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ABSTRACT

Business Process Management (BPM) aims to support the
whole life-cycle necessary to deploy and maintain business
processes in organisations. Crucial within the BPM life-
cycle is the analysis of deployed processes. Analysing busi-
ness processes requires computing metrics that can help de-
termining the health of business activities and thus the whole
enterprise. However, the degree of automation currently
achieved cannot support the level of reactivity and adap-
tation demanded by businesses. In this paper we argue and
show how the use of Semantic Web technologies can increase
to an important extent the level of automation for analysing
business processes. We present a domain-independent onto-
logical framework for Business Process Analysis (BPA) with
support for automatically computing metrics. In particu-
lar, we define a set of ontologies for specifying metrics. We
describe a domain-independent metrics computation engine
that can interpret and compute them. Finally we illustrate
and evaluate our approach with a set of general purpose
metrics.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics— Performance mea-

sures, Process metrics; D.2.9 [Software Engineering]: Man-

agement— Life cycle, Productivity; H.4.1 [Information Sys-
tems Applications]: Office automation— Workflow man-

agement; 1.2.4 [Information Systems Applications|: Knowl-

edge Representation Formalisms and Methods

General Terms

Measurement, Management, Performance
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In the business world the maxim “if you can’t measure it,
you can’t manage it” is often used. Although it is too blunt
a statement, it captures an important essence in current
management approaches which try to maximise the aspects
measured in order to evaluate, compare, and control the
evolution of businesses. For instance the Balanced Score-
card is a popular “set of measures that gives top managers a
fast but comprehensive view of the business” [10]. In a nut-
shell, the Balanced Scorecard defines four perspectives and
suggests for each of them a set of aspects that managers
should focus on. Assessing how well a company is doing is
then a matter of calculating metrics and contrasting them
with respect to pre-established goals for each of these key
aspects. In the same vein but in more concrete terms, the
Supply-Chain Council defines in the Supply-Chain Opera-
tions Reference-model a set of Supply-Chain targeted met-
rics such as “fill rate by order” or “total order fulfilment lead
time” [18], which represent what is often referred to as Key
Performance Indicators in the literature [10, 3]. In short,
effectively analysing business processes requires, although it
is not limited to, computing metrics that can help deter-
mining the health of business activities and thus the whole
enterprise.

Business Process Analysis (BPA) uses the logs captured by
the underlying IT infrastructure such as Enterprise Resource
Planning, Customer Relationship Management, and Work-
flow Management systems to derive information concerning
the well-being of business processes [21]. Common practice
within the industry is to build a Data Warehouse which con-
solidates all sorts of corporate information and enriches it
with derived statistical data [5]. Not surprisingly one main
challenge envisaged by BPA solutions regards gathering and
integrating large amounts of heterogeneous yet interrelated
data within a coherent whole.

Once a Data Warehouse has been built and populated, On-
line Analytical Processing (OLAP) and Data Mining tools
enable sophisticated data analysis that can help business an-
alysts understand their businesses and even predict future
trends. However, the semantics of the data being implicit,
both OLAP and Data Mining techniques can hardly ben-
efit from contextual knowledge about the organisation at
analysis time, and strictly rely on human interpretation of
the results [22]. This not only brings additional manual
labour to an already complex and time consuming task, but
it also prevents the automation of certain decision making
procedures. As a result enterprises often develop expensive



domain-specific solutions which become an additional man-
agement overhead when changes within the enterprise need
to be implemented.

We have previously argued for the use of semantic technolo-
gies, namely ontologies and Problem-Solving Methods [17],
as a means to enhance the state of the art in BPA [2]. In
the light of this vision, we have defined Core Ontology for
Business pRocess Analysis (COBRA) [14] which provides
a core terminology where business practitioners can map
domain-specific knowledge in order to analyse their busi-
ness processes. We have also defined additional extensions
for capturing semantically the logs produced by IT systems
and for deriving knowledge in terms of COBRA. In this
paper we present an extension to our framework that al-
lows to process the whole body of knowledge about business
processes and their executions in order to compute general
purpose as well as domain-specific metrics. In particular,
we describe a comprehensive set of ontologies for defining
metrics, and a domain-independent engine that is able to
interpret these metrics and automatically compute them.
The work described herein therefore constitutes an impor-
tant step forward towards a domain-independent, fully au-
tomated, and semantically enhanced Business Process Anal-
ysis framework.

The remainder of this paper is organised as follows. We
first describe our ontological framework for defining metrics.
We then explain our Generic Metrics Computation Engine.
Next, we demonstrate how our approach can be applied to
analysing business processes by means of Generic Business
Metrics Ontology which both validates and enhances our
framework with a library of reusable metric definitions. Fi-
nally, we contrast our approach with existing work, present
some conclusions and introduce future research objectives.

2. ONTOLOGICAL FRAMEWORK FOR
METRICSDEFINITION

Major efforts are being devoted to enhancing the state of
the art in Business Process Management (BPM) [21] by
using Semantic Web and Semantic Web Services technolo-
gies throughout the life-cycle of business processes [13]. The
work presented in this paper is part of SENTINEL, a seman-
tic business process monitoring tool [15]. The tool, depicted
in Figure 1, connects to a number of repositories populated
with semantic information about processes and their exe-
cutions in order to support advanced BPA techniques. In
this paper we shall focus in the Metrics Computation En-
gine component (see Figure 1), paying particular attention
to the Knowledge Level definitions that support specifying
and automatically computing domain-specific metrics based
on the body of knowledge gathered by IT systems during
the enactment of business processes.

Crucial to the work described herein is thus the need for
representing both static knowledge, i.e., the metrics, and dy-
namic knowledge, i.e., how to actually compute them, [16].
The ontologies presented in this paper have therefore been
developed using the Operational Conceptual Modelling Lan-
guage (OCML) [12] which seamlessly supports the integra-
tion of both kinds of knowledge paving the way for a rapid

prototyping of a fully operational solution®. It is worth not-
ing however that OCML provides support for importing and
exporting data represented in other languages such as OWL
and WSML-the language used within the project—-and there-
fore allows the wider application of our techniques over data
represented in Semantic Web and Semantic Web Services
formalisms.

2.1 CoreOntology for Business Process
Analysis

Although describing COBRA is outside of the scope of this
paper we introduce in this section those aspects that are nec-
essary for understanding the rest of the paper. The reader
is referred to [14] for further details. COBRA provides a
pluggable framework based on the core conceptualisations
required for supporting BPA and defines the appropriate
hooks for further extensions in order to cope with the wide-
range of aspects involved in analysing business processes.
COBRA divides the world into Temporal Entities and Per-
sistent Entities whereby the former are entities that have a
temporal extent whereas the latter are essentially indepen-
dent of time.

Core concepts in COBRA are Business Activity and Busi-
ness Activity Realisation. Business Activity represents the
specification of a business activity at a high-level where as-
pects such as the control flow are abstracted away. There are
two kinds of Business Activities, namely Process and Activ-
ity. Activity represents atomic Business Activities whereas
Processes are composedOf at least two Business Activities.
Business Activity Realisations are Time Spanning Entities
which represent the actual execution of Business Activities.
Mirroring Business Activities, Process Instance and Activity
Instance are the two kinds of Business Activity Realisations
considered. Despite their name, which originates from BPM
literature [21], both are concepts which represent the actual
executions of Processes and Activities respectively.

Concerning the analysis themselves such as metrics, the pre-
viously presented version of COBRA [14] solely captures
the concept Analysis Result, a Temporal Entity, which has
two disjoint sub-concepts: Qualitative Analysis Result and
Quantitative Analysis Result. As part of our work on met-
rics definition and computation, we have slightly extended
COBRA itself. First, COBRA now imports Physical Quan-
tities ontology, in order to include support for units of mea-
sure (we shall explain this ontology in more detail in Sec-
tion 2.2). Secondly, we have introduced the concept Anal-
ysis a Non-Agentive Non-Physical Entity, which is refined
into Qualitative Analysis and Quantitative Analysis based
on the type of Analysis Result they produce. This provides
us the means for maintaining a library of Analysis specifi-
cations (e.g., metrics, time series, etc.), and it allows us to
distinguish between the analysis themselves and the actual
results. Indeed, the relationship between Analysis and Anal-
ysis Result has also been captured, in such a way that every
Analysis Result is a result for a particular Analysis, and ev-
ery Analysis may have several Analysis Results. Hence we
can obtain all the results for a particular analysis, track its
evolution over time, apply time series analysis, etc.

LAll the ontologies described herein can be found at
http://www.cpedrinaci.net
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Figure 1: SENTINEL Architecture.

Finally, as part of this extension, COBRA also includes
Query, the Qualitative Analysis par excellence. The concept
Query supports capturing ontological queries in a similar
vein to stored procedures in Databases. Capturing Queries
ontologically provides the means for maintaining a library of
useful queries parametrised in a way such that business ana-
lysts can directly reuse and apply them over their specific do-
main. Hence, this addition is of particular relevance for bet-
ter supporting business practitioners—typically not highly-
skilled technically—in analysing processes. Queries are char-
acterised by a set of input roles [12], a list of output types,
and a body which captures in a unary procedure, the onto-
logical query parametrized in terms of the input roles. We
shall see concrete examples and uses of queries in Section 4.

2.2 UnitsManipulation

Metrics quantify some aspect of interest. Their results are
basically quantities, numbers, but they are often expressed
in some unit of measure. For instance the execution time of
a process is indicated using some unit of time such as sec-
onds. An appropriate manipulation of metrics thus depends
on a proper support for units of measure. This includes
support for characterising quantities using units of measure,
but also requires adapting the algebraic operations for deal-
ing with them. We have therefore defined a set of ontologies
that provide this capability to our framework. In particular,
based on EngMath [8], we have defined the following on-
tologies: Physical Quantities, Standard Prefixes, Standard
Dimensions, International System of Units, and Units Ma-
nipulation. It is worth noting however that, as opposed to
EngMath which is explicitly designed for sharing mathemat-
ical formulae, our ontologies focus on the actual support for
mathematical manipulation.

Physical Quantities ontology, captures the basic definitions
necessary for what in physics, chemistry and engineering is
referred to as dimensional analysis. Central to the ontology
are the notions of Physical Quantity and Physical Dimen-
sion. A Physical Quantity is a measure of some quantifi-
able aspect of the world, for example your height. We char-

acterise Physical Quantities by their Unit of Measure, like
“kilogram”. In fact, the main distinction between Physical
Quantities and plain numbers is the fact that they are ex-
pressed in some unit of measure which determines how it
should be treated within algebraic operations. A Unit of
Measure provides a standard measurement for some partic-
ular Physical Dimension. For example, “gram” and “stone”
are units of measure for the “weight” dimension. Units of
Measure are further characterised by an abbreviation (e.g.,
“s” for “second”), and a conversion rate. A Physical Dimen-
sion is thus a property that we associate indirectly to Phys-
ical Quantities, but which allows us to establish whether
any two Physical Quantities are compatible, and therefore
determines which are the mathematical operations that can
be performed between the two. For example, we cannot add
the quantities “200 meters” and “1 second” because these are
units of measure for different dimensions.

Physical Quantity is further refined into the disjoint con-
cepts Constant Quantity and Function Quantity. Function
Quantities are those whose value is defined as a function like
for example “the speed of a particle in free-fall as a function
of time”. Conversely, as the name implies, Constant Quanti-
ties are those whose value is constant and they are therefore
characterised by a magnitude, i.e., a numeric value. A spe-
cial kind of Constant Quantity are so-called Dimensionless
Quantities, i.e., Constant Quantities whose unit of measure
is a special one which is the Identity Unit?>. This special
kind of unit of measure allows us to have an homogeneous
treatment for Physical Quantities, independently of whether
they are expressed in some unit of measure or not.

The final concept introduced within Physical Quantities on-
tology, captures the notion of System of Units. A System of
Units is a reference system of measurement which is defined
by a set of base units that can be used for specifying any-
thing which is measured. The most commonly used system
of units is the “Systéme International d’Unités” (SI) [1] or

2 As a consequence we also have a particular dimension called
the Identity Dimension



International System of Units which we have partly captured
by means of the ontologies Standard Prefixes, Standard Di-
mensions, and International System of Units. The former
captures typical prefixes such as Kilo or Mega as conversion
rates that can be used for manipulating units. Standard
Dimensions defines the base dimensions defined in SI, plus
Currency, Amount of Information, and Signal Transmission
Rate as additional base dimensions, and some other derived
ones such as Volume or Speed for convenience. On the basis
of Physical Quantities, Standard Dimensions, and Standard
Prefixes, International System of Units ontology implements
SI using the standard units [1].

Finally, Units Manipulation ontology redefines the basic
mathematical algebraic operators to support the use of Phys-
ical Quantities. Additionally, the ontology also redefines
the basic relations for comparing numbers in order to sup-
port Physical Quantities (e.g., ‘>’, ‘<’), defines functions
for converting between any two compatible units (using the
base one as reference), and provides a set of basic statistic
operations, i.e., count, sum, prod, max, min, mean, range,
standard-deviation, mode, variance. The latter are indeed
of most use for metrics computation as described next.

2.3 Metrics Ontology

Metrics Ontology, depicted in Figure 2, aims to support
business analysts in defining and computing metrics over
the low-level audit trail information generated by the IT in-
frastructure. It extends COBRA in order to capture more
detailed information about Analyses to fulfil two main pur-
poses. Firstly, the metric definitions are such that our Generic
Metrics Computation Engine described in Section 3 can in-
terpret and compute them automatically in a domain in-
dependent manner. Secondly, by virtue of our ontological
framework, metric results enhance the overall body of knowl-
edge about business processes execution better supporting
subsequent analyses for identifying potential improvements,
detecting deviations, etc. In short, Metrics Ontology pro-
vides us with the capacity for specifying and computing
metrics, as necessary for analysing and managing business
processes, in a domain independent way.

On the basis of our conceptualisation we can capture kinds
of metrics, e.g,. “process instance execution time”, as well as
specific metrics to be computed, e.g., “process instance X ex-
ecution time”. The former are defined as concepts, whereas
the latter are modelled as instances. In this way we can
provide libraries of metrics such as general purpose ones, or
specific for some domain like Supply-Chain, and at analysis
time the analyst can specify which of these metrics should
be computed over which entities by instantiating them. This
provides a convenient way for organising metric definitions
and seamlessly supports the comparison of results by kind
of metric, e.g., “which is the process which takes longer”, as
well as it allows tracking their evolution over time.

Central to Metrics Ontology is the concept Metric which is
defined as a Quantitative Analysis (see Section 2.1). Metrics
are specified by a set of input roles that point to domain-
specific knowledge [12]. We refine Metrics into two disjoint
kinds, Function Metrics and Aggregation Metrics. A Func-
tion Metric is a metric that can be evaluated over a fixed
number of inputs. For example, the Metric Process Instance

Ezecution Time is a Function Metric which takes as input
one Process Instance. In order to support Function Metrics
computation, which is indeed metric dependent, each met-
ric has a computation expression which is defined as a unary
procedure®, the argument of the procedure being the metric
itself. Finally, we have included the Function Metric Ratio
since it is a commonly used kind of metric. In Section 4 we
include concrete examples showing how these metrics and
their computation expressions can be defined.

Conversely, Aggregation Metrics (e.g., “average process exe-
cution time”) take an arbitrary number of individuals of the
same kind (e.g., a set of Process Instances) as input. There-
fore, Aggregation Metrics are computed over a population
in order to obtain an overall perception of some aspect of
interest such as the average execution time of some partic-
ular process. In a nutshell, Aggregation Metrics are defined
in terms of an aggregation construct that is applied over
the population obtained by applying a Population Filter. A
Population Filter is defined intensionally as a kind of Query
that has only one kind of output type (see Section 2.1). Thus
Population Filters simply capture a Query that filters a par-
ticular kind of individuals that meet certain criteria. The
capacity for capturing Queries ontologically thus plays here
a very important role, allowing to completely specify and
compute Metrics even when the population to be analysed
varies over time. For instance the definition of the metric for
computing the average execution time of process instances
remains unchanged even when new process instances are cre-
ated over time. Aggregation constructs are unary functions
that take a list as input and return a Constant Quantity as
a result. Thus, most of the statistical functions previously
introduced (e.g., count, min, max, mean, etc) are indeed
valid aggregation functions.

Additionally, in order to provide a convenient way for busi-
ness analysts to define metrics, Metrics Ontology allows Ag-
gregation Metrics to have a nested definition whereby, a
given Function Metric will be evaluated over each individual
of the population prior to the computation of the aggrega-
tion function. The reason for this is that we want to sup-
port defining metrics such as the “average execution time of
process X”, or even the “maximum of the average cost per
process”. To do so Aggregation Metrics include the hasFunc-
tionMetric and hasUnboundRole slots. The former indicates
the Function Metric that will be applied whereas the lat-
ter determines which slot of the Function Metric should be
bound to each individual of the population being analysed.
Indeed, the output type of the Population Filter should coin-
cide with the type of the unbound role of the given Function
Metric. Metrics Ontology includes several kinds of Aggrega-
tion Metrics defined on the basis of the implemented statisti-
cal functions we introduced in Section 2.2. The current ver-
sion of the ontology includes Count, Maximum, Minimum,
Awverage, Standard Deviation, Variance, Sum, and Prod that
specify their corresponding aggregation construct.

Within Business Process Analysis, the concept of Key Per-
formance Indicator and its relevance is well-known. It can
therefore come as a surprise that it is not a central concept
within Metrics Ontology. The reason for this is simply the

3Note that OCML is operational and thus provides means
for including procedural definitions within the ontologies.
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Figure 2: Metrics Ontology.

characteristic contextual nature of KPIs: what can be con-
sidered as a KPI within a particular domain might not be
as relevant for another. For instance, the smallest devia-
tion with respect to the agreed deadline is not as relevant
for a software company as it is within the logistics domain.
Furthermore, even within the same domain, different de-
partments, business processes, or even particular process
instances might be driven by diverse KPIs. A simple ex-
ample can be the so-called Return of Investment which is
certainly crucial for most businesses but can hardly be used
to measure the success of the research department within a
company. Due to this context dependence we have opted
to capture the concept KPI using the Role design pattern
included in COBRA, see [14]. In this way we can model
that a given Metric plays the role KPI within a particular
Business Activity or Business Activity Realisation.

3. GENERIC METRICSCOMPUTATION
ENGINE

In this section, we describe our Generic Metrics Compu-
tation Engine that takes Metric definitions as input, inter-
prets them, and computes their value taking into account
the overall body of knowledge about process executions ob-
tained from audit trails and captured in terms of COBRA.

3.1 Task Method Domain Application

Our approach is based on previous research on Problem-
Solving Methods [16, 12]. In particular, we build upon the
Task Method Domain Application (TMDA) framework [12]
for Knowledge-Based Systems reuse and development. In a
nutshell, TMDA prescribes constructing Knowledge-Based
Systems based on the definition of task ontologies that de-
fine classes of applications (e.g., diagnosis, classification),

method ontologies that capture the knowledge requirements
for specific methods (e.g., heuristic classification), domain
ontologies which provide reusable task-independent models,
and application ontologies for integrating domain models
with domain-independent problem solvers.

TMDA has been applied to the construction of systems that
tackle diverse knowledge-intensive tasks (e.g., parametric
design, planning). Despite the relative simplicity of the met-
rics computation endeavour with respect to more complex
knowledge-intensive tasks [12, 16], this approach gives us the
appropriate genericity and support for interchanging meth-
ods as the need arises. Furthermore, this represents a step
towards the creation of library of tasks for Business Process
Analysis and their corresponding methods which we plan to
base on previous research in Problem-Solving Methods such
as diagnosis, classification and configuration design [2].

3.2 Metric Computation Task

Metric computation is defined within the TMDA framework
as a kind of task that takes a Metric as input and returns a
Quantitative Analysis Result with the actual value for the
Metric at that particular point in time, see Figure 2. Metric
Computation task is decomposed as illustrated in Figure 3,
whereby white boxes represent tasks and grey ones represent
methods. Compute Metric is the top-level task for metrics
computation and it is currently delegated to the sub-tasks
Compute Aggregation Metric or Compute Function Metric
depending on the kind of Metric being calculated.

Function Metrics computation is performed in a two-steps
process. First, the input roles of the Function Metric are
evaluated, and then the Function Metric is evaluated. In
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this way our framework supports nested definitions of Func-
tion Metrics, which provides important benefits. On the one
hand, the business analyst is provided with more convenient
means for defining metrics by reusing pre-existing ones. For
instance, the “ratio success-failure for a Business Activity”
can just be defined on a one-off basis using two other met-
rics for computing respectively the “number of failures” and
the “number of successes” for the given Business Activity.
On the other hand, this provides the required level of track-
ing over metric values. Retaking the previous example, for
computing the ratio, using concrete values for the input roles
(e.g., 40 and 7) would hide important information concern-
ing the origin for the role values (i.e., “number of successes”
and “number of failures” respectively).

Our metrics computation engine currently provides an ea-
ger implementation for the Compute Function Metric task
which, independently from whether the metric value might
have changed or not, always calculates it. It would, however,
be possible to include mechanisms for avoiding the computa-
tion of metrics which are known unchanged (e.g., execution
time of a finished process) and we could derive new values
based on previous computations and newly received informa-
tion which could be an important performance improvement
for computing average values for example. In this respect,
the TMDA framework provides us with the necessary sup-
port for seamlessly including new methods, and using them
as the need arises.

As we previously introduced, Aggregation Metrics are ba-
sically Metrics which are computed by applying an aggre-
gation construct such as average, over a particular popu-
lation. Aggregation Metrics computation, as illustrated in
Figure 3, is a three-steps process. First, the population is
selected by evaluating the Population Filter part of the spec-
ification of the Aggregation Metric. Secondly, Aggregation
Metrics computation supports, as previously introduced, the
automated computation of a Function Metric over each in-
dividual prior to applying the aggregation construct. This
second step is achieved by taking every individual obtained

i

Std Evaluate Metric Input Roles

Compute Metric

after evaluating the Population Filter, binding it to the un-
bound role specified by the Aggregation Metric, and finally
computing the Function Metric in the same way as explained
previously. Finally, the aggregation construct, e.g., average,
min, max, is applied over the resulting population and the
corresponding Quantitative Analysis Result is returned.

4. GENERIC BUSINESSMETRICSAND
QUERIES

In this section we present specific metric definitions that
give concrete details to the reader and fulfil two important
roles. First, they allow us to evaluate our framework from
a representation and computation perspective, so that we
can better assess the appropriateness and correctness of our
approach. Secondly, the metrics that we present here are
themselves important contributions to our framework since
they are generally applicable.

Metrics Ontology contemplates two kinds of Metrics. While
there exist many Aggregation Metrics that can be defined
in a domain-independent manner, the typical Function Met-
rics one could think of such as “Process Instance cost” and
“Return of Investment” are most often domain dependent.
We therefore include here mainly Aggregation Metrics, al-
though some generic Function Metrics could also be defined.
In particular, in Generic Business Metrics ontology we have
captured more than 40 Metric definitions, out of which 4
are Function Metrics. As previously explained, Aggrega-
tion Metrics definitions depend on Population Filters. The
Aggregation Metrics we have captured in Generic Business
Metrics ontology are therefore specified using an extensive
set of Population Filters. These approximately 50 Popu-
lation Filters have been captured within Generic Business
Queries ontology so that they can be seamlessly reused by
business analysts for appropriately filtering the information.
Among the Population Filters defined, we have queries for
obtaining Business Activity Realisations based on their cur-
rent execution state (e.g., Completed, Running); based on
their execution state at some particular point on time; based
on the Business Activity they perform, etc.



Listing 1 Function and Aggregation Metric Example.

(def-class #_BARExecutionTime (#_metrics:FunctionMetric)

((has-input-role :value #_hasBusinessActivityRealisation)

(#_hasBusinessActivityRealisation :type
#_cobra:BusinessActivityRealisation)
(#_metrics:hasComputationExpression :value
> (lambda (?£fm)
(in-environment
((?bar .
(the-slot-value 7fm

#_hasBusinessActivityRealisation))

(?result (#_time:duration ?bar))
?result))))))

(def-instance #_DefaultBARExecTimeInst #_BARExecutionTime)

(def-instance #_AvgClosedBARsExecutionTime #_metrics:Average
((#_metrics:hasFunctionMetric #_DefaultBARExecTimeInst)
(#_metrics:hasUnboundRole #_hasBusinessActivityRealisation)
(#_metrics:hasPopulationFilter #_gbq:whichBARsClosed)))

On the basis of the Population Filters represented in Generic
Business Queries ontology, we have defined a set of Aggre-
gation Metrics, that count the number of individuals that
share some criteria, like being a Process Instance currently
Running. The current version of Generic Business Metrics,
includes Aggregation Metrics for counting all the Business
Activity Realisations in some particular state, the Process
Instances performing a particular Process, etc. Addition-
ally, we have included a set of Aggregation Metrics which
are based on more advanced features of our framework. We
have defined a few Aggregation Metrics that make use of
the capacity for computing Function Metrics automatically
for the individuals of the population. In particular we have
defined the average, maximum, minimum “execution time
for Business Activity Realisations”.

Listing 1 shows the definition of a Function Metric for com-
puting the execution time of Business Activity Realisations,
and an Aggregation Metric for computing the average of
the execution time for all the Business Activity Realisations
that are closed (i.e., those that have finished)*. The Func-
tion Metric takes as input a Business Activity Realisation
and, based on Time Ontology [14], computes the duration.
The Aggregation Metric on the other hand computes the av-
erage of the execution time for each of the existing Business
Activity Realisations that are closed. The reader is referred
to the ontologies for further examples and details.

5. RELATED WORK

Significant efforts have been devoted to integrating auto-
mated reasoning within the BPM domain, see for instance [20,
6, 4, 7, 9, 19, 3]. Among these approaches we find research
on enterprise ontologies, value flows, etc. Indeed BPA is
no exception in this respect and it has been claimed that
the application of knowledge-based technologies is the next
evolutionary step [22]. Some have focussed on the defini-
tion an implementation of distributed architectures for Busi-
ness Process Monitoring [3, 19], whereas others have en-

44 _metrics:’ is an abbreviation for the namespace of Met-
rics Ontology, whereas ‘#_’ identifies the default namespace.

hanced existing analysis techniques with lightweight seman-
tics [4, 7]. However, despite the efforts devoted to enhanc-
ing BPA with semantics, the degree of automation currently
achieved is largely insufficient. With respect to metrics for-
malisation, [11] is perhaps of most relevance to us, however
their measurement ontology is focussed on providing a foun-
dational basis for domain-specific measurement ontologies
rather than on the computation itself.

Our approach to BPA [2, 14] is based on an extensive con-
ceptualisation of the BPM domain spanning from low-level
monitoring details to high-level business aspects so as to
bring this vital information to the business-level as required
by business practitioners. The research presented in this
paper aims at automating BPA to a greater extent by ex-
tending our existing framework to support the seamless defi-
nition and computation of metrics. In this respect, our work
is, to the best of our knowledge, the most complete generic
framework for the definition and computation of business
metrics in an automated manner. Furthermore, we do so
completely based on semantic technologies thus providing a
solid basis for the development of more advanced knowledge-
based techniques for BPA.

6. CONCLUSIONSAND FUTURE WORK

Business Process Analysis is a branch of Business Process
Management which is concerned with analysing deployed
processes in order to assess their well-being, identify po-
tential improvements and even ensure that these processes
meet certain criteria. Crucial within BPA, is the computa-
tion and analysis of metrics concerning business activities,
departments, resources, etc. These metrics include punctual
details like the “cost of a particular process instance”, statis-
tical aspects like the “average execution time of a process”,
or even the detection of trends and tendencies over time, like
the “evolution of customer satisfaction in the last year”.

A fully-fledged framework for BPA must therefore support
defining and computing metrics in a seamless manner. We
have defined Metrics Ontology, a domain independent ontol-
ogy that supports the seamless definition of business met-



rics, and the corresponding engine which can interpret and
automatically compute these metrics over domain-specific
data. Finally, we have defined two further extensions to our
framework, i.e., Generic Business Metrics and Generic Busi-
ness Queries ontologies, which help us validate the generic-
ity and correctness of our approach while, at the same time,
they provide us with a set of reusable definitions thus con-
tributing to our BPA framework.

Despite the expressivity and relative simplicity provided by
our framework for defining metrics, we have identified the
need for supporting users in the definition of queries. In
fact, although we have seen that defining metric computa-
tion expressions is not particularly complex or different from
current practices within custom-tailored software, defining
ontological queries seems to be beyond the tasks a business
practitioner would undertake. Future work will therefore
be devoted to simplifying the definition of queries both by
means of our conceptual model for specifying queries and by
means of an ontology-based user interface as part of SEN-
TINEL [15]. In more general terms, our future work will pur-
sue the vision previously outlined in [2] towards the greater
automation of BPA using knowledge-based techniques.
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