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We analyze the convergence of randomized trace estimators. Starting at 1989, several algorithms have been
proposed for estimating the trace of a matrix by 1T14 Zf‘i 1 ziT Az;, where the z; are random vectors; different
estimators use different distributions for the z;s, all of which lead to E(% Zl 127 Az;) = trace(A). These
algorithms are useful in applications in which there is no explicit representation of A but rather an efficient
method compute zT Az given z. Existing results only analyze the variance of the different estimators. In
contrast, we analyze the number of samples M required to guarantee that with probability at least 1 —§, the
relative error in the estimate is at most €. We argue that such bounds are much more useful in applications
than the variance. We found that these bounds rank the estimators differently than the variance; this
suggests that minimum-variance estimators may not be the best.

We also make two additional contributions to this area. The first is a specialized bound for projection
matrices, whose trace (rank) needs to be computed in electronic structure calculations. The second is a new
estimator that uses less randomness than all the existing estimators.
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1. INTRODUCTION

Finding the trace of an explicit matrix is a simple operation. But there are application
areas where one needs to compute the trace of an implicit matrix, that is, a matrix
represented as a function. For example, in lattice Quantum Chromodynamics, one
often needs to compute the trace of a function of a large matrix, trace( f(A)). Explicitly
computing f(A) for large matrices is not practical, but computing the bilinear form
xT f(A)x for an arbitrary x is feasible [Bai et al. 1996, 1998]. Other examples include the
regularized solution of least-squares problems using the Generalized Cross-Validation
approach (see Hutchinson [1989]), estimating || Al and |A~!| 7 (using the well-known
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8:2 H. Avron and S. Toledo

identity ||A||%1 = trace(A*A)), optimal design of proper orthogonal decomposition basis
[D’Elia et al. 2011] and computing the number of triangles in a graph [Tsourakakis
2008].

The standard approach for computing the trace of an implicit function is Monte-Carlo
simulation, where the trace is estimated by 4 M 2T Az, where the z; are random
vectors. The original method is due to Hutchinson [1989]. Although this method has
been improved over the years [Bekas et al. 2007; Iitaka and Ebisuzaki 2004; Wong et al.
2004], no paper to date has presented a theoretical bound on the number of samples
required to achieve an e-approximation of the trace; only the variance of estimators
has been analyzed.

This article makes four significant contributions to this area.

(1) We provide rigorous bounds on the number of Monte-Carlo samples required to
achieve a maximum error € with probability at least 1—3§ in several trace estimators.
The bounds are surprising: the method with the best bound is not the method with
the smallest variance.

(2) We provide specialized bounds for the case of projection matrices, which are impor-
tant in certain applications.

(3) We propose a new trace estimator in which the z;s are random columns of a unitary
matrix with entries that are small in magnitude. This estimator converges slower
than known ones, but it also uses fewer random bits.

(4) We experimentally evaluate the convergence of the three methods on a few inter-
esting matrices.

2. HUTCHINSON’S METHOD AND RELATED WORK

The standard Monte-Carlo method for estimating the trace of an implicit method is
due to Hutchinson [1989], who proves the following lemma.

LEmMa 2.1. Let A be an n x n matrix. Let z be a random vector whose entries are i.i.d
Rademacher random variables (Pr(z; = +1) = 1/2). 2T Az is an unbiased estimator of
trace(A) that is,

EzT Az) = trace(A)

and

n
Var(z” Az) = 2 <||A||% - ZA?)
i=1
If we examine the variance term we see that intuitively it measures how much of the
matrix’s “energy” (i.e., the Frobenius norm) is not on the diagonal. For some matrices,
for example, matrices with huge diagonal and small off-diagonal elements, Lemma 2.1
guarantees small variance and fast convergence. But, it is easy to see that for a general
matrix Hutchinson’s method can be ineffective because the variance can be arbitrarily
large. Even for a symmetric positive definite matrix the variance can be large: the
variance for the matrix of all 1’s, which is symmetric semi-definite, is 2(n%2 —n), whereas
the trace is only n. This matrix can be perturbed to definiteness without a significant
impact on the trace or variance. Such a large variance precludes the use of Chebyshev’s
inequality to bound the number of iterations required to obtain a given relative error
in the trace. For such a bound to hold, the variance must be o(trace(A)?).

Lemma 2.1 does not give a rigorous bound on the number of samples/matrix multi-
plications. This difficulty carries over to applications of this method, such as Bai et al.
[1996, 1998]. Hutchinson’s method has been improved over the years, but the improve-
ments do not appear to have addressed this issue. Wong et al. [2004] suggest using test
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vectors z that are derived from columns of an Hadamard matrix. Bekas et al. [2007]
focus on approximating the actual diagonal values, also using vectors derived from an
Hadamard matrix.

Independently, trace estimators were also researched by the physics community in
the context of electronic structure computations. Silver and Roder [1997] use Gaussian
i.i.d variables. litaka and Ebisuzaki [2004] generalized Hutchinson’s estimator by
using complex i.i.d’s with unit magnitude; they showed that the resulting estimator
has lower variance than Hutchison’s (but the computation cost is also higher). Other
relevant work include Drabold and Sankey [1993], Wang [1994] and Wheeler and
Blumstein [1972].

In Section 7, we show that it is possible to bound the number of samples required for
Hutchinson’s method. However, the bound that we obtain is not as tight as the bound
we obtain when the entries of z are i.i.d normal variables.

A related technique is statistical condition and matrix norm estimation. See
Gudmundsson et al. [1995] and Kenney et al. [1998] and references therein.

3. THREE AND A HALF ESTIMATORS

In this section, we describe the trace estimators that we analyze. We describe three
estimators and a variant of one of them. All estimators follow the same basic pattern:
a random vector z is drawn from some fixed distribution, and 27 Az is used to estimate
the trace. This procedure is repeated M times using i.i.d samples and the estimates
are averaged.

The first estimator uses vectors whose entries are standard Gaussian (normal) vari-
ables.

Definition 3.1. A Gaussian trace estimator for a symmetric positive-definite matrix
Ac RY™ g

1 M
GM = H ZZ;TAZZ',
i=1
where the z;’s are M independent random vectors whose entries are i.i.d standard
normal variables.

The Gaussian estimator does not constrain the 2-norm of the z;’s; it can be arbitrarily
small or large. All the other estimators that we analyze normalize the quadratic forms
by constraining z”z to be equal to n. This property alone allows us to prove below a
general convergence bound.

Definition 3.2. A normalized Rayleigh-quotient trace estimator for a symmetric pos-
itive semi-definite matrix A € R™" is

1 M
— § T As.
RM— M ‘_lzi AZL,

where the z;’s are M independent random vectors such that ziT 2z, = n and E(ziT Az) =
trace(A).

The second estimator we analyze is Hutchinson’s.

Definition 3.3. An Hutchinson trace estimator for a symmetric positive-definite ma-
trix A € R™" is

1 M
_ § T As.
Hy = — 2 z; Az;,

where the z;’s are M independent random vectors whose entries are i.i.d Rademacher
random variables.
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8:4 H. Avron and S. Toledo

The first two estimators use a very large sample spaces. The Gaussian estimator
uses continuous random variables, and the Hutchinson estimator draws z from a set
of 2" vectors. Thus, the amount of random bits required to form a sample is Q(n). Our
third estimator samples from a set of n vectors, so it only needs O(logn) random bits
per sample. We discuss the issue of randomness and it implications further in the next
section. The third estimator samples from a smaller family by estimating the trace
in a more direct way: it samples the diagonal itself. The average value of a diagonal
element of Ais trace(A)/n. So we can estimate the trace by sampling a diagonal element
and multiplying the result by n. This corresponds to sampling a unit vector from the
standard basis and computing the Rayleigh quotient.

Definition 3.4. A unit vector estimator for a symmetric positive-definite matrix A e
Rnxn is

M
n T
Un =1, ;zi Az;,

where the z;’s are M independent uniform random samples from {eq, ..., e,}.

In contrast to previous methods, the quadratic forms in the unit-vector estimator
do not depend in any way on the off-diagonal elements of A, only on the diagonal
elements. Therefore, the convergence of Uy, is independent of the off-diagonal elements.
The distribution of diagonal elements does influence, of course, the convergence to
trace(A)/n. For some matrices, this method must sample all the diagonal elements
for Uy to be close to trace(A). For example, if A has one huge diagonal element, the
average is useless until we sample this particular element. On the other hand, if all
the diagonal elements are the same, the average converges to the exact solution after
one sample.

Our last estimator is a variant of the unit vector estimator that uses randomization
to address this difficulty. Instead of computing the trace of A, it computes the trace of
FAFT where F is a unitary matrix. Since the mixing matrix F is a unitary, trace(A) =
trace(FAFT). We construct F using a randomized algorithm that guarantees with
high probability a relatively flat distribution of the diagonal elements of ZAFT. More
precisely, we construct F in a way that attempts to flatten the distribution of all the
elements of FAFT  not just its diagonal elements. We use this strategy because we do
not know how to flatten the diagonal elements alone. Our constructions are based on
the random mixing matrices suggested by Ailon and Chazelle [2006].

Definition 3.5. A random mixing matrix is a unitary matrix F = F'D, where F and
D are n-by-n unitary matrices. The matrix F is a fixed unitary matrix called the seed
matrix. The matrix D is a random unitary diagonal matrix with diagonal entries that
are i.i.d Rademacher random variables: Pr(D;; = +1) = 1/2.

Definition 3.6. A mixed unit vector estimator for a symmetric positive semi-definite
matrix A € R™" ig

M
_n T T,
TM_M;Zi FAF" z;,

where the z;’s are M independent uniform random samples from {eq,...,e,}, and F is
a random mixing matrix.

The mixing effectiveness of 7 depends on the quantity n = max |F;;|? [Ailon and
Chazelle 2006; Avron et al. 2010]. A small n guarantees effective mixing. We discuss
this further in Section 8.
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Table I. Summary of Results: Quality of the Estimators under Different Metrics

Variance of Bound on # samples Random bits per
Estimator one sample for an (¢, §)-approx samples
Gaussian 2| AllF 20621n(2/5) infinite;
O(n) in floating
point
Normalized Rayleigh-quotient - 16202 rank*(4) In(2/6)c3(A) -
Hutchinson’s 2(1A1% — Y0, A2) 6¢2 In(2rank(A)/8) O(n)
Unit Vector nYr A — trace’(A)] 1e*In@/8)rd(4) rp(A) = T i O(logn)
Mixed Unit Vector - 8¢~ 21n(4n?/8)In(4/8) a(ogn)

The proofs appear in Sections 5-8.

We choose the fixed seed matrix F' so as to minimize n = max |Fl-j|2. The minimal
value of n for a unitary F is 1/n. A normalized DFT matrix achieves the minimum, but
applying it requires complex arithmetic. A normalized Hadamard matrix also achieves
the minimum and its entries are real. However, Hadamard matrices do not exist for
all dimensions, so they are more difficult to use (they require padding). The Discrete
Cosine Transform (DCT) and the Discrete Hartley Transform (DHT), which are real,
exist for any dimension, and can be applied quickly, but their n value is 2/n, twice
as large as that of the DFT and the Hadamard. All are valid choices. The sample
vectors z;’s are identity vectors, so FTz; is simply row i of F. Therefore, the choice of
F should be based on the implementation cost of computing rows of F and applying
DADT to them versus the value of 7. Selecting a Fourier-type transform (DCT, DHT,
etc.) is especially attractive since each entry in the vector F’ z; can be computed using
a simple trigonometric formula. Therefore, the cost of computing the sample vectors
FT2z; is O(n) floating point operations, like the cost of computing the sample vectors for
the Hutchinson and the Gaussian estimators. The cost of forming the sample vectors
is considerably smaller than the cost of the matrix-vector multiplication.

4. COMPARING THE QUALITY OF ESTIMATORS

The easiest way to analyze the quality of trace estimators is to analyze their variance.
For any Monte-Carlo estimator Ry we have Var(Ry) = Var(R;)/M so we only need
to analyze the variance of a single sample. This type of analysis usually does not
reveal much about the estimator, because the variance is usually too large to apply
Chebyshev’s inequality effectively.

A better way to analyze an estimator is to bound the number of samples required to
guarantee that the probability of the relative error exceeding ¢ is at most §.

Definition 4.1. Let A be a symmetric positive semi-definite matrix. A randomized
trace estimator 7' is an (¢, §)-approximator of trace(A) if

Pr(|T — trace(A)| < etrace(A)) > 1 —6.

The third metric that we analyze is the number of random bits used by the algorithm,
that is, the randomness of the algorithm. The trace estimators are highly parallel;
each bilinear form can be computed by a separate processor. If the number of random
bits is small, they can be precomputed by a sequential random number generator. If
the number is large (e.g., O(n) per bilinear form), the implementation will need to
use a parallel random-number generator. This concern is common to all Monte-Carlo
methods.

Table I summarizes the results of our analyses. The proofs are in Sections 5-8. The
smallest variance is achieved by Hutchinson’s estimator, but the Gaussian estimator
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has a better (¢, §) bound. Unit vector estimators use the fewest random bits, but have
an (¢, §) bound that is worse than that of Gaussian and Hutchinson’s estimators.

From a theoretical point of view, the (¢, §) bound for the Gaussian estimator seems
good; for fixed € and §, only O(1) samples are needed. However, the €2 factor in the
bound implies that the number of samples may need to scale exponentially with the
number of bits of accuracy (the number of samples in the bound scales exponentially
with log;, € 71). Therefore, in applications that require only a modest ¢, say € = 0.1, the
Gaussian estimator is good. But in applications that require a small ¢, even € = 1073,
the number of samples required may be too high.

Are these bounds tight? If they are not, the algorithms themselves may be useful
even for small €. The bounds are probably a little loose, but not enough to make
the algorithms useful for small €. The bounds for the Hutchinson’s and mixed unit
vector can possibly be improved: our numerical experiments (in Section 9) did not show
a considerable difference between the Gaussian, Hutchinson and mixed unit vector
estimators. As for the Gaussian estimator Gy, we conjecture that our bound is almost
asymptotically tight.

Consider the order n all-ones matrix A. This matrix has a single non-zero eigenvalue
n and n — 1 zero eigenvalues. We see that }LZTAZ ~ x2(1). Therefore, MGy/n ~ x2(M).

This means that Gy has mean n and variance 2n2/M. The x? distribution is the sum
of independent random variables, so by the central limit theorem it converges to a
normal distribution for large M. This convergence to normality is rather fast, and
M > 50 degrees of freedom is usually considered sufficient for the x2 distribution to be
“approximately normal” [Box et al. 1978]. We, find that

erfc(e/M/2)
.2 exp(—e2M/2)
T VT M2+ /M2 +2

%

Pr(Gy — n > en)

Let Cs be the solution to

C (\/ln(Cg J/78) 4/ In(Cs//78) + 2) =2,
If M < 2¢721In(Cs//78), we find that

2 exp(In(/78/Cs))
VT /In(Cs/J/78) + /In(Cs/ J78) + 2’
2

Pr(Gy —n > en)

Cs(VIn(Cs//78) + /In(Cs//78) + 2)
= 5.

The bound is Q(e~2) for a fixed 8, but it is not Q(¢21In(1/8)) as Cs — 0 if § — 0. Never-
theless, this decay is slow and it appears that our bound is almost asymptotically tight.

The main difficulty in turning this argument into a formal proof'is the approximation
phase Pr(Gy—n > en) ~ erfc(e/M/2). While it is true that the x2 distribution converges
to the normal distribution, convergence can be very slow. Indeed, the Berry-Esseen
Theorem [Feller 1971, Sect. 16.5] guarantees a convergence rate that is proportional
only to M~1/2, So for a fixed § there exists an ¢ that is small enough such that the
sample size will be so large that the tail bound on normal approximation kicks in.
Indeed every Monte-Carlo i.i.d estimator with non-zero finite variance converges to a
normal distribution, but the general wisdom on the x? distribution is that it converges
very quickly to the normal distribution.
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A more direct way to prove a lower bound will be to use some lower bound on the tail of
the x2 cumulative distribution function. Unfortunately, current bounds [Wallace 1959;
Janssen et al. 2008], are too complex to provide a useful lower bound, and deriving a
simple lower bound is outside the scope of this article.

In Section 9, we present experiments that show that convergence rate (in terms of
digits of accuracy) on the all-ones matrix is indeed slow, supporting our conjecture that
our bound is almost tight.

5. ANALYSIS OF THE GAUSSIAN ESTIMATOR
In this section, we analyze the Gaussian estimator. We begin with the variance.

LEmMMA 5.1. Let Abe an nxnsymmetric matrix. The single sample Gaussian estimator
G of A is an unbiased estimator of trace(A) that is, E(G1) = trace(A) and Var(Gy) =
2|1 Al%.

PrOOF. A is symmetric so it can be diagonalized. Let A = UAUT be the unitary
diagonalization of A (its eigendecomposition), and define y = Uz, where G; = 27 Az. We
can write G1 = Y | A;y? where y; is the ith entry of y. Since U is unitary, the entries
of y are i.i.d Gaussian variables, like the entries of 2z, so E(y?) = 1 and Var(y?) = 2 (it
is a well-known fact that the square of a standard normal distribution has mean 1 and
variance 2). We find that

E(G) =) MLE(y) =D x = trace(A),

i=1 i=1
Var(Gl):ZkizVar(yiz) :QZA? = 2||A||%. O
i=1 i=1

The lemma also applies when A is non-symmetric. We omit the proof.
Next, we prove an (¢, §) bound for the Gaussian estimator.

THEOREM 5.2. Let A be an n x n symmeitric semidefinite matrix. The Gaussian esti-
mator Gy is an (€, 8)-approximator of trace(A) for M > 202 1n(2/8).

PROOF. A is symmetric so it can be diagonalized. Let A = UAUT be the unitary
diagonalization of A (its eigendecomposition), and define y; = Uz;. Since U is unitary,
the entries of y; are i.i.d Gaussian variables. Notice that Gy = & M Dok jyizj =
E3 4 XM y2 where y;; is the jth entry of ;.

We prove the bound using a Chernoff-style argument. y;; is a standard normal ran-

dom variable so Zf‘il yi2j is x2 with M degrees of freedom. Therefore, the moment
generating function of Z = MGy, is

E(exp(tZ))
]_[(1 — 2xt)" M2

i=1
= (1—2tt + h(t) M2 (1)

mg(t)

where

T = trace(A)
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and N
) =Y (=28t > []«
s=2 S C A xeS
S| =s
as long as |A;t] < % for all i (A is the set of A’s eigenvalues).
It is easy to see if {x1,...,x,} is a set of non-negative real numbers, then for all
i=1,...,nwehave _
> Tlu=(2x).
S C [n] JeS i=1
IS =i
where [n] = {1, ..., n}. Therefore, we can bound
RO < ) (2tt).
j=2

Set ty = €/(41(1+¢/2)). For all i we have Aty < %, so (1) is the correct formula for mz(¢y).
We now have

n J
€
ol = - (5e73)

j=2
€2 1
=< : .
41 +¢€/2)

Markov’s inequality asserts that
Pr(Gy > t(1+¢)) = Pr(Z > tM(1 + ¢€)).
< my(ty) exp(—t M(1 + €)to)
M ¢ 1+e¢ )

< (1—€¢/21 +€¢/2) — €2/4(1 + €/2)) M2 . exp (—? 2 Ttz

= exp <—% <1n(1_6/2(1+€/2)—E2/4(1+E/2))+i- 1te >>

2 1+¢/2
e 1+e€
(ma-e2+5-7775))

= exp

=exp| - (
i=1
<5(1~|—e ) f fi(eﬂ)L))
2\1+¢/2 8 4i:1(z+2)
2 1 2 2
< exp|-— <Z-m—§+4ln(1—e/2>
2

~

Il
&
T TS
S p[R p[R p[R R

1 1
8 (m —g - dz)))
exp(—Me?/20)

IA

Journal of the ACM, Vol. 58, No. 2, Article 8, Publication date: April 2011.



Estimating the Trace of an Implicit Matrix 8:9

for € < 0.1. We find that if M > 20 21n(2/8) then Pr(Gy; < (1 + €)) < §/2. Using the
same technique, a lower bound can be shown, and combined with a union-bound we
find that Pr(|Gy — 7| <t(14+¢)) <§8. O

In some cases, it is possible to prove better bounds, or even the exact trace. For example,
we show that using a Gaussian trace estimator we can compute the rank of a projection
matrix (i.e., a matrix with only 0 and 1 eigenvalues) using only O(rank(A)log(2/5))
samples (where § is a probability of failure; there is no dependence on ¢). Finding
the rank of a projection matrix is useful for computing charge densities (in electronic
structures calculations) without diagonalization [Bekas et al. 2007].

LEmMMA 5.3. Let A € R™™ be a projection matrix, and let 5 > 0 be a failure probability.
For M > 24 rank(A)In(2/6), the Gaussian trace estimator Gy of A satisfies

Pr(round(Gjs) # rank(A)) < 6.

ProoF. A projection matrix has only 0 and 1 eigenvalue, so the eigenvalue decompo-
sition of A is of the form

1

0

If we write y = Uz then 27 Az = Zfi‘ikw ¥2. Since U is unitary the entries of y; are i.i.d

Gaussian variables, so 27 Az is x? with rank(A) degrees of freedom. The yx? distribution
is additive, so MGy is also x2 but with M rank(A) degrees of freedom. We now use a
known tail-bounds on the x2 distribution [Li et al. 2007]: if X ~ x2(%) then

Pr(|X — k| < ek) < 2 exp(—ke?/6).
By applying this result to MGy, we find that
Pr(|Gy — rank(A)| > rank(A)e) = Pr(|MGy — M rank(A)| > M rank(A)e)
< 2exp(—Mrank(A)e?/6).
If we set
M > 6rank(A) e 21n(2/5) 2)
we find that
Pr(|Gy — rank(A)| > rank(A)e) < 6.

If Ais a projection matrix, then trace(A) = rank(A) is an integer, so if the error is below
%, then round(Gy;) = rank(A). We set € = 1/(2rank(A)) and obtain

Pr(round(Gyy) # rank(A)) = Pr(|Gy — rank(A)| > rank(A)e) < §.
If we plug € into (2), we find that we require M > 24 rank(A)In(2/5). O

6. GENERAL BOUND FOR NORMALIZED RAYLEIGH QUOTIENT ESTIMATORS

The sample vectors z in the Gaussian estimator are not normalized, and this can lead to
a large 2z Az (but only with a small probability). Normalized estimators are somewhat
easier to analyze because each sample is bounded. When A is well conditioned, we get
a useful and very general bound.
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8:10 H. Avron and S. Toledo

THEOREM 6.1. A normalized Rayleigh estimator Ry is an (¢, §)-approximator of
trace(A) for M > %e’zn*2 rank?(A) ln(2/8)x,2c(A), where «f(A) is the ratio between the
largest and smallest nonzero eigenvalue of A.

Proor. Let 0 = Ay = --- = A4 < --- < A, be the eigenvalues of A where 2 = n —
rank(A) + 1, so k(A) = A,/Ax. It is easy to see that

trace(A) - kp(A) = A - kp(A)
i=1

=y o

ik "k
(n—Fk+1)r,
= rank(A)\,

v

therefore for all i
n
rank(A)

In accordance with Hoeffding’s inequality for any ¢ > 0,

sziTAzigknz?ziznAnf

trace(A) - k ¢(A).

2M? rank®(A)t?
Pr(|Ry — trace(A)| > t) < 2exp (_ rank”(A)¢ ) .

M -n2? tracez(A)/c,zc(A)

If we set t = e trace(A), we find that

2 2
Pr(|Ry; — trace(A)| > e trace(A)) < 2exp < — M)

nZK%(A)
We now set M so that the bound is smaller than §:
2M rank?(A)e? . (2)
n2/c]2c(A) - )
or
2
e In(2/3) - n2/<f(A).
2 rank?(A)e2 a

7. ANALYSIS OF HUTCHINSON’S ESTIMATOR

When A is ill conditioned, the (¢, §) bound in Section 6 is weak. We can sharpen it
for a specific normalized estimator, that of Hutchinson. However, the bound is still
weaker than that of the Gaussian estimator. The bound here is of interest because
(1) Hutchinson’s estimator is widely used, (2) it uses fewer random bits than the Gaus-
sian estimator, and (3) it requires only additions and subtractions, not multiplications.
It is also possible that there is an even stronger bound for Hutchinson’s method.

THEOREM 7.1. The Hutchinson estimator Hyy is an (¢, §)-approximator of trace(A) for
M > 62 1In(2rank(A)/s).

To prove this theorem, we use the following lemma from Achlioptas [2001, Lemma 5]:
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LeEMMA 7.2. Let a € R™ be an arbitrary unit vector. Define @ = (T 2)?> where z is a
random vector whose entries are i.i.d Rademacher random variables (Pr(z; = £1) =
1/2). Let @1, ..., Qy be M i.i.d copies of Q (different zs but the same «), and define

S = ﬁ Zle Q;. Then, for any € > 0,
2 3
Pr(]S — 1] > €) < 2exp <—];_/I <% _ %)) _

Proor oF THEOREM 7.1. A is symmetric and semidefinite so it can be diagonal-
ized. Let A1,..., ), be the eigenvalues of A and assume without loss of generality
that the non-zero eigenvalues are Ap,..., Aranka). Let A = UAUT be the unitary
diagonalization of A (its eigendecomposition), and define y; = U7z. Notice that
Hy = %Zf‘; S AYE = Y0 M iﬂilyizj where y;; is the jth entry of y;. The
rows Ul of UT are unit vectors so S = & M (UJTZL')2 satisfies the conditions of

Lemma 7.2. But we also have S = A_14 Zf‘il yizj, SO

M
1 9 M (2 &
Pr(ﬁzi_lyu—l ZE) fzexp(‘?(??))-

If M > 62 1n(2rank(A)/$8), this implies that

1 XM
2
Pr<_§_1yij_1

This bound holds for each specific j. Using the union-bound, we conclude that the
probability that the error is larger than ¢ for some j = 1,...,rank(A) is at most 4.
Hence, the probability that the error is smaller than ¢ for all j = 1, ..., rank(A) is at
least 1 — §. So with probability 1 — §, we also have

n M n
|Hps — trace(A)| = Z)Lj% Zyg — Z)‘i
j=1 i=1 i=1

> €

.5
- ) ~ rank(A)

rank(A) 1 M
= Z Aj (Z\_lzyizj_l)
j=1 i=1
rank(A) 1 M
= D Al vi—l
j=1 i=1
rank(A)
< € Z Aj
j=1
= etrace(4). O

The bound is larger than the bound for the Gaussian estimator by a In(rank(A)) factor.
The main difficulty here is that, unlike the Gaussian estimator, the Hutchinson’s
estimator cannot be written as a weighted sum of'i.i.d random variables. This forces us
to use a union bound instead of using a global analysis. Nevertheless, given the better
variance term of Hutchinson’s estimator we conjecture that this In(rank(A)) factor is
redundant. In fact, there are some matrix classes for which Hutchinson’s estimator
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is clearly better than the Gaussian estimator. For example, on diagonal or nearly
diagonal matrices the Hutchinson’s estimator will converge very fast, which is not
true for the Gaussian estimator. Another interesting example is the all-ones matrix
for which the bound for the Hutchinson estimator is the same as the bound for the
Gaussian estimator (it is possible to show that for the all-ones matrix the Gaussian
estimator is an (¢, §)-approximator for M > 6¢21n(2/4)).

8. REDUCING RANDOMNESS: ANALYZING UNIT VECTOR ESTIMATORS

This section analyzes two unit vector estimators: the unit vector estimator and the
mixed unit vector estimator. These estimators’ main advantage is in restricting the
sample space to n vectors. Thus, only [log, ] random bits are required per sample. This
allows the samples to be generated in advance. We begin by analyzing the variance.

LemmA 8.1. Let A be an n x n symmetric matrix. The single sample unit vector
estimator Uy of A is an unbiased estimator of trace(A) i.e., E(U;) = trace(A) and

Var(Uy) = n Y A% — trace®(A).

Proor. Let U; = nzT Az. Because z is an identity vector 27 Az just samples values
from the diagonal. Every diagonal value is sampled with equal probability, so E(zT Az) =
trace(A)/n, from which E(nz! Az) = trace(A) follows immediately.

As for variance the following equality holds

Var(nzT Az) = E((nzTAz)?) — (E(n2T Az))
= n?E((zT A2)?) — trace®(A)

The random variable (z7Az)? samples the square of the diagonal values of A so
E((2TA2)?) = Y " | A% /n and the equality follows. O

We now turn to the more interesting analysis of the number of samples that guar-
antee an (e, §)-approximator. This quantity depends on the ratio between the largest
possible estimate (when estimating the maximal diagonal value) and the trace.

THEOREM 8.2. The unit vector estimator Uy is an (e, §)-approximator of trace(A) for

M > $e721n(2/8)r}(A) where rp(A) = %22,

Proor. The unit vector estimator samples values from the diagonal and multiplies
them by n, so a single samples takes values in the range [0, n - max; A;;]. In accordance
with Hoeffding’s inequality

M242
Pr(|Uy; — trace(A)| > t) < 2exp <_ 2M7¢ )

an . (maxi Aii)2
If we set t = e trace(A), we find that

2Me?
Pr(|Uy; — trace(A)| > e trace(A)) < 2exp —2—6 .
r;(A)

We now set M so that the bound is smaller than §:
2Me? < 2 )
3 >In| -

ri(A) 8

- In(2/8) - r]%(A).
- 2¢2

or

M
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We now analyze the mixed unit vector estimator. The unit vector estimator relies
on the the mixing matrix F. The analysis is based on a lemma by Ailon and Chazelle
[2006] and generalized by Avron et al. [2010].

LEMMA 8.3. Let U be an n x m matrix with orthonormal columns, and let F = FD be
a random mixing matrix. With probability of at least 1—3§ (§ > 0), we have for alli and j

(FU)| < |2nIn (%”)

The mixing matrix prevents entries from an orthonormal matrix to be too large.
When applied from both sides to a symmetric positive semidefinite matrix it prevents
the diagonal elements from being too big, that is, rp(FAFT) is not too big.

where n = max | F;; |2

TuEOREM 8.4. The mixed unit vector estimator Ty is an (e, 8)-approximator of
trace(A) for M > 2n%n%e21n(4/8) In(4n?/s).

PrROOF. A is symmetric so it can be diagonalized. Let A = UT AU be the unitary
diagonalization of A (its eigendecomposition), and let V = FU. It is easy to see that

(FAFT) ;5 =Y MV
k=1
In accordance with Lemma 8.3, with probability 1 — §/2, we have

2n? 4n?
2 2

The eigenvalues A; are non-negative, so we conclude that with probability 1 — §/2 for
all j,

0 < (FAFT);; < 2pln an? Xn:)\r

= i = 4N s LN
Jj=1
2
= 2nln (%) trace(A).

We find that

2
ro(FAFT) < 2npIn (4%)

Therefore, in accordance with Theorem 8.2, for M > 2n2n2¢21n(4/8)In%(4n2/5) we have
Pr(|Ty; — trace(A)| > e trace(A)) <1 —§/2.

There can be failures of two kinds: with probability at most §/2 the bound on the
diagonal elements of the mixed matrix may fail to hold, and even if it holds, with
probability /2 the € bound on the estimation error may fail to hold. We conclude that
with probability 1 — § the error bound does hold. O

Remark 8.5. For Fourier-type matrices, such as DFT and DCT, n = ®(1/n), so the
lower bound on M becomes simpler,
In2(4n2/8)1In(4/8)
€2 ’
for some small C (8 for the case of DCT, 2 for DFT).

M=>C
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Median error 95%-—percentile error

— Gaussian b —— Gaussian

— Hutchinson b — Hutchinson

— Mixed — Mixed

— Theoretical Bound — Theoretical Bound

Relative error
Relative error

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Number of samples Number of samples

Maximum error
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— Hutchinson|
— Mixed

Relative error

0 500 1000 1500 2000 2500
Number of samples

Fig. 1. Convergence of the estimators on a matrix of order 100,000 whose elements are all 1. The graph on
the top left shows the median error of the 100 runs, and the one the right the 95%-percentile of the error of
the 100 runs. The graph on the bottom shows the maximum error during 100 runs. In addition to the error
for the median and 95%-percentile, we plot the theoretical upper bound on the corresponding percentile of
the error of the Gaussian estimator in accordance with Theorem 5.2.

9. EXPERIMENTS

We present the results of several computational experiments that compare the different
estimators, and clarify the actual convergence rate.

Figure 1 shows the convergence of the various estimators on a matrix of order n =
100,000 whose elements are all 1. We have used this matrix as an example of the matrix
with the largest variance possible for Hutchinson’s and Gaussian estimator. The graphs
show that all methods converge quite slowly. There is no significant difference in the
convergence behavior of all three methods, although we proved a different bound for
each one. In addition to median error and 95%-percentile error, we plot the theoretical
upper bound on the corresponding percentile of the error of the Gaussian estimator
according to Theorem 5.2. As expected, the actual error is smaller than the theoretical
bound. For a given percentile, the ratio between the observed error and the upper bound
stays roughly the same throughout the experiment. The ratio is different in the 95%
percentile and in the 50% percentile (about 3.2 for the 95% percentile and about 5.1 for
the median). This supports the conjecture mentioned in Section 4 that the bounds are
asymptotically sharp in the ¢ parameter (i.e., for a constant § the number of sampled
required to achieve an (e, §) approximation is Q(¢~2)). Since the bound-to-observation
ratio shrinks as § shrinks, the results also give evidence that the bound is also tight
in § (if the bounds were not tight in § the ratio between the theoretical bound and the
observed values should have grown).
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Maximum error

10° + : 100000

I
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Relative error
Number of entries
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Number of samples

25

10 15
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Fig. 2. Details to clarify the behavior of the methods. The experiment is similar to the one in Figure 1. The
graph on the left shows convergence all the way to n iterations, and the histogram on the right shows the
distribution of diagonal values (relevant only for the estimator presented in Section 8).

2000-by-2000 random dense matrix — max error (100 runs) Rothberg/cfd1 — max error (100 runs)

10 10'
—— Gaussian —— Gaussian
— Hutchinson — Hutchinson
10° —— Mixed 10° b : —— Mixed
107 107
S . -2 S . |
0 m 2
o o
> >
3 107 3 107
4 o«
107 107
10 107°F
10° 10° . .
0 50 100 150 200 0 50 100 150 200 250 300 350 400 450
Number of samples Number of Samples

Fig. 3. Convergence on two more matrices: a random matrix of order 2000 (left) and a sparse matrix of order
70,656 (right).

Figure 2 clarifies the convergence behavior of the estimators. The graph on the left
shows the convergence all the way up to n iterations, with two variants of the mixed
estimator: with and without repetitions. Convergence stagnates and the error nears
machine € only very close to iteration n and only when sampling without repetitions. If
we sample without repetitions, after we sample all the sample space, we are guaranteed
to have the exact trace (this is not possible for the Gaussian estimator and Hutchinson’s
estimator, but also not practical in our method). The histogram on the right show that
in spite of the mixing that F performs, the diagonal elements of the mixed matrix
FAFT are still highly skewed. In other words, there are some diagonal values that are
important to sample; until they are sampled, the error remains large.

Figure 3 shows that on other classes of matrices, the methods reach a smaller error
before they stagnate. On a random dense matrix, the methods converge quickly to an
error smaller than 10~2, but then stagnate. On a sparse matrix from the University of
Florida matrix collection, the methods reach an error of about 10~2 and then stagnate.
There is again little difference between the convergence rates of the three methods,
although it seems that Gaussian estimator is a little less accurate then the other two
estimators.

Figure 4 analyzes convergence on a group of finite differences Laplacian and their
inverse. More specifically we estimate the trace of L and L~! where L is a five-point
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Five—point finite difference Laplacian Inverse of five—point finite difference Laplacian
(300 samples, max error of 30 runs) (300 samples, max error of 30 runs)
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10 — Mixed 10 ¢ — Mixed

) ; , m;?v‘?ewwﬁ%w
Koo |

Relative error
Relative error
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Fig. 4. Convergence on a group of finite differences Laplacian (left graph) and their inverse (right graph).
Unlike previous experiments we fix the number of samples to 300 and vary the size of the grid.

finite difference Laplacian on a square grid (generated using MATLAB’s delsq func-
tion). Unlike previous experiments we fix the number of samples to 300 and vary the
size of the grid. Our bounds are independent of the size of the matrix, so increasing
the size of the matrix should not affect the accuracy. Nevertheless, we see that for L
the estimates become more accurate as the grid grows. This is not surprising, because
trace(A) = O(n) and Var(z"Az) = O(n) = o(trace(A)?) for both the Gaussian estimator
and Hutchinson’s estimator; Chebyshev’s inequality can therefore be used to derive
better bounds for larger grids. Computing the trace of a Laplacian matrix is a trivial
operation, so we experimented with L only to illustrate that there are specific families
of matrices for which the worst-case bounds are not tight. Computing the trace of L1 is
a more challenging operation, but unfortunately accuracy does not improve for larger
grids.

10. CONCLUSIONS

In terms of the (¢, §) bounds, the Gaussian estimator, requires the smallest number
of samples. The convergence bound for Hutchinson’s estimator is the runner up: it
requires more iterations than the Gaussian, but fewer than the mixed unit vector
estimator.

In terms of the number of random bits that these estimators require, the ranking is
the exact opposite: the Gaussian estimator requires the most bits, followed by Hutchi-
son’s estimator, and the mixed unit vector estimator requires the least.

Convergence to a small error is slow, both in practice and in terms of the bounds.
The €2 factor in all the bounds imply that the number of samples required to get close
to, say, machine epsilon, is huge. The estimators quickly give a crude estimate of the
trace (correct to within 0.1 or 0.01, say), but they require a huge number of samples to
obtain a very accurate estimate.

The ¢~2 factor in the bound is common to many Monte-Carlo algorithms in numerical
linear algebra. When the Monte-Carlo method is used as an inexact solver within the
context of an iterative solver, the overall algorithm can be both fast and accurate [Avron
et al. 2010]. We are not aware of a suitable iterative algorithm for trace computations.
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