
A framework for dynamic data source identification
and orchestration on the Web

Alexander Berezovskiy
University of Southampton
University Road, Highfield

Southampton, SO17 1BJ, United Kingdom
+44 (0)7775 675360

letoosh@letoosh.com

Dr Leslie Carr
University of Southampton
University Road, Highfield

Southampton, SO17 1BJ, United Kingdom
+44 (0)23 8059 4479

lac@ecs.soton.ac.uk

ABSTRACT
The current  Web offers  a  very  large  number  of  solutiofns  and 
services,  ranging  from  social  networking  and  content  delivery 
services  to  business  applications  and  management  systems. 
However,  in  a  general  case  the  solutions  provided  are  largely 
disintegrated,  with  each  product  operating  in  it's  own 
environment. Additionally, many of the products are unknown to 
the  end  user  and  finding  the  most  suitable  application  is 
commonly a non-trivial task. The current project is an effort to 
provide  a  ubiquitous  interface  for  Web  application  integration. 
The suggested approach allows for dynamic identification of the 
applications most suitable for a given task and access to their data 
using a unified interface in the REST architectural style. A novel 
algorithm for identification of the most appropriate data source is 
introduced within the study. Evaluation of the overall system and 
the obtained results is provided.

Categories and Subject Descriptors
H.3.3, H.3.5 [Information Storage and Retrieval]: Information 
Search and Retrieval – retrieval models, search process, selection  
process;  Online Information Services –  data sharing, web-based 
services.

General Terms: Algorithms, Management, Design.

Keywords:  Information  retrieval,  web  integration,  unified 
data access, data source identification.

1. INTRODUCTION
It can be said that there has been an immense increase in the use  
of social applications in the past several years and people accept 
online communities as a part of their everyday lives. Additionally, 
businesses tend to pay more attention to the ways in which online 
social  and management tools can be used [1]. Therefore,  many 
operations involved in  processing and manipulation of  people's 
social,  professional  and  personal  information  are  moving  onto 
Web platforms. Whilst this can be seen as a ubiquitous source for 

data retrieval  and processing,  it  presents  new challenges to the 
ways  in  which  information  can  be  retrieved,  composed  and 
manipulated.  In  a  general  case,  web  applications  are  not 
interconnected  and  every  product  operates  in  its  own 
environment.  With  the  absence  of  a  flexible  and  scalable 
framework,  which  could  be  used  to  interact  with  any  web 
resource,  both  developers  and  end  users  are  forced  to  switch 
between applications and interfaces in order to fully benefit from 
their services. Therefore, the current project is an effort to provide 
such framework and ubiquitous environment for integration on the 
Web.

1.1 Definitions
For  the  purpose  of  the  current  paper  and  in  order  to  avoid 
ambiguity the following definitions need to be introduced within 
the study:

 • “Application” is defined as “a software product designed to help 
users perform a task”

 • “Service” is defined as “a set of functionality provided by an 
application aimed at solving one or many related tasks”

Therefore, Web applications are accessible via a Web browser and 
the methods used and applied to such applications present a set of 
common technologies involved in the development, deployment 
and exploitation of the applications. In the context of the current 
paper, Web services represent a set of features provided by a Web 
application.

1.2 Project goals
With the rapid growth of the Web and the advent of associated 
technologies, it is now possible for Web applications to interact 
within the context of provided services. However, the methods 
currently available put a number of limitations on the scope of 
possible interaction. Therefore, it can be beneficial for the future 
development of the Web to construct a theoretical and practical 
framework, which can be used to uniformly interact with any Web 
application. The current project is an effort to create such 
framework and provide a ubiquitous environment for dynamic 
Web integration. More specifically the project intends to focus on:
 - Dynamic identification of the most suitable service providers 
(applications),
 - Provision of a universal interface to access and manipulate the 
providers' data.

The project aims to provide an interface for both developers and 
ordinary Web users to manipulate the data composed from 
disparate web sources on the basis of provided services.

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not  made  or  distributed  for  profit  or  commercial  advantage  and  that 
copies bear this  notice and the full  citation on the first  page. To copy 
otherwise,  or  republish,  to  post  on  servers  or  to  redistribute  to  lists,  
requires prior specific permission and/or a fee.
ECOWS’10, December 1–3, 2010, Ayia Napa, Cyprus.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.



2. ANALYSIS
The rapid development of the Web and related technologies have 
reflected the need for a scalable data integration platform in the 
new  emerging  products.  Examples  of  such  products  are  the 
ProgrammableWeb  project,  the  OpenID  technology  and  the 
OpenSocial  platform.  Although  many  of  the  products  are 
dedicated to the mashup method and are unsuitable for large-scale 
data  integration  [2],  some  technologies  such  as  OpenID  and 
OpenSocial provide a more general approach to the problem.

The  OpenID  initiative  suggests  a  technology  to  universally 
authenticate against a web application using existing credentials 
on  some other  application  [3].  For  example,  if  a  user  has  an 
account on Google, this can be used as their credentials to log into 
ProgrammableWeb.  Since  OpenID  specifies  a  protocol  for 
authentication and is not tied to any specific product,  it  can be 
used as a way to enable communication between two applications 
in  the  means  of  identifying  a  user  [4].  Although,  the  OpenID 
standard does not provide a framework for full data composition 
and  is  limited  to  authentication  routines,  it  demonstrates  the 
potential  for  large-scale  integration  on  the  Web  and  the 
requirement  for  a  universally  accessible  data.  It  is  stated  that 
OpenID  is  gaining  wide  adoption  and  the  number  of  users  is 
estimated  at  500  millions  with  more  than  48,000  OpenID 
providers [5].

Another  popular  project  aimed  at  web  integration  is  the 
OpenSocial  platform  advocated  for  by  Google.  OpenSocial 
provides a set of APIs to access data of its partner applications. It 
aims  at  integration  at  both  functional  and  data  levels,  and  is 
focused on social  networking platforms. For the purpose of the 
current  study and in order  to identify major design issues it  is 
suggested to look at the details of the platform implementation.

2.1 Case Study: OpenSocial
The OpenSocial platform aims at universal integration of social 
networking systems using an approach similar to mashup creation. 
It  utilizes  the general  concepts  of  social  networking data  in  an 
attempt  to  abstract  away  from  implementation  and  provide  a 
generic interface to access and manipulate the data [6]. Operations 
are performed at the level of data entities existing within social 
networking  systems  and  the  relationships  between  them.  The 
entities include user profiles, their activities, media items (photos, 
videos or other similar content), messages and more [7]. A unified 
JavaScript framework is provided to compose data into functional 
elements, which can be combined into a single page in a form 
similar to mashup construction and executed at client side. Each 
of such elements is treated as a separate “gadget”, providing some 
functionality and can be used separately. Thus, users are free to 
create their own gadgets and embed them into custom Web pages 
[8]. Apart from this, information can be gathered from multiple 
data  providers,  which  can  be  dynamically  integrated  into  the 
platform.  Each  of  the  providers  must  implement  a  specific 
interface in order for their data to be available within the platform.

In general, OpenSocial provides an extensive and rich framework 
for integration of social networking sites. The outside interface is 
independent of the underlying data provider and the platform is 
capable of manipulation on the data in a universal bi- directional 
manner. However, the system is targeted at social networking 
resources which limits the scope of application and significantly 
reduces the flexibility of the system [9]. Additionally, existing 
applications can not be immediately integrated into the system 

unless additional modifications are made in order to provide the 
required interface. Finally, it can be said that the platform lacks 
serious management and integration routines required for large-
scale adoption, such as flexible and unique data addressing and 
interaction between gadgets [10, 11].

3. DESIGN
3.1 Overview
Due to the nature of the target solution, the overall project can be 
divided into two major tasks: data source identification and data 
retrieval.  Since  the  system has  to  interact  with  numerous  Web 
resources  it  is  implemented  and  deployed  online  as  a  Web 
application by itself. The project takes a user-centric approach to 
the design and implementation. It is implied that users tend to use 
different  Web  applications  for  their  needs  depending  on  their 
location,  age,  background  and  other  [12].  Therefore,  data  for 
different  users  may  be  spread  across  different  applications. 
However,  the  project  does  not  intend  to  limit  the  scope  of 
available data to those attached to a given user. Indeed, any web 
page can be treated as  a  web application in the context of  the 
system since the very existence of the page implies the existence 
of the data available within. The general functional sequence of 
the system can be defined in the following order. On receiving a 
data request, the system has to determine which applications to 
use. Next, a call can be made to the selected application in order 
to perform the requested action on the data (either retrieve or push 
information to the resource). Depending on the result of the call 
and  nature  of  the  data  request,  the  system returns  the  data  or 
reports on the results (Figure 1).

In order to uniquely address the type of data required, the project 
follows a service-oriented architecture, by devising common data 
patterns  for  similar  applications.  For  instance,  most  social 
networks  provide  user  profile  data,  which  typically  contains 
profile picture, name and associated activity or interests data. The 
devised  patterns  are  then  organized  in  hierarchical  service 
structures. An example of a devised structure common for many 
applications on the Web is demonstrated in Figure 2.

Figure 1: General operation



Thus,  every application can be assigned one or many services, 
each corresponding to some data entity within the application (for 
example,  Facebook  provides  “Social  Networking  /  Profile  / 
Status” service and related data). There is, however, no intention 
to predefine a fixed tree of services to be used within the system.  
Instead, the system aims to provide functionality to modify the set 
of available services at  any time in order to enhance flexibility 
and accommodate new applications.

Dynamic application discovery within the vast amounts of web 
resources is  commonly a  non-trivial  task and involves multiple 
data mining techniques, which are usually either computationally 
expensive or resource exhaustive or both. For the purpose of the 
current study, application discovery on the Web is not the target 
objective  and  outside  of  the  scope  of  the  project.  Instead, 
following the general concept of social interaction on the Web, the 
project  aims  to  provide  features  for  end  users  to  add  new 
applications to the system. However, the project aims to provide 
capabilities to identify the most appropriate data resource for a 
given service within the set of registered applications.

The next two sections provide a detailed overview of the system 
architecture. It is assumed that all data requests received by the 
system are addressed to a particular service, so that the nature of 
the expected result is known.

3.2 Data source identification
As  it  has  been  shown  in  3.1,  people  tend  to  use  different 
applications  depending  on  various  parameters,  such  as  their 
location, background and other. Therefore, in order to compute the 
most appropriate application for a given service, the system needs 
to keep track of such parameters and the applications people use 
for  various tasks.  Whilst  it  is  apparent  that  a  user's  country of 
residence and language spoken affects their choice of application, 
the  effect  of  the  other  parameters  is  uncertain  and  requires 
extensive testing and user survey. During the system design stage 
it has been chosen to dynamically build a set of user parameters in 
order to enhance flexibility and effectiveness of the identification 
process.

This way, users are free to provide their details based on the set of 
available  parameters  and  corresponding  options.  Each  set  of 
details  (parameter-option  pairs)  is  then  combined  into  a  single 
data entity corresponding to a user's  personal data environment 
(thereafter  referred  to  as  “environment”).  Instead  of  directly 
assigning user selections to his or her profile, they are assigned to 
an environment instance, which in turn gets assigned to the user 
profile.  It  is  expected  that  every  unique  set  of  selections 
corresponds to a single environment instance. Thus, for example, 
two users who share the same country and language, and have not 

provided any other information get the same environment instance 
assigned as a set of their personal details. This approach allows 
for more efficient computation of similar users and their preferred 
applications as it does not directly depend on the number of users, 
but  utilizes  only  their  details  (environments)  and  preferences 
(usage  records).  A  user  may  then  explicitly  choose  the 
applications they use and, if desired, the services used within the 
applications. Due to hierarchical service model, it can be implied 
that  if  a  user  makes  use  of  some  service  on  a  particular 
application,  he  or  she  also  uses  the  child  (contained)  services 
within the given one, unless specified otherwise. For example, if 
the  system knows the  current  user  has  their  social  networking 
profile  on  LinkedIn,  it  can  be  assumed  that  the  user's  profile 
picture, name and similar data is also contained within LinkedIn.

As  a  result,  the  system would  need  to  consider  all  the  usage 
records of all users to effectively compute the most appropriate 
application. However, this makes the computation dependent on 
the number of users, whilst the actual value is the number of users 
who  use  an  application  in  a  given  environment.  Therefore,  a 
separate  usage  statistics  for  every  application  may  be  built  in 
order  to  avoid  this  limitation.  The  general  design  of  the 
identification part of the system is shown in Figure 3.

3.3 Data retrieval
When  a  data  request  is  received,  the  system  initially  tries  to 
identify the most appropriate resource to handle the request. When 
the resource is identified, the system needs to contact the target 
application and perform the requested operation. However, every 
application  provides  a  different  Application  Programming 
Interface (API) and no common operation can be suitable for all 
of them. There is usually no semantics provided with APIs,  so 
automatic discovery of provided interfaces can not be achieved. 
Moreover, many applications do not even provide an API in any 
form, hence direct data access may not be possible. Therefore, the 
system has to be flexible enough in order to accommodate any 
web resource and allow for  granular  data  retrieval  without  the 
need to communicate with an API. In order to achieve such level 
of  flexibility,  the  system architecture  provides  a  framework  to 
dynamically define ways in which an application can be interacted 

Figure 2: Data tree example

Figure 3: Architecture - Data source identification



with. Instead of communicating with an application directly, the 
system  passes  the  request  over  to  a  small  utility  (thereafter 
referred  to  as  “binding”),  which  interacts  with  the  required 
resource and returns the result of the performed operation back to 
the system. Every binding is a small software and can be written 
by any user, in a manner similar to application registration. The 
system provides  a  number  of  standard  utilities  to  simplify  the 
process  of  binding  creation  and  interact  with  third-party  web 
resources, their APIs or in the form of web scraping. In order to 
ensure  security  of  the  underlying  architecture,  bindings  are 
executed in a secure environment, where access is restricted to the 
routines  required  for  request  handling.  Additionally,  extra 
adjustments need to be made to ensure bindings do not contain 
any malicious code, which may be used to intercept users personal 
information,  authentication  details  or  similar  information.  To 
provide  a  functionality  to  prevent  such  situations  the  system 
implements an additional feature for bindings to be reviewed by 
administrators. By default, every new or modified binding is put 
into a “non-approved” state. The system administrators may then 
review the binding code and either  mark it  as  “safe” or  “non-
safe”. Thus, only the author of a non-approved binding can trigger 
its  execution  prior  to  review,  which  may  be  useful  for 
development and testing purposes. However, some users may still 
wish to use bindings which have not been reviewed. The system, 
hence,  allows  to  approve  a  binding  for  a  user's  personal  use. 
However, bindings that have been marked as non-safe are never 
executed independently of personal approval, unless the author of 
the binding changes its code in which case the binding becomes a 
non-reviewed again.

Finally, target applications may require additional input in order to 
process  certain  requests.  Examples  of  such  requests  include 
authorization into an application, user identification (username or 
user unique ID may be required), uploading a new profile picture 
(new  file  required),  bookmarking  a  web  page  using  social 
bookmarking  systems  (an  URL is  required)  and  other  similar 
tasks. Therefore, the system provides a “Data Interface” entity to 
maintain sets of required and optional parameters available to pass 
over to the target application. Bindings, however, are not required 
to  specify  an  interface  in  order  to  operate.  Instead,  the 
functionality  is  provided  as  a  support  feature  to  help  enhance 
interaction between the end user and the target application (data 
source).  Thus,  users  will  be  notified  if  there  is  any  missing 
parameters that are required by the binding.  Therefore, binding 
developers may ensure that all the required data is provided by a 
user at the moment of execution and does not cause unpredicted 
behavior of the target application.

The suggested approach provides very high level of flexibility as 
it  allows  to  interact  with  any  web  resource  in  a  unique  way, 
specific to the resource. At the same time, it enhances the system 
functionality  by  allowing  custom  interfaces  to  be  defined  by 
binding  developers.  When  combined  with  the  identification 
subsystem,  the  overall  architecture  is  capable  of  dynamically 
identifying  user's  data  within  the  integrated  applications.The 
overall system conceptual design is shown in Figure 4.

3.4 System components
In general, due to the nature of the project, the system must be 
capable  to  operate  at  high loads and hence,  allow for  multiple 
bindings  to  be  executed  at  the  same  time.  Thus,  the  project 
implements a distributed structure of functional elements in order 
to achieve this goal. Initially, the elements described in 4.2 and 4.3 
are contained within the main operating server (thereafter referred 
to as “Server”) and the actual binding execution is handled by a 
separate  execution  controller  (thereafter  referred  to  as 
“Controller”). Server is capable of communication with multiple 
Controllers at  the same time in the common distributed objects 
architectural style. Every Controller, in turn contains one or many 
secure  execution  environments  (thereafter  referred  to  as 
“Runtime”), which processes binding code for every request. Each 
Runtime provides a safe environment where untrusted code, such 
as bindings can be executed. Requests to third-party applications 
are  performed  from  within  the  environment.  Thus,  should  a 
binding fail to complete a request in a reasonable time interval, it 
will not affect the behavior of the rest of the system. Apart from 
this, bindings may need to store some data within the system (for 
example  secure  tokens  to  identify  itself  for  the  third-party 
application).  Such  data  may  only  be  accessed  by  binding 
developers. At the same time users may want to save their input 
within the system, to avoid entering the required parameters on 
every data request. Such user data saved within the system must 
only be available at the time of execution. Since Controller is in 

Figure 4: Architecture - Overall



charge of  handling binding execution,  it  is  logical  to  construct 
persistent storage (thereafter referred to as “Storage”) within its 
own  architecture  instead  of  main  Server.  Finally,  in  order  to 
further enhance multiprocessing capabilities of the whole system, 
each of the three major functional elements (Server, Controller, 
Runtime) can have multiple instances (Figure 5).

4. IMPLEMENTATION

4.1 Identification algorithm
The  data  source  identification  subsystem  is  one  of  the  major 
components of the project and was the first functional element to 
be delivered during the implementation phase. The algorithm for 
the task was developed incrementally based on the evaluation of 
achieved results. The final version of the algorithm is described in 
the current paper.

The starting point for the computation of suitability score of an 
application  is  its  relevance  to  the  requested  service.  Thus,  an 
application that provides neither the service itself nor any of the 
parent  services  should  receive  a  much  lower  score  than  an 
application that is more suitable for the task. Apart from this, the 
suitability computation can be seen as a general recommendation 
problem.  Therefore  a  number  of  common  techniques,  such  as 
collaborative  filtering  may  be  applied  [13].  In  user-based 
collaborative  filtering  items  are  recommended  based  on  their 
similarity to the items currently used by a user. For example, if a 
user  A is  known to use application  1,  and there are  other two 
users  B and  C who are known to use application  1 but also use 
application 2, then A is likely to use 2. Raw processing of all user 
preferences  is  usually  computationally  expensive  with  a  large 
number  of  users,  although  the  algorithm  can  be  modified  to 
precompute  item similarity  offline  and  use  the  resulted  counts 
within  the  algorithm  [14].  This  method  allows  to  efficiently 
predict the applications that a user may use, but is not sufficient  
by  itself,  since  it  requires  some critical  mass  of  users  prior  to 
effective operation [15] and initial intervention from the end user 
to mark used applications.

As demonstrated in 3.2, the major part of the algorithm needs to 
consider user personal details, such as the country of residence 
and language. It is possible then to compare users with matching 
details  (same  country,  language  or  other  parameters  in  their 
environments)  and  compute  similarity  based  on  the  used 
applications.  The  system,  however,  implements  a  separate  data 
entity  (Usage  Counts)  for  maintaining  the  usage  numbers  per 
application for a given environment. Therefore, the algorithm only 
needs these numbers and there is no need to analyze every user. 
Additionally,  it  is  required to  produce effective results  prior  to 

reaching  a  reasonable  number  of  users.  Thus,  it  is  possible  to 
predefine usage numbers  based on the statistical  data  of  freely 
available online surveys. Additionally, some applications provide 
information on their usage demographics. Such data was collected 
and  aggregated  in  the  beginning  of  the  development  phase  in 
order to provide initial statistical counts for the search algorithm. 
At  the  same  time,  it  can  be  said  that  the  importance  of  the 
statistical  data  is  lower  of  that  of  actual  users  of  the  system. 
Additionally, data obtained from registered users of the system is 
of higher value than the data gathered from those who have used 
the  system  either  implicitly  or  directly,  but  have  not  actually 
registered for an account. Therefore, the difference between the 
value of each dataset is taken into account within the algorithm by 
defining a weight for each element.

The general form of the resulting algorithm:

Total Score for an Application a is defined as:

TSAa=TRS aERS aTRAA a , where:

• TRS a - Total Relevance Score for a

• ERS a - Environment Relevance Score for a

• TRAA a -  Total  Recommendation  based  on  Application-to-
Application score for a

Total Relevance Score TRS a is expanded as:

TRS a=AMS aamsSMS asms , where:

• AMS a  -  Application  Match  Score  for a . This  element  is 
calculated  differently  depending  on  the  request.  When 
requesting  a  data  operation  on  a  given  service  AMS is 
always zero. When the user searches for an application using 
plain-text  search  this  estimates  to  the  number  of  matches 
within an Application title and description.

• SMS a - Service Match Score for a , defined as:

1 for every matching service on the upper part of the branch 
of the required service up to the top parent service multiplied 
by the distance from the required service, or:

SMS a=∑
service

n
1

distance1
,

Where n=∣ParentsOnBranch required ∣ and

 service∈ParentsOnBranch required ∪ProvidedServices a

• ams and  sms are  pre-defined weights  for  AMS and  SMS
respectively.

Environment Relevance Score ERS a is expanded as:

where:

• E a - set of environments where a is used

• Env u - environment instance of the current user

• EMS e , Envu  -  Environment  Match  Score  for  e  and 
Env u . This  corresponds  to  the  number  of  matching 

(identical) values between the two environment instances

Figure 5: System components

ERS a= ∑
e∈E a

n [EMS e , Envu 
EAUC a ,e 

ETUC  e


euc]



• EAUC a ,e - Environment-Application Usage Count for a in 
e ,  or  the  number  of  users  in  the  environment  using  the 

application, according to pre-defined statistical data

• ETUC e - Environment Total Usage Count for e , or the total 
number of users in the environment, according to pre-defined 
statistical data

• euc is  a  pre-defined  wieight  for  Environment  Relevance 
Score.

Total  Recommendation  based  on  Application-to-Application 
score TRAAa   is expanded as:

TRAA=
∑

b=A u

n

RAAa , b

∑
c=AR a 

n

RAAa ,c
raa , where:

• Au  - set of applications the user u is known to use

• ARa  - set of applications used along with a

• RAA a ,b -  Application-to-Application score for  a  and  b
(precomputed)

• 
raa

- pre-defined weight for TRAA

Therefore, the full expanded form of the resulting algorithm can 
be written as:

It  can  be  said  that  the  suggested  algorithm  provides  a  quite 
efficient method as its computational complexity does not depend 
on the number of users active within the system and the algorithm 
is  capable  of  operation  without  initial  mass  of  active  users. 
Additionally, it allows to tune the importance of its components, 
hence providing a way to balance the results towards more dense 
datasets. Thus, for example, when the system reaches a reasonably 
high  number  of  users,  the  statistical  component  may  be 
completely  withdrawn.  Finally,  it  considers  two  dimensions  of 
datasets by utilizing both user environment data and application 
usage  data.  It  is  stated  that  multidimensional  algorithms  are 
generally more effective than unidimensional and provide more 
accurate results [16].

Apart  from the statistical  counts  that  are  predefined within the 
system,  an  automatic  discovery  of  partial  user  data  was 
implemented. On the first visit, the system attempts to detect the 
visitor's country based on their IP address. Apart from country, the 

system attempts to detect the user's language based on the Accept-
Language header sent by the client's browser. The header is a part 
of HTTP standard and normally contains a number of preferred 
languages in a standardized format, which usually correspond to 
the language of the used browser software. In the meantime, in the 
context  of  the  algorithm,  all  applications  represent  user 
preferences.  Thus,  both  local  and  online  applications  may  be 
treated equally,  though differ  by type.  Therefore,  the choice of 
web  browser  and  operating  system  may  reflect  personal 
preferences of a user. The system attempts to automatically detect 
the operating system and browser in use based on the standard 
HTTP User-Agent header sent by the browser, which commonly 
includes information  on the  underlying operating  system. Such 
applications are registered within the system as ordinary entities, 
but  placed  into  a  separate  category,  excluded  from  the  set  of 
recommendations devised by the algorithm. 

As a result, two environmental parameters (country and language) 
and two preferred applications (browser and operating system) are 
detected automatically to create the required minimal dataset. The 
algorithm is, therefore able to provide initial results without any 
intervention required from the end user. 

4.2 Data interface
The  data  access  interface  was  implemented  in  the  REST 
(Representational State  Transfer) architectural  style.  Contrast  to 
traditional integration technologies (such as WSDL and UDDI), 
REST relies on the standard HTTP protocol, does not require a 
separate resource discovery service, and is easier do implement, 
find and invoke [17]. Additionally, in the context of the current 
project,  where  it  must  be  allowed  for  a  large  number  of 
independent  queries  to  be  performed  at  the  same  time,  REST 
represents a more suitable choice than traditional methods of Web 
integration [18].  Finally,  following the general  approach of  the 
project geared towards high flexibility, REST represents a scalable 
architecture, which may be easily extended for use in a very large 
number of usage scenarios [19, 20].

In the general form the interface can be written as:

http://example.com/service/<service_path>/data[.extension]
   [/id=user_id][/app=application_id][[/bind=binding_id]
   [?binding_input_arguments]

Where all parameters in  <> are required and all parameters in  [] 
are optional, and:

• service_path – hierarchical  path  to  the  required  service,  for 
example: social-networking/profile/name

• extension – extension of the required data format (optional). 

For example, html, xml, text or jpg.

• user_id – unique ID number of a project user (optional). 

This may be used to make cross-user calls for data. If not 
specified the current user is used. If a foreign user profile is 
specified access must be granted by the foreign user to the 
current one.

• application_id – unique ID number of an application (optional).

Can  be  used  to  specify  a  different  application  to  the  one 
suggested by the identification algorithm.

• binding_id – unique ID number of a binding (optional).

Allows to specify a different binding to the default one.

 ∑
e∈E  a

n [EMS e , Env u
EAC a ,e 

ETC e


esc ]
TSAa = AMS a 

ams
 SMS a

sms



∑

b=A u 

n

RAAa ,b 

∑
c=AR a 

n

RAAa ,c


raa



• binding_input_arguments – a set of key-value pairs to pass to 
the binding.

Uses the standard form of key=value[&key=value][...]

If the request does not use the GET method, the set of input 
arguments  is  derived  from  a  composition  of  arguments 
provided  in  the  URL and the  body of  the  request,  where 
preference is given to the latter.

Each of the optional arguments may be specified independently of 
other arguments. The system will pass all the specified parameters 
to the target binding.

The system response to a data request depends on the result of the 
operation and the input parameters, such as expected format. The 
example  of  an  XML response  to  a  request  to  /service/social-
networking/profile/name/data.xml is shown in Figure 6.

4.3 Performance
Although the final system demonstrated good performance results 
during  stress  testing  period,  a  large area  for  improvement  was 
seen in the application of caching framework to the system.

Caching  was  implemented  for  a  large  proportion  of  internal 
functionality  of  the system.  Apart  from standard per  user  page 
cache,  the  major  improvements  were  concerned  with  the 
identification  algorithm.  Thus,  the  environment  match  counts
( EMS ) and application-to-application similarity scores ( AMS ) 
were  cached,  followed  by  caching  of  the  major  algorithm 
components. The system was adjusted to drop individual cache 
elements  on  user  actions  which  may  affect  the  results  of  the 
algorithm (for  example,  on  change  of  user  environment).  This 
allowed to  dramatically  decrease  the  number  of  queries  to  the 
database  required  in  order  to  process  a  request.  Generally 
speaking, due to the granular approach to the caching subsystem, 
most requests required no queries to be made to the database.

The  implementation  of  the  caching  framework  proved  to 
significantly  increase  response  rates  of  the  system and  overall 
stability. The final stress testing demonstrated a 30% increase in 
the amount of requests processed in a time interval and over 20% 
increase in stability for the price of only 9% increase in memory 
usage.

During  the  final  stages  of  implementation,  when  the  project 
matured to a state of fully functional system, it was decided to 
undertake a more intensive testing by opening the project to the 
public. In early March 2010 the project was deployed in the form 
of an public preview, set up and released. The users of the site 
were  asked  to  provide  feedback  and  comments  on  their 
experience.

This  testing  phase  allowed  to  gather  information  about  the 
suitability of the implemented system for wide public use. The 
feedback received was used to make further adjustments to the 
project code, which mainly involved usability and user interface 
improvements.

Additionally,  with  the  increase  in  number  of  users,  the 
implemented algorithm demonstrated improved precision due to 
the  growing  data  set.  This  demonstrated  the  efficiency  of  the 
suggested approach for the problem domain.

Finally, the attention drawn to the project at the public preview 
stage  demonstrated  that  the  overall  system  presents  a  novel 
solution  to  web  application  integration  and  may  have  further 
implications on the common practice of web development.

5. CONCLUSION
The current project is an effort to provide a flexible and scalable 
solution to the problem of large-scale application integration on 
the Web. It can be said that the resulting system meets the devised 
set  of  requirements  for  such  solution  and  presents  a  novel 
approach  to  the  problem.  Contrast  to  the  existing  products,  it 
allows  for  granular  and  flexible  access  to  application  data, 
independently  of  the  internal  implementation  details.  In  the 
meantime, the suggested approach does not limit the scope of data 
resources  available  for  integration  and  does  not  require  any 
adjustments to be made within the applications. In fact, any data 
available to  a user  on the Web can be integrated and accessed 
using the system. Broadly speaking, the domain of applicability of 
the system is not limited to Web resources, but can be extended to 
any  data  entity  accessible  via  the  Internet.  Finally,  the 
identification  algorithm  of  the  project  allows  to  dynamically 
compute the most appropriate applications for a user. As a side 
effect the results produced by the algorithm can be used in many 
other  areas,  and  the  algorithm  itself  may  be  applicable  in  a 
different field of similar problem domain.

In conclusion,  it  can be said that the overall  project presents a 
significant  contribution  to  the  research  area  of  dynamic  data 
integration and service orchestration on the Web. A further study 
of the area may reveal new intriguing challenges which may not 
yet be predicted.

6. DISCUSSION
Whilst  the current  project  provides a  way to identify the most 
appropriate  data  sources  for  a  given  service,  it  relies  on  the 
database  of  applications  manually  entered  into  the  system.  A 
rather  interesting  research  challenge  would  be  to  achieve 
automatic  discovery of  such applications on the Web.  An easy 
way to achieve this would be the use of emerging Semantic Web 
technologies.  However,  at  the moment  of  writing there  is  very 
little number of applications on the Web that supply semantic data 
related to the provided services. Although, there is no common 
approach  to  achieve  application  discovery  at  present,  a  deeper 

<data result="success" code="1">
  <title>Data / Name / Profile / Social networking</title>
    <info>
      <application id="1" name="Facebook"
                          uri="http://example.com/app/view/1/"/>
      <binding id="8" name="FacebookName"
         uri="http://example.com/binding/view/8/" />
      <interface id="53"
         name="Social networking / Profile / Name: FacebookName"
         uri="http://example.com/service/social-
              networking/profile/name/interface/app=1/bind=8" />
      <format type="data" name="XML" extension="xml"
         mimename="text/xml" />
      <service id="5" name="Name"
         treepath="social-networking/profile/name/"
         uri="/service/social-networking/profile/name/" />
    </info>
  <result>Alex Berezovsky</result>
</data>

Figure 6: XML data response example



study of the problem may substantially benefit the  current project 
and the overall research area in general.

Apart from this, the capability to extract granular chunks of data 
from the Web provided by the system may be enhanced with the 
Semantic Web technologies. Thus, application of the technologies 
to  the  data  extraction  capabilities  may  allow  for  dynamic 
knowledge  elicitation  and  construction  of  large-scale  personal 
knowledge  systems.  The  implications  of  such  approach  are 
difficult to predict, but it can be said that the resulted system may 
produce a substantial contribution to the problem of construction 
of personal agents, expert systems and other products.

Finally, despite the system demonstrated good results on the tests, 
the behavior of the system under high load in a real situation is yet 
to be seen. This may raise new challenges and open a vast area for 
improvement.  In  the  meantime,  the  interface  suggested  in  the 
current study was devised during the undertaken research on the 
topic. Introduction of a standardized interface, which may be used 
to  address  data  entities  on  web resources  may lead  to  a  great 
degree  of  distributed  integration  systems  and  result  in  a  truly 
dynamic and personal Web.

7. REFERENCES
[1] Kim, W., Jeong, O.R. 2009. On Leveraging Social Web Sites. 

In Proceedings of the 4th International Conference on 
Innovative Computing, Information and Control (Kaohsiung, 
Taiwan, December 07 - 09, 2009). 1273-1276.

[2] Abiteboul, S., Greenshpan, O., Milo T. and Polyzotis, N. 
2009. MatchUp: Autocompletion for Mashups. In 
Proceedings of the 25th IEEE International Conference on 
Data Engineering (Shanghai, China, March 29 - 02 April, 
2009). 1479-1482.

[3] Lerner, R.M. 2008. At the forge: OpenID. Linux Journal 169, 
9 (2008).

[4] OpenID Authentication 2.0 – Final, 2007. Retrieved April 17, 
2010, from OpenID Foundation: 
http://openid.net/specs/openid-authentication-2_0.html

[5] Jrstad, I., Johansen, T.A., Bakken, E., Eliasson, C., Fiedler, 
M. and Thanh, D. 2009. Releasing the potential of OpenID & 
SIM. In Proceedings of the 13th International Conference on 
Intelligence in Next Generation Networks (Bordeaux, France, 
October 26 - 29, 2009). 1-6.

[6] Mitchell-Wong, J., Kowalczyk, R., Roshelova, A., Joy, B. 
and Tsai, H. 2007. OpenSocial: From Social Networks to 
Social Ecosystem. In Proceedings of the 2007 Digital 
EcoSystems and Technologies Conference (Cairns, Australia, 
February 21 - 23, 2007). 361-366.

[7] OpenSocial API Server Specification 1.0, 2010. Retrieved 
April 21, 2010, from OpenSocial Foundation: 
http://opensocial-
resources.googlecode.com/svn/spec/1.0/Social-API-
Server.xml

[8] Wu, W., Uram, T. and Papka, M. 2009. Web 2.0-based social 
informatics data grid. In Proceedings of the 5th Grid 
Computing Environments Workshop, (Portland, OR, 
November 20, 2009). 6.

[9] Geambasu, R., Cheung, C., Moshchuk, A., Gribble, S. and 
Levy, H. 2008. Organizing and sharing distributed personal 
web-service data. In Proceedings of the 17th International 
conference on World Wide Web (Beijing, China, April 21-25, 
2008). 755-764.

[10] Enterprise OpenSocial Whitepaper, 2010. Retrieved April 22, 
2010, from OpenSocial Foundation: 
http://www.opensocial.org/page/enterprise-opensocial

[11] Shin, D. and Lopes, R. Enabling Interoperable and Selective 
Data Sharing among Social Networking Sites. In Bertino, E. 
and Joshi, J. Collaborative Computing: Networking, 
Applications and Worksharing, Springer, Berlin, 2009, 439-
450.

[12] The State of Social Networks, 2010. Retrieved March 10, 
2010, from comScore: 
http://www2.comscore.com/l/1552/APwithfocusonMalaysiaJ
an10-pdf/H16B5

[13] Brusilovsky, P., Kobsa, A. and Nejdl, W. 2007. The Adaptive 
Web: Methods and Strategies of Web Personalization. 
Springer, Berlin, Germany.

[14] Linden G., Smith, B. and York, J. Amazon.com 
recommendations: item-to-item collaborative filtering. 
Internet Computing 7, 1 (2003). 76-80.

[15] Segaran, T. 2007. Programming Collective Intelligence. 
O'Reilly, Sebastopol, CA.

[16] Rosaci, D., Sarné, G.M.L. and Garruzzo, S. MUADDIB: A 
distributed recommender system supporting device 
adaptivity. ACM Transactions on Information Systems 27, 4 
(2009). 24.

[17] Meng, J., Mei, S. and Yan, Z. 2009. RESTful Web Services: 
A Solution for Distributed Data Integration. In Proceedings 
of the 2009 International Conference on Computational 
Intelligence and Software Engineering (Wuhan, China, 
December 11-13, 2009). 1-4.

[18] Weerawarana, S., Curbera F., Leymann, F., Storey, T. and 
Ferguson, D.F. 2005. Web Services Platform Architecture. 
Pearson Education, Upper Saddle River, NJ.

[19] Christensen, J.H. 2009. Using RESTful web-services and 
cloud computing to create next generation mobile 
applications. In Proceedings of the 24th ACM SIGPLAN 
conference companion on Object oriented programming 
systems languages and applications (Orlando, FL, October 
25-29, 2009). 627-634.

[20] Annett, M. and Stroulia, E. 2008. Building highly-
interactive, data-intensive, REST applications: the Invenio 
experience. In Proceedings of the 2008 Conference for 
Advanced Studies on Collaborative Research (Ontario, CA-
ON, October 27-30, 2008). 15.


	1. INTRODUCTION
	1.1 Definitions
For the purpose of the current paper and in order to avoid ambiguity the following definitions need to be introduced within the study:
	 • “Application” is defined as “a software product designed to help users perform a task”
	 • “Service” is defined as “a set of functionality provided by an application aimed at solving one or many related tasks”
	Therefore, Web applications are accessible via a Web browser and the methods used and applied to such applications present a set of common technologies involved in the development, deployment and exploitation of the applications. In the context of the current paper, Web services represent a set of features provided by a Web application.
	1.2 Project goals
With the rapid growth of the Web and the advent of associated technologies, it is now possible for Web applications to interact within the context of provided services. However, the methods currently available put a number of limitations on the scope of possible interaction. Therefore, it can be beneficial for the future development of the Web to construct a theoretical and practical framework, which can be used to uniformly interact with any Web application. The current project is an effort to create such framework and provide a ubiquitous environment for dynamic Web integration. More specifically the project intends to focus on:
 - Dynamic identification of the most suitable service providers (applications),
 - Provision of a universal interface to access and manipulate the providers' data.
	The project aims to provide an interface for both developers and ordinary Web users to manipulate the data composed from disparate web sources on the basis of provided services.

	2. ANALYSIS
	2.1 Case Study: OpenSocial

	3. DESIGN
	3.1 Overview
	3.2 Data source identification
	3.3 Data retrieval
	3.4 System components

	4. IMPLEMENTATION
	4.1 Identification algorithm
	4.2 Data interface
	4.3 Performance

	5. CONCLUSION
	6. DISCUSSION
	7. REFERENCES

