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ABSTRACT
The ability to measure delay of arbitrary circuits on FPGA
offers many opportunities for on-chip characterisation and
optimisation. This paper describes an improved delay mea-
surement method by monitoring the transition probability
at the output nodes as the operating frequency is swept.

The new method uses optimised test vector generation to
improve the accuracy of the test method. It is effectively
demonstrated on a 4th order IIR filter circuit implemented
on an Altera Cyclone III FPGA.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Test-
ing, and Fault-Tolerance

General Terms
Measurement, Performance

Keywords
FPGA, Transition Probability, Timing, Self Test

1. INTRODUCTION
Reconfigurability of FPGA, whether at power-up or dur-

ing run-time, can be exploited effectively for self-testing and
self-characterisation. Since the test hardware can subse-
quently be reconfigured to perform operational functions,
the costs of including such test circuits are limited to a small
overhead in memory storage for the test configuration and
the extra configuration time, either during power-up or dur-
ing operation. Recently a number of techniques have been
proposed to provide not just “go” or “no-go” test results, but
to measure the speed of either combinatorial circuit paths
[12, 17, 10, 4, 11, 8] or even complete circuit modules with
sequential circuits [16]. The ability to measure delay in spe-
cific circuits opens up many new possibilities. For example,
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these techniques can be employed to measure delay variabil-
ity [17] and timing degradation [14] in the latest generation
of FPGAs. These test methods concerning the unique delay
mapping of circuits in FPGAs are also essential to hard-
ware security schemes such as Physical Unclonable Function
(PUF) [7], as well as delay-aware placement and routing
methods [5, 3, 9, 13] that provide promising solutions against
process variability in FPGAs to improve reliability.

Among all the proposed technique, the one based on tran-
sition probability (TP) [16] is the most promising because:
1) it is capable of measuring delays in both combinatorial
and sequential circuits; 2) it is essentially a black-box ap-
proach, not requiring detail knowledge of the internal cir-
cuitry; 3) it can be implemented on existing FPGAs as
built-in self-test (BIST); 4) it is time and resources efficient.
While earlier results demonstrate the potential of this tech-
nique, the previously published work by the authors left a
number of important fundamental questions unanswered re-
lating to the accuracy of the measurements, the sensitivity
of the technique to different types of timing errors, and the
optimality of the test stimuli beyond using a test vector set
that is uniformly distributed. Within this context, the new
contributions of this work are: 1) a detailed analysis of the
behaviour of transition probability in complex multi-path
circuits; 2) an in-depth study of the timing error sensitivity
of the TP technique in digital circuits; 3) a novel method to
optimise the sensitivity by controlling the probability distri-
bution of the test stimuli to provide high measurement accu-
racy; 4) the improved technique is applied and demonstrated
on both complex combinatorial and sequential circuits on an
Altera Cyclone III EP3C25 FPGA.

2. BACKGROUND

2.1 The Transition Probability Test Method
An indirect timing measurement method based on tran-

sition probability (TP) was proposed in [16]. It has three
key features: (a) It is able to measure the delay of com-
ponents such as interconnects, LUTs and registers involved
in typical user circuits. (b) The test circuit itself is robust
against timing failure, measurement accuracy is largely inde-
pendent from process variation and degradation of the test
circuitries. (c) No structural change or internal signals prob-
ing of the circuit-under-test (CUT) is required, delay can be
measured by pure observation of the output.

The test method estimates the propagation delay of a spe-
cific circuit path indirectly by measuring the transition prob-
abilities of the output node. The transition probability at a
signal node is defined as the probability that the node will
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Figure 1: Basic principle of the delay measurement
method.

change state when the next input stimuli is applied to the
circuit. For a sequence of output samples y(k), k = 1, . . .,
the transition probability D(y) is defined in [16] as:

P{y(k + 1) = y(k)} = P{y(k) = 0}P{y(k + 1) = 1}
+ P{y(k) = 1}P{y(k + 1) = 0} (1)

The test measures the transition probabilities at the output
signal node while ramping the clock frequency up. By de-
tecting changes in the transition probability, it is possible to
indirectly derive the frequency at which the circuit starts to
fail and hence its propagation delay.

Consider a functional combinatorial circuit with one in-
put and one output z. It can be seen that any transition at
the output must be the result of a transition at the input.
Therefore if the input is driven by a source with stationary
transition probability, the output will also exhibits a sta-
tionary transition probability (unchanging).

For our test method, we capture the output of the Circuit-
Under-Test (CUT) with a register at a certain clock fre-
quency fclk. The register captures a sample y(k) of the out-
put z at time T after applying the input v(k). If the clock
frequency is low enough, then the CUT operates without
fault: y(k) = z(k) and so D(y) = D(z). However, because
of propagation delays in the CUT, the output z will only
change some time after the input is applied. If the test
clock frequency is increased, at some point the CUT will be-
gin to fail, and y will begin to sample the value of z from the
previous cycle, such that y(k) = z(k − 1) some of the time.
This changes the output transition probability D(y). There-
fore, finding the frequency where the D(y) begins to deviate
from its stationary value will yield an accurate measure of its
maximum operating frequency fmax. This statement holds
true as long as the CUT has only a single input to output
path and the input is driven by a stationary process, such
as a signal that toggles every clock cycle.

Fig. 1 shows the general structure of the test circuit. The
circuit-under-test (CUT) input is driven by a Test Vector
Generator (TVG). The CUT contains two registers (LR and
SR) for launching the input and sampling the output of the
combinatorial circuit between them. The registers are con-
trolled by a common clock from the Test Clock Generator
(TCG). The TCG contains runtime reconfigurable PLLs,
allowing the clock frequency to be changed during a test.
The timing resolution of the test is given by Δt ≈ Δf

f2 in

[16], which depends on the clock frequency (f) and the size
of frequency steps (Δf) during the frequency sweep. Us-
ing Δf = 0.25MHz at 500MHz would yield a considerably
good timing resolution of 1ps. The output from the sam-
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Figure 2: Example of a typical output transition
probability D(y) against frequency from [14].

ple register is processed by the Transition Activity Counter
(TAC) which is essentially a simple asynchronous counter
that counts the number of transition in y over a certain pe-
riod of time. Transition probability can be derived from the
transition count using:

D(y) =
signal transition count

K
(2)

where K is the number of output samples or the number
of clock cycles elapsed in the counting period. The calcu-
lation of D(y) is carried out by the Transition Probability
Analyser (TPA) using (2) and then organised into a detailed
Transition Probability profile (TP profile) of the CUT over
the range of test frequencies. An example of a TP profile is
shown in Fig. 2 taken from a CUT containing 9 LUTs on a
Cyclone III EP3C25 [14]. As can be seen, the profile begins
with a stationary plot at low frequency but declined steeply
when timing failure began at approximately 220MHz. This
change corresponds to the failure of slower signal transitions.
In this case, the 1 → 0 transitions. The gradient and shape
of the failure slope is related to the clock jitter and char-
acteristics of the registers respectively. The second failure
slope shows the failure of the faster 0 → 1 signal transitions
and the transition probability returns to its initial stationary
level after both types of transitions have completely failed.

The beauty of the TP method is that it gives more than
just the worst-case delay for each CUT — it is able to
measure the two types of transition separately. This can
potentially be useful for design level timing optimisation
where signals are deliberately inverted between combinato-
rial nodes to even out and reduce the impact of the slow
transitions on the overall worst-case propagation delay. The
versatility of test results, non-invasive nature and the high
measurement precision makes it an ideal candidate for de-
lay measurement of a wide range of arbitrary circuits on
FPGAs.

3. MEASURING COMPLEX MULTI-PATH
CIRCUITS

The general TP measurement circuitry shown earlier in
Fig. 1 can be adapted to test complex multi-path circuits by
using a pseudo random test vector generator. Since the vec-
tor generation process is stationary, the statistics of the re-
sultant random test vectors are also stationary. Apart from
transition probability D(y), the random vectors’ statistics
can also be quantified by the probability of a logical high
occurring, which we termed the High Probability (HP) or
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Figure 3: An example of basic TP profile of a single
logic path failing at tslow and tfast for falling and
rising transitions respectively.

H(y) of signal y. It has a range of 0 to 1, where 0 and 1
implies a stuck at low or high respectively. In the case of
random bit sequences, the values of TP and HP are linked
by a simple quadratic relationship:

D(y) ≈ 2 × H(y) × (1 − H(y)) (3)

When defining or quantifying the statistic of random input
sequences, the use of HP is preferred, because it represents
a unique random bit pattern. TP values, on the other hand,
could result in two different HP solutions according to (3)
with opposite bit patterns, causing unnecessary confusions.
The only exception where TP points to a unique random bit
pattern is when it is at its maximum — D(y) = 0.5.

3.1 Characteristics of Transition Probability

3.1.1 Basic TP Model
Fig. 3 depicts a simulated TP profile of a single logic path

with uniformly distributed random input sequence. The
falling and rising transitions are assigned different propaga-
tion delay values tslow and tfast. The gradual failure slopes
are caused mainly by the stochastic behaviour of clock jit-
ter [16], where it can be describe by a random variable τ
in terms of the relative time from the expected clock edge,
with a specific probability density function PDFJitter(τ).
By assuming each clock edge has independent random jitter
and consistent PDFJitter(τ) throughout the test frequency
range, the behaviour of the TP profile as a function of clock
period (T ) can be approximated from the cumulative distri-
bution of the PDFs centered at tslow and tfast:

TPindep(T ) ≈ 1

2

[
3

4
+

(
1

2
−

∫ tfast−T

−∞
PDFJitter(τ) dτ

)

×
(

1

2
−

∫ tslow−T

−∞
PDFJitter(τ) dτ

)]
(4)

where tfast ≤ tslow.
The behaviour of the resultant TP profile also depends

on the degree of jitter correlation between consecutive clock
edges, which affects the timing failure interaction between
the rising and falling transitions through the CUT. Accord-
ing to [6], most PLL generated clock signals are likely to
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Figure 4: A TP profile measurement of the 2nd LSB
output of a 9x9 embedded multiplier on the Cyclone
III EP3C25. The unusual shape of the TP profile
is the result of individual paths failing at different
times. The corresponding paths are isolated and
tested separately to obtain their basic TP profile
components for reference.

exhibit multi-cycle jitter, which introduces edge-to-edge jit-
ter correlation. Therefore, it is important for the model
to also cover such correlated case. The TP behaviour with
complete correlation is given by:

TPcorr(T ) ≈ 1

2

[
1 − 1

2

( ∫ tslow−T

−∞
PDFJitter(τ) dτ

−
∫ tfast−T

−∞
PDFJitter(τ) dτ

)]
(5)

where tfast ≤ tslow.
Note that both TPindep and TPcorr gives identical results

in normal cases when the failure caused by tfast and tslow do
not overlap (Fig. 3). Yet, when the two types of failure do
overlap, the jitter correlation causes their respective change
of TP to cancel each other out, reducing the magnitude of
change in the TP profile.

Clock signals in real systems are likely to exhibits both
independent and correlated jitter. Therefore, a combination
of TPindep and TPcorr can be used:

TP (T ) = (1 − k) × TPindep + k × TPcorr (6)

where k defines the correlation factor ranging from 0 to 1.
In reality, it is highly unlikely to have perfect edge-to-edge
correlation (k = 1). Therefore, the TP profile should always
show a measurable amount of change, even if tfast and tslow

are exactly identical.

3.1.2 Analysis of Multi-Path TP Profile
The previously described single path models are useful for

predicting the TP profile of a failing path. Yet, the problem
with them is that they are not scalable to more complex
multi paths circuits. Fig. 4 depicts the TP profile of the 2nd
LSB output of a 9x9 embedded multiplier on the Cyclone III
EP3C25. As can be seen, the observed output TP profile is
related to all the basic TP profiles of each individual path.
While the TP profile may appear to be a direct combination
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of the basic TP profile components of the paths, it is actually
not possible to recreate the exact TP profile using the basic
single path components alone. The main reason for this is
that the failure process of the paths are interrelated with
each other in a difficult to predict manner.

Consider the timing illustration in Fig. 5, where a circuit
with multiple internal paths is stimulated by random vec-
tors. The probability that an input transition through a
particular path is observable at the output depends on the
input pattern and the state of the other paths, which means
each path could contribute differently to the observed TP
profile. Such behaviour is only predictable if the exact cir-
cuit implementation, structure and layout are known.

Although each active path may produces a signal transi-
tion some time after the clock edge, their different arrival
time result in a “glitch period” containing a series of un-
wanted transition activities. These glitch activities are un-
predictable especially when random input vectors are used.
When the glitch period coincides with the next clock edge,
where the clock edge position itself is unpredictable due
to clock jitter, the actual value captured by the register
(B′) is not deterministic, and hence the resultant transi-
tion probability cannot be determined with certainty. Also,
the rapid transitions in the glitch period could cause un-
desirable metastability problem in the output register [2],
further increasing the unpredictability of the output value.

For these reasons, the direct approach of modelling the
TP profile based on specific path quickly becomes imprac-
tical with complexity. For FPGA designs, a mere change
of placement and routing could produce a layout with com-
pletely different TP profile. The only way that a precise
model of the TP profile can be obtained is if a perfect phys-
ical model of the circuit is available with precise informa-
tion on signal propagations, interactions, and clock jitter
behaviour, so that the exact glitch pattern is known and

the registered output value is predictable. Though, if such
perfect physical model exists, a delay measurement method
would not be necessary in the first place. A better strat-
egy would be to consider the timing error sensitivity of TP
rather than its exact profile, and deduce an effective way to
control its sensitivity to timing errors in complex circuits,
such that good measurement accuracy is achieved.

3.1.3 Controlling Sensitivity of TP to Timing failure
Timing error Sensitivity of TP for a circuit is defined as

the difference between the normal operating level of output
TP and the level of TP after the slowest type of signal tran-
sitions through the worst-case path has failed. The higher
the difference, the more likely errors are detected and hence
provide better sensitivity to timing failure. The ability to
control the sensitivity of TP against timing failure allows the
test method to produce more reliable results, avoiding inac-
curacy caused by sensitivity loss. There are three typical
cases where sensitivity could be affected:

(i) Sensitivity dilution – a logic block with large number
of inputs converging to one output suffers from reduced
observable TP failure response. This problem can be
easily observed in an N -input AND gate where errors
can only propagate through when all inputs are high
and the TP sensitivity decreases as N increases.

(ii) Sensitivity blocking – in a circuit with multiple com-
binatorial stages separated by pipeline registers, the
changes in TP profile due to timing failure of one stage
could be blocked by its following stage(s) under certain
conditions, causing it to be invisible at the output.

(iii) Failure blind spot – when a logic block with N inputs
is supplied with inputs SN with certain H(SN ), the
failure of specific internal paths may not cause any
observable change at the output TP profile.

The problem of diluted sensitivity (i) is unavoidable in most
cases, especially with random test vectors. Yet, the sensitiv-
ity is only reduced and never completely lost, meaning that
it can be improved by taking a higher number of transition
count samples to form a TP profile with less residue noise
from the random inputs and hence higher relative sensitivity
(see (2)). This approach, however, increases the total test
time and it does not solve the problems in cases (ii) and (iii)
where complete loss of sensitivity is possible.

To provide a general solution for the three cases while
maintaining short test time, we propose a method that can
improve TP sensitivity by controlling the statistic of the
random input vector in terms of high probability (HP).

In Fig. 6, the sensitivity of rising or falling transition fail-
ure in a single path can be improved by adjusting the HP of
input vector V . The usual choice of uniformly distributed
random test vectors, where H(V ) = 0.5, do not actually
provide the best sensitivity to errors. Instead, a maximum
sensitivity can be achieved when H(V ) is 0.33 or 0.67 de-
pending on whether the rising or falling transitions fail first.

This unusual asymmetrical phenomenon can be explained
and modelled probabilistically through the following cases.
Consider 3 cycles of input vector sequences V (k), k = 1, 2, 3.
If the falling transitions fail to propagate within 1 cycle, a
transition is only detected at the output register on the 4th
cycle when V has a sequence of 0 → 0 → 1 or 1 → 0 → 0.
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Figure 6: Plots evaluating the sensitivity of TP to
timing failure in a circuit path. Maximum sensitiv-
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probability H(V ) = 0.67 when falling transitions fail
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Therefore, the output TP of the failed path in terms of V is
given by the probability of the two sequences occurring:

TPfall failed = 2 × P (V = 1) × P (V = 0) × P (V = 0)

= 2 × P (V = 1) × (1 − P (V = 1))2

= 2H(V )(1 − H(V ))2 (7)

In the same way, when the rising transitions fail, a transition
is only detected when V is 0 → 1 → 1 or 1 → 1 → 0. This
produce a similar probability expression:

TPrise failed = 2 × P (V = 1) × P (V = 1) × P (V = 0)

= 2 × P (V = 1)2 × (1 − P (V = 1))

= 2H(V )2(1 − H(V )) (8)

By subtracting these failed TP responses from the normal
TP response (TPnormal) which is given earlier by (3), the
TP sensitivity of both falling and rising transitions can be
derived:

Sensitivityfall = TPnormal − TPfall failed

= 2H(V )2(1 − H(V )) (9)

Sensitivityrise = 2H(V )(1 − H(V ))2 (10)

These expressions describe exactly the sensitivity behaviour
observed in Fig. 6 and the HPs corresponding to their max-
imums (peaks) computed through solving their derivatives,
giving exactly the observed optimal HP values: 0.33 (1/3)
and 0.67 (2/3) for rising and falling transitions respectively.

This asymmetrical sensitivity to different transition types
means that uniformly distributed random vectors is not nec-
essary the optimal choice, given the CUT is known to have
one type of transitions failing at a significantly lower clock

frequency than the other. Such behaviour is common in
CMOS circuits where the pull-up and pull-down transistors
are sized differently or when extra pull-up or down transis-
tors are added to improve signal strength. The only advan-
tage of uniformly distributed random vectors is when the
CUT has exactly matched rising and falling transition delay
or their failure order is not known in advance.

3.1.4 TP Response and Sensitivity Mapping of Logic
Circuits

To further understand how varying the input HP can im-
prove the cases with potential sensitivity loss – sensitivity
blocking and failure blind spot, we carried out a series of
sensitivity simulation on a 2-input logic block. The layout
of the block is depicted in Fig. 7, where it has two internal
paths, each with its corresponding rising and falling transi-
tions delays (tA-fall, tA-rise and tB-fall, tB-rise). The idea is to
stimulate both inputs of the circuit with random vectors A
and B of varying H(A) and H(B) to create extensive two-
dimensional mappings of TP response and sensitivity, and
identify possible sensitivity issues.

The first issue we encountered is sensitivity blocking, which
occurs in circuits with multiple pipeline stages. Fig. 8 demon-
strates how certain failure response from the preceding logic
stage could be blocked by simple logic functions. For a cir-
cuit with multiple pipeline stages, it is important to have
the TP response caused by failure of early stages to prop-
agate all the way through to the output, so that it can be
detected. This process can, however, be blocked by logic
stages, if the input statistics H(A) and H(B) change in a
specific way that follow the contour lines in the TP response
maps. Each of the lines represents a constant level of output
TP. Thus, H(A) and H(B) changing along these lines would
yield no output TP change, effectively blocking any timing
failure response from reaching the output. In this case an
XOR gate posses the most problem, because it has a large
flat region at the centre where variation of H(A) and H(B)
would not produce any change at the output. The obvious
solution against this problem is to adjust the input HPs such
that the observed TP response blocking does not happen.

Another serious issue with TP sensitivity is when a timing
failure in a circuit leads to no change of TP with specific
input HPs – the failure blind spot. Such cases could be
demonstrated in 2-input functions and they are depicted in
Fig. 9. In the three cases of 2-input functions: AND, OR and
XOR, the falling transition delay from input A is set to have
the worst-case delay and hence it fails first in the simulation.
The deviation of TP caused by A failing is recorded for all
possible input HPs of A and B to form a sensitivity map
for each case. The level where sensitivity is zero is marked
by contour lines. Therefore, any H(A) and H(B) values
that fall on or near these lines will result in undetectable TP
response. Clearly, for AND and OR function, the blind spots
with zero sensitivity are rare and can be avoided relatively
easily. On the other hand, XOR has a wide spread region
across the middle where H(A) = 0.5. Such region should
be avoided by using different values for H(A) and H(B).
For linked input HP values where H(A) = H(B), H(A) =
H(B) = 0.87 gives approximately the best sensitivity. It can
also be seen from the sensitivity maps that when H(A) is 1,
0, and 1 or 0 for the AND, OR and XOR cases respectively,
the optimal sensitivity is achieved at H(B) predicted by (9)
where falling transitions are assumed to be slower.
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Figure 8: The output TP response mapping of all possible input HPs for (a) AND gate, (b) OR gate and
(c) XOR gate. The contour lines on the maps represent levels of the same output TP, hence any change of
input H(A) and H(B) along the contour lines leads to an unchanging output D(S), possibly blocking failure
responses from the previous logic stages.

The effect of the XOR’s blind spot is demonstrated in
Fig. 10 and Fig. 11 in terms TP profile, where cases with
different path delay order is shown. In Fig. 10, the error
sensitivity is completely lost, due to the uniform input HPs.
Whereas in Fig. 11, the TP profile showed a certain change
when tB-fall is violated, but still missed the failure of the
worst-case path (tA-fall). In both case, the sensitivity is re-
stored and improved dramatically when H(A) = H(B) =
0.87 is used.

3.2 Self-Optimising Complex Circuit Test Plat-
form

The complete complex circuit test platform is depicted by
Fig. 12. The test circuit automatically optimise its random
input vectors with specific probability weights to improve
the TP’s sensitivity against timing errors in the CUT.

3.2.1 Adaptive Input Probability Weighting
The circuit response tester (CRT) stimulates the CUT by

toggling one input bit at a time while cycling the remaining
bits with a counter every two clock cycles. Each count would
form a pair of input patterns differ only by the single toggle
bit. This forms a set of exhaustive single input change (SIC)
test vectors. This approach effectively exercise every path in
the combinatorial logic blocks in the CUT with full input ac-
cess. The Output pattern is analysed by the circuit response
checker (CRC). Input pattern pairs from the CRT that leads
to actual activities at specific output bit are recorded and
marked as “effective”. Since a significant number of input
patterns are likely to produce no output transitions, the re-
fined “effective” input patterns would form a vector series
with distinctive average HP values for each input bit when
applied in sequence. Such HP values are then applied to
the probability weighting circuit as HP weights to generate
weighted random sequences with specific HP. The HP opti-
mised random vectors are likely to exercise the internal paths
of the CUT more thoroughly than the uniformly distributed
random vectors, because it is probabilistically similar to the
“effective” input patterns that exercised every paths in the
exposed combinatorial parts of the CUT.

For the earlier 2-input XOR example, the effective input
vectors are: ∗0, 0∗, ∗1 and 1∗, where ∗ represents the input
bit being toggled by the CRT. Assuming a toggling bit is
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Figure 7: A simple two input arbitrary functional
block for testing the sensitivity of transition proba-
bility to timing failure with multiple signal paths.
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Figure 10: Simulated TP profile of an XOR gate
showing (a) sensitivity loss to timing failure in all
paths when using uniformly distributed random in-
puts, and (b) sensitivity restored using H(A) =
H(B) = 0.87.
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(a) (b) (c)

Figure 9: The TP failure sensitivity mapping of all possible input HP for (a) AND gate, (b) OR gate and
(c) XOR gate. The contour lines represents the level at which sensitivity is zero. Both positive and negative
sensitivity values represent a measurable change of TP, but in different directions.
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Figure 11: (a) shows the sensitivity loss to fail-
ure of the slowest type of transitions in the XOR
and regain sensitivity when both type of transitions
have failed. (b) shows the regained sensitivity using
H(A) = H(B) = 0.87.
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Figure 12: Block diagram of the self-optimising com-
plex circuit test platform.

assigned an HP of 0.5, one could argue that the average HP
of the four vector pairs equates to 0.5 for both input bits,
which is shown to give zero sensitivity. However, due to
the asymmetrical sensitivity of delay paths described earlier
by (9) and (10), the overall average of the effective vectors
may not form appropriate HP weights. Instead, the vectors
should be divided into groups according to the pattern of
the non-toggling bits and compute their average HP weights
separately. In this case, they form two groups: {∗0, 0∗}
and {∗1, 1∗}. Assuming falling transitions are slower, op-
timal sensitivity is achieved when the ∗ bits are assigned
an HP of 0.66, and the resultant HP weight of both input
bits for the 1st and 2nd group are (0.66 + 0)/2 = 0.33 and
(0.66 + 1)/2 = 0.83 respectively. Given that HP weights
greater than 0.5 favour higher failure sensitivity of the slower
falling transitions in this case, the HP weight from the 2nd
group (0.83) closest to the optimal HP weights of 0.87 shown
earlier should be used. For circuits with unknown internal
structure, the HP weight pattern from each vectors group
can be applied and tested separately for maximum accuracy.
The test time would increase but not in multiples of a sin-
gle test, because the test clock frequency range would be
reduced considerably after the first few HP weight patterns.

While this approach may appear to neglect sequential
feedbacks in circuits, where combinatorial blocks with feed-
back inputs may not be directly controllable from the pro-
posed input sequences; it is the very nature of feedback in se-
quential circuits that allows the TP test method to maintain
high timing error sensitivity, where errors are accumulated
through the feedback paths and cause a significant change
in the output TP response.

3.2.2 Generating Weighted Probability Test Vectors
Weighted random sequences can be generated easily by

combining several independent uniformly distributed ran-
dom bit streams together with simple boolean logic [15].
Table 1 shows an example of 9 levels HP weighting using
three independent random bit streams: R0, R1 and R2. For
FPGAs with dynamic LUT mask reconfigurability, the HP
weight can be modified easily through changing the LUT’s
function on the fly. Otherwise, the same controllable HP can
be implemented with several LUTs at the expense of slightly
more area. For the Cyclone III EP3C25 without dynamic
reconfigurable LUTs, a weighted random bit stream with 17
HP levels requires three 4-input LUTs to implement.
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Table 1: Example of weighted random generation
logics with different high probability (HP).

Weights HP Logic Expression
1 0 GND
2 0.125 R2 · R1 · R0
3 0.25 R2 · R1
4 0.375 R2 · (R1 + R0)
5 0.5 R2
6 0.625 R2 + R1 · R0
7 0.75 R2 + R1
8 0.875 R2 + R1 + R0
9 1.0 VCC

4. TEST PLATFORM IMPLEMENTATION
AND EVALUATION ON FPGA

The proposed complex circuit test platform is implemented
on the Cyclone III EP3C25 FPGA to evaluate its accuracy
and efficiency. Fig. 13 depicts the hardware layout of the test
circuit on the FPGA. In this particular case, the TP mea-
surement circuitries and CRC are placed next to the CUT
for a more compact representation. However, there are no
limitation on where these circuitries should be placed, be-
cause they are completely asynchronous from the CUT and
do not suffer from timing issues if placed at a remote lo-
cation. The random vector generator is implemented as an
LFSR and is followed by a 17 levels HP weighting circuit.

The test procedure contains two phases. First the circuit’s
response is analysed by the CRT and CRC to generate the
optimised HP weights, then they are used to conduct the TP
test to obtain its maximum operating frequency or worst-
case delay measurements. The response analysis phase is
only required once for each design. In some cases, it can
be skipped completely if the optimised HP weights can be
obtained through analysis or simulation of the CUT during
the design process. Results consistency are ensured through
repeated tests until the FPGA’s temperature stabilises.

The test platform is evaluated by two types of CUTs: A
4x4 LUT based multiplier and a Butterworth IIR Filter.
The layout in Fig. 13 is taken from the Butterworth Fil-
ter case. The test candidates were chosen such that both
combinatorial and sequential circuits are evaluated. Since
practical FPGA applications in general contain mostly LUT
based functions, the LUT based multiplier test would give
us a clear guideline on how well the test method performs
in general.

4.1 Multiplier Test Case
The LUT based multiplier is tested with both the pro-

posed TP method and a full exhaustive test method pro-
posed in [17] to give an absolute measurement reference for
accuracy comparison. For the TP test, the random inputs
with and without optimised HP weighting are tested to iden-
tify their effectiveness. The placement and routing of the
CUT are kept exactly identical between both tests.

4.1.1 Results
The measured maximum operating frequencies of the mul-

tiplier are shown in Fig. 14. The results with optimised in-
put HP tracks the exhaustive test results very closely and is
accurate within 1% of the results. The apparent accuracy
difference between the normal and optimised HP results are
not very high in this case because the test using uniformly
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Figure 13: Layout of the hardware test platform on
a Cyclone III EP3C25 for complex CUT. An alter-
native test circuit is included for accuracy evaluation
of the TP test platform.
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Figure 16: A 4th order Butterworth IIR filter design
from Altera [1], where x(n) is the input and y(n) is
the output.

distributed random inputs is already very close to the ex-
haustive test references. Nonetheless, a clear improvement
can still be seen between the two. We suspect that the good
accuracy from the uniform random inputs is due to a high
degree of glitch acitivity at the combinatorial output of the
multiplier. Referring back to Section 3.1.2 and Fig. 5, it can
be seen that when the glitch period is violated by the clock
edge and jitter region, the registered output becomes highly
unpredictable. Although it is not possible to predict the ex-
act TP response, the increased uncertainty may have caused
a more distinctive TP deviation from its normal value and
thus increased the TP sensitivity.

In Fig. 15, the TP profiles taken from the same output
bit using uniform HP and optimised HP are compared. The
TP profile with optimised HP shows a significantly higher
timing error sensitivity – a larger deviation in TP response
and more accurate measurement using simple TP thresholds.

The optimised TP method may produce slightly more con-
servative results than the exhaustive test because it is not
possible to take the effect of clock jitter into account with
the complex TP behaviour produced by multiple paths fail-
ing. Whereas the exhaustive test method examine each path
individually and is able to produce a nominal fmax accord-
ing to the expected clock edge position at the centre of the
jitter distribution. Please refer to [17] for more information.

The test time of the multiplier is under 3 seconds, assum-
ing the optimal input HP weights are extracted in advance
or pre-computed from the functional model of the multiplier.

4.2 Butterworth IIR Filter Test Case
The Butterworth IIR Filter (Fig. 16) is implemented with

multiple 18x18 embedded multipliers, adders, feedback paths
and register stages on the Cyclone III. Such complexity of
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Figure 17: The TP profiles of all 21 output bits of
the Butterworth IIR filter.
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Figure 18: The absolute failure rate of the Butter-
worth IIR Filter between 120 and 270MHz.

the CUT resembles most practical designs in FPGAs and it
would give a good representation of the TP test platform
performance in terms of accuracy in realistic situation.

To evaluate the measurement accuracy, an absolute com-
parison based test method that basically gathers the filter
outputs at a series of finely spaced clock frequencies steps
and compare them against a set of pre-calculated reference
results to identify any timing errors. The layout of the extra
test circuit is depicted in Fig. 13 as “Alternative Test Cir-
cuit”. Note that this alternative test circuit is built purely
for the purpose of accuracy evaluation, its area overhead and
test time are far too high for practical use.

4.2.1 Results
Results from the optimised TP test platform in the form

of TP profiles (Fig. 17) gave a maximum operating fre-
quency (fmax) measurement of 159.44MHz, which is within
1% of the absolute fmax obtained from the comparison based
method (Fig. 18). This reference fmax is derived from the
point where error starts to occur in the failure rate plot.

The test time in this case is similar to the previous mul-
tiplier test case, where a test takes approximately 3 seconds
to complete. This is mainly because the test time is linked
to the range of frequency sweep and a relatively short fre-
quency range was needed to obtain the results in both cases.
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5. CONCLUSIONS
In this paper, we have shown that the proposed optimised

TP test method could provide a highly accurate delay and
frequency measurements in both complex combinatorial and
sequential circuits. Providing accuracy within 1% of the ab-
solute measurements from the much more time consuming
and area expensive full exhaustive and direct comparison
reference methods. Effects of environmental variations were
minimised by placing the test circuits together and repeating
the test process until temperature stabilises. The proposed
technique to optimise random input test vectors in terms
of high probability weights has enabled a large variety of
complex circuits to benefit from the elegant TP test method
with highly accurate and reliable timing results. Moreover,
the test circuit is highly area efficient, where overhead is not
directly proportional to the CUT’s complexity but the num-
ber of input and output bits, and it is contributed mainly
to input vectors generation. The TP circuitries can also be
shared among different outputs or circuits to achieve fur-
ther area reduction at the cost of longer test time. Other-
wise, multiple TP counters could be used in parallel for very
short test time.

The main limitation of the test method is that the actual
response in a TP profile cannot be reliably predicted for
complex circuits due to glitches and clock jitter uncertain-
ties. That means there could be a certain degree of unpre-
dictability in the measurement’s accuracy. However, given
the achieved accuracy in the test cases, such unpredictability
could be easily guarded using a relatively small guard band
and have minimal impact on the results optimality. Also,
as future work, memory oriented designs as well as a wider
variety of circuits should be tested to explored and improve
the effectiveness and accuracy of the measurement method
to further reinforce its general usability.

The generalised test modules and the flexibility on place-
ment location of the TP measurement circuitries allow FPGA
users to easily apply the test platform to their circuit designs
for accurate and efficient physical delay measurements. Such
test platform could potentially be integrated into conven-
tional FPGA design flow, to give users an immediate knowl-
edge of their circuit’s timing performance under the actual
FPGA hardware and physical conditions. Timing models in
existing FPGA design tools are usually made to be highly
conservative to account for process, temperature and voltage
variations (PVT) as well as possible delay degradation over
the FPGA’s life. This often leads user to under rate their
designs’ operating speed and wastes a significant amount of
potential performance. With the proposed test platform as
a quick physical timing analysis tool, such problems could be
mitigated and greatly increase the productivity of FPGAs.
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