
systems. Electron. Commer. Rec. Appl., 8(1):37–47,
2009.

[2] R. He, J. Niu, M. Yuan, and J. Hu. A novel
cloud-based trust model for pervasive computing.
Computer and Information Technology, International
Conference on, 0:693–700, 2004.

[3] D. Li, J. Han, X. Shi, and M. Chan. Knowledge
representation and discovery based on linguistic
atoms. Knowledge-Based Systems, 10(7):431 – 440,
1998. KDD: Techniques and Applications.

[4] D. Li, C. Liu, and W. Gan. A new cognitive model:
Cloud model. Int. J. Intell. Syst., 24(3):357–375, 2009.

[5] Z. Malik and A. Bouguettaya. Evaluating rater
credibility for reputation assessment of web services.
In 8th International Conference on Web Information
Systems Engineering (WISE 07), pages 38–49, 2007.

[6] Z. Malik and A. Bouguettaya. Reputation-based Trust
Management for Service-Oriented Environments.
VLDB Journal, 18(4):885–911, August 2009.

[7] B. Medjahed, A. Bouguettaya, and A. Elmagarmid.
Composing Web Services on the Semantic Web. The
VLDB Journal, 12(4), November 2003.

[8] J. Niu, Z. Chen, and G. Zhang. Towards a subjective
trust model with uncertainty for open network. Grid
and Cooperative Computing Workshops, International
Conference on, 0:102–019, 2006.

[9] M.P. Papazoglou and D. Georgakopoulos.
Serive-Oriented Computing. Communcications of the
ACM, 46(10):25–65, 2003.

[10] P. Resnick, R. Zeckhauser, E. Friedman, and
K. Kuwabara. Reputation Systems. Communication of
the ACM, 43(12), December 2000.

[11] J. Sabater and C. Sierra. Bayesian Network-Based
Trust Model. In Proc. of the first Intl. Joint Conf. on
Autonomous Agents and Multiagent Systems, pages
475 – 482, Bologna, Italy, 2003.

[12] Z. Shibin, S. Xiang, and Q. Zhi. Subjective trust
evaluation model based on fuzzy reasoning. Electronic
Commerce and Security, International Symposium,
1:328–332, 2009.

[13] A. Whitby, A. Josang, and J. Indulska. Filtering Out
Unfair Ratings in Bayesian Reputation Systems. The
Icfain Journal of Management Research, 4(2):48–64,
February 2005.

