
Fault-Tolerant Scheduling

(Extended Abstract)

E?ala Kalyanasundaram*

Computer Science Department

University of Pittsburgh

kalyan@cs.pitt. edu

Abstract

We study fault-tolerant multiprocessor nonpreemp-

tive scheduling under the realistic assumption that

the occurrence of faults can not be predicted. The

goal in these problems is to minimize the delay in-

curred by the jobs. Since this is an on-line problem

we use competitive analysis to evaluate possible

algorithms. For the problems of minimizing the

make-span, and minimizing the average response

time (for static release times), we give nonclairvoy-

ant algorithms (both deterministic and random-

ized) that have provably asymptotically optimal

competitive ratios. The main tool used by these al-

gorithms to combat faults is redundancy. We show

that randomization has the same effect as redun-

dancy.

1 Introduction

1.1 Problem Statement

The scheduling of tasks in a multiprocessor sys-

tem has been recognized as an important problem

and has been extensively studied (see [2] for a sur-

vey). In a large multiprocessor system, processor

faults are inevitable and fault-tolerance is a sig-

nificant issue [8]. The vast majority of previous

work on scheduling either assumes that there are

*Supported in part by NSF under grant CCR-9202158.

+Supported in part by NSF under grant CCR-9209283.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice k @V.Srr
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

STOC 94-5194 Montreal, Quebec, Canada
@ 1994 ACM 0-89791 -663-8/94/0005..$3.50

Kirk R. Pruhst

Computer Science Department

University of Pittsburgh

kirk@cs.pitt. edu

no faults, or gives minimal analysis. In this paper

we begin a theoretical investigation of the effect of

processor faults on scheduling by considering sev-

eral standard scheduling problems modified to al-

low faults. We assume that the pattern of faults

can not be predicted by the on-line scheduling al-

gorithm. We then compare the schedules produced

by the on-line algorithm to the schedules produced

by an omniscient algorithm.

The setting for the generic multiprocessor

scheduling problem is a collection F’l, Pm of

processors. Each processor Pj has a speed Sj. The

processors are given a collection J1, . . . Jn of jobs.

Each job Ji has a release time ri that is the time

that the on-line scheduling algorithm is first aware

of Ji’s existence, and is the earliest time that Ji

can begin execution. Furthermore, each Ji has a

length xi, and running Ji on Pj takes xi/sj units

of time.

There are many variants of the multiprocessor

scheduling problem depending on what assump-

tions one makes about the jobs and processors, and

how one measures the desirability of a schedule. In

the static case all release times are IO. Otherwise,

the problem is said to be dynamic. In the identical

processors case all the processor speeds are equal.

Otherwise, it is called the related processors case.

A scheduling algorithm is clairvoyant if it learns

each xi at time ri, and is nonclairuoyant if xi can

not be deduced until Ji has been fully executed.

A preemptive algorithm is allowed to suspend an

executing job and later restart the job from the

point of suspension. A nonpreemptiue algorithm

must begin the job afresh after suspending it. The

completion time Ci of a job Ji is the time at which

Ji has been allocated enough time to finish exe-

115

http://crossmark.crossref.org/dialog/?doi=10.1145%2F195058.195115&domain=pdf&date_stamp=1994-05-23

cution. The response time of Ji is w~ = c; – Ti.

In the paper we primarily consider two schedul-

ing measures, the make-span of a schedule, which

is the maximum completion time, and the average

response time, which is ~ ~~=1 Wi.

We assume that when a processor Pj faults it

is immediately detectable, and the job currently

being run on Pj must be restarted from the begin-

ning at some later point in time. A fault at Pj

can be classified as either permanent, in which case

no more jobs may be run on Pj, or transient, in

which case Pj is inoperative for some finite period

of time [8].

The competitiveness (or competitive ratio) of a

deterministic (randomized) algorithm for a partic-

ular problem and measure M is the supremum over

all instances Z of the ratio of the (expected) value

of M for the schedule produced by the on-line al-

gorithm given Z as input to the optimal value of

M for a schedule of I [6]. We can assume that

the optimal value of M was computed by an off-

line algorithm with full advance knowledge of all

the information about the jobs and the pattern of

faults.

The on-line algorithms that we give are non-

clairvoyant, although our lower bounds show that

clairvoyance would not asymptotically help the on-

line scheduling algorithm in the worst case. We

generally disallow preemptions. Alternatively, our

bounds still hold if one makes the realistic assump-

tion that some finite amount of time is required to

preempt a job. All our algorithms are simple, ef-

ficient, and easily implement able. As in most set-

tings where fault-tolerance is an issue, the main

tool available to combat faults is redundancy [8].

In this setting this means running multiple copies

of the same job on different processors.

1.2 Results

The main results for the case of identical proces-

sors are summarized in the table. We use ~ to

denote the number of faults. In the case of per-

manent faults we use q = m – A to denote the

number of nonfault y processors. The constant c

satisfies () < ~ < 1. So as to determine the effect

oft he duration of faults on competitiveness, we as-

sume that the duration of each transient fault is

O. That is, after a processor Pj experiences a tran-

sient fault, a job may immediately be restarted on

Pj. These results show that for a moderate num-

ber (say less than cm) of faults, the duration of the

faults does not asymptotically effect the achievable

competitive ratios. The results for no faults come

from [7, 4]. If one expects that permanent faults are

largely independent, then the number of faults is

likely to be approximately cm, where the constant ~

is the probability that a particular processor faults.

So in practice the most relevant line of the table

is probably where A = cm. These results show

that the competitive ratios are effectively bounded

in practice. The competitive ratio for average re-

sponse time is a constant, and the randomized com-

petitive ratio for make-span is effectively bounded

since log* m is such a slowly growing function.

In the general related processors case, all the op-

timal competitive ratios listed in the table for per-

manent faults increase by a multiplicative factor of

R, where R is the ratio of the speed of the fastest

processor to the speed of the slowest processor.

For no faults, [7] showed a @(min(log B, log m))

bound on the optimal deterministic competitive ra-

tio, with respect to make-span, in the related pro-

cessors case. In [4] it is implicitly shown that there

exists a constant competitive algorithm for min-

imizing the average response time in the general

related processors case. (The result is only explic-

itly stated for the identical processors case.) This

shows that as the system becomes more heteroge-

neous the degradation of the optimal competitive

ratio is much more rapid in the case of permanent

faults.

The results for make-span with permanent faults

are given in section 2, the results for average re-

sponse time wit h permanent faults are given in sec-

tion 3. In section 4, we consider transient faults

for the identical processors case. In section 5, we

consider the effect of not allowing the on-line algo-

rithm to run multiple copies of the same job at

the same time. It is at least possible that this

may be required in some situations where the pro-

grams have side effects or use external resources.

We show that this restriction really cripples deter-

ministic algorithms in that the optimal competi-

tive ratio for both make-span and average response

time is El(l?. ~), for permanent faults. Interestingly

enough, we show that the bounds on the competi-

tive ratio, with respect to both make-span and av-

116

Optimal Competitive Ratios for Identical Processors

Make-span Average Response

Time (Static Case)

Number of Deterministic and

Faults Deterministic Randomized Randomized

A=o 0(1)[7] 0(1) [7] 0(1) [4]

A>o @(max(~Og~,~ ~ ~, ~)) @(max(log* m - 10g* y, ~)) 0(;)

A=em
o (lo:lo~m

K
) @(log* m) 8(1)

A>o +) @(max(log* m - log* ~, +))@(max(~O$il~ ~) 7 m

3

@(max(~, 1.))

(Transient)

erage response time, for randomized algorithms in

the case of no redundancy are exactly the same as

for deterministic algorithms that use only redun-

dancy.

In section 6, we consider other seemingly natu-

ral scheduling measures, and show that the optimal

competitive ratios for these measures are high in

some situations. The idle time (resp. relative re-

sponse time) of a job Ji is defined to be di = Wi – xi

(resp. wi/xi). Even for a single processor, no

faults, and allowing preemption we show an Q(n)

randomized lower bound on the competitive ra-

tio for minimizing the maximum relative response

time. Similar results are shown for minimizing the

maximum or the average idle time.

We know of no previous theoretical investiga-

tions of this kind into fault-tolerant scheduling.

Nonclairvoyant scheduling without faults is dis-

cussed in [1, 3, 4, 7]. In [4] it is shown that

with dynamic release times and without faults,

a nonclairvoyant deterministic (randomized) algo-

rithm can not be better than Q(nlf3)-competitive

(Q(log n)-competitive), with respect to average re-

sponse time, even allowing preemptions. This

shows that on-line scheduling algorithms face a

much more daunting task when trying to minimize

the average response time of jobs With dynamic re-

lease times. For a general survey of fault tolerant

scheduling see [8].

A word of warning is appropriate here. For

convenience and clarity we often drcjp floors and

ceilings in our calculations throughout this paper.

This does not make an asymptotic difference in any

of the results.

We use the following notation throughout this

paper. In both the lower bound and upper bound

proofs it is convenient to think of time as being

divided into stages. We will use k to denote the

number of stages. Often the exact value of k will

not be determined until the end of the proof, We

denote by u(i) the number of unfinished jobs at the

start of stage i. We use j(i) to denote the number

of faults during stage i. We define thle multiplicity

q5(J) of a job J at some point in time to be the num-

ber of processors on which a copy of J’ is being run

at that time. When we speak of the multiplicity

of a job during a stage, we are generally speaking

about the multiplicity at the time just before the

end of the stage.

117

2 Make-span

In this section we consider only permanent faults

and allow simultaneous execution of multiple copies

of a job. We use OPT to denote the optimal off-line

make-span.

2.1 Lower Bounds

In this section we grant the on-line algorithm clair-

voyance and assume that all release times are O.

We first state the results for identical processors,

and then show how to extend the results to related

processors.

Theorem 1 In the case of identical processors

and static release times, the competitive ratio,

with respect to the make-span, of any nonpre-

emptive deterministic clairvoyant algorithm A is

m)), for A permanent faults.Q(rnax(~0$%~ ~ j‘ T7

Proof Sketch: We first assume q > A. The con-

struction consists of k unit length stages. Initially,

the processors are given m unit length jobs. Recall

our notation that u(i) is the number of unfinished

jobs at the start of stage i. So, u(l) = m. Since all

job lengths are equal it doesn’t benefit the on-line

algorithm to preempt a job, or to idle a processor.

So we can assume that all jobs assignments to pro-

cessors happen at integral times. Just before the

end of each stage, we select A/k processors to faults

so as to maximize the number of unfinished jobs

at the end of this stage. More precisely, assume

that the u(i) unfinished jobs are numbered and or-

dered such that @(.ll) s g5(.J2) s . . . s 4(Ju(i)).

Let u(i + 1) be the greatest integer such that

X;!? @(Jj) s ~/k. Then all processors run-

ning copies of the jobs J1, ~ti(;+l) are faulted.

A simple combinatorial argument shows that the

on-line algorithm d, can minimize u(i + 1) only

when all the ~(~)’s are as equal as possible. Hence,

~(~+ 1) 2 (;)/(fi)> or ~(~+ 1) 2 @)(&. uPon

substitution, we get u(i + 1) > m(~)i.

By the definition of k, u(k) >1 and u(k+ 1) = O.

We thus solve for the largest k that satisfies u(k) >

1. Substituting for u(k) we get, k log(~) s log m.

Solving this inequality we get, k = !2(1~1~ ~
W ~ +“

At least m/2 processors are functioning for the first

two stages, and hence a make-span of 2 can be ob-

tained by initially assigning 2 jobs to each of these

m/2 processors.

The construction for q < A consists of two unit

length stages. In a manner analogous to the previ-

ous argument, we fault m/4 processors right before

the end of each of these two stages in such a way

that at least m/16 jobs are unfinished at the end of

the second stage. Notice OPT = 2. Now remain-

ing A – m/2 faulty processors fault, thus leaving

with only q working processors. The result then

follows, since m/16 jobs must be scheduled by A

on q processors. ■

Theorem 2 In the case of identical processors, and

static release times, the competitive ratio, with re-

spect to make-span, of any nonpreemptive random-

ized clairvoyant algorithm A is fl(max (log* m –

log” ~, ~)), for A permanent faults.

Proof Sketch: Using Yao’s technique [9], it suffices

to bound the expected competitive ratio of any de-

terministic algorithm where the input is selected

from some specific probability distribution. As in

the case of deterministic lower bound, the construc-

tion consists of k unit length stages. Initially there

are m unit length jobs. Assume for the time being

that A < q. Now u(i) is a random variable denot-

ing the expected number of unfinished jobs at the

start of stage i.

At time t in a stage i, we say that a job J is

weak if @(J) < @ at that time. Notice that atu(t)
any point in time during stage i at least u(i)/2

jobs must be weak. Just before the end of each

stage, each processor will fault independently with

probability ~/mk. Hence, the expected number of

faults per stage is at most A/k, and the variance

is Cl(A/k), Consider jobs that are weak just be-

fore the end of stage i. The probability that such a

weak job is unfinished at the end stage i is at least

(~)%. Hence, the expected value of u(i + 1)

is at least (+)(~)%. Furthermore, the vari-

ance of u(i + 1) is also @(u(i)(~)%). So using

Chebyshev’s inequality, u(i + 1) > (~)(~)%

with probability at least (1 – l/@(u(i)(~)~)).

To facilitate solving this recurrence, let T(Z) =

2m/u(i). Therefore, r(l) = 2, and r(i + 1) s

4r(i)(Z?#)’(0. Notice that r(i)’s form a nonde-

creasing sequence. Since we assumed A s m/2,

118

r(i + 1) ~ (~)2rtiJ for large enough i (r(i) > 4).

As in the case of the deterministic lower bound,

we solve for k in the equation r(k) = 2m, which is

equivalent to solving for u(k) = 1. Upon solving

the equation, we get k = log* m – log* ~ + 0(1).

Using Chebyshev’s inequality we get that the prob-

ability that the number of faults in stage i differs

from the mean by more than a multiplicative con-

stant is O(~). Hence, the probability y that the num-

ber of faults in any stage differs from the mean

by more than a multiplicative constant is O(%).

Note that ~ = O(1). Therefore, with probability
1
1

The probability that one of the inequalities

for the u(i)’s does not hold is bounded by

O(X~sl l/~(i)(~)~)). Simplify this using the

fact that A ~ m/2, yields 0(~~=1 (~)%). This

sequence decreases at least geometrically and is

thus bounded asymptotically by the first term

0((&) 2). Hence, with probability 1 – o(1) it is

the case that all the inequalities for the u(i)’s hold,

and the number of faults in each stage is 0(~). in

particular, with probability 1 – o(l), the number

of jobs left at stage log* m – log” ~ + 0(1) is more

than 1.

The case where ~ z q can be handled in a man-

ner analogous to how it was handled in theorem 1.

■

Theorem 3 In the case of related processors, the op-

timal deterministic competitive ratio, with respect to
10 m

make-span, is Q(R o ~lOK~), $)), and the
‘=(log(~

optimal randomized competitive ratio, with respect

to make-span, is Q(R . max(log” m – log* ~)), for

A permanent faults.

Proof Sketch: There are A/2 processors with speed

R and m – A/2 with speed 1. There are exactly

~/4 jobs of length R. The adversary uniformly at

random assigns the A/4 jobs to A/4 fast proces-

sors, and just before time 1 faults all of the other

fast processors. At time 1, all of the remaining

fast processors are faulted. At time 1, the on-line

algorithm has Q(A) jobs left unfinished with high

probability. The optimal make-span of these jobs

is 1. Notice that the number of remaining faults

is ~/2. Now apply the lower bound construction

from the previous theorems to the unit speed pro-

cessors. Note that the constructions in theorems 1

and 2

initial

2.2

yield asymptotically the same bounds if the

number of jobs is only O(A) instead of m. ■

Upper Bounds

In this section we give both deterministic and ran-

domized nonclairvoyant algorithms that allow dy-

namic release times and have asymptotically op-

timal competitive ratios. The algorithms do not

know A in advance. Note that in [7jl a general re-

duction from the case of dynamic release times to

the case of static release times is given that at most

– o~~~/f& !knIt!@%Fi%Wts iylli?$?$!t!ir!li%tll~ $?t ‘r-
muustlc algorlthm ROTARY.

ALGORITHM ROTARY: All of the jol~s are initially

put in a queue Q. When a processor P becomes

idle then a copy of the job J on the front of the

queue is assigned to P. The job J is then moved

to the back of the queue. If a new job arrives then

it is added to the back of Q. If some copy of a

job J finishes execution then all colpies of J are

terminated and J is removed from Q. ■

For a set j of jobs and a set 7 of processors, we

define a job assignment g to be an injective subset

of JxP.

Theorem 4 For A permanent faults, the competitive

ratio, with respect to make-span, of ROTARY is O(R”

Proof Sketch: It suffices to show the bound for the

identical processors case. It should be clear that

the competitive ratio increases by at most a fac-

tor of R otherwise. For the purposes of this proof

consider time O to be 2. OPT time units after the

arrival of the last job. If there are no faults then

ROTARY will complete all the jobs by time O (see

[7]), and in general there will be at most m jobs

left at time O. Starting from time O, we divide the

job assignments into groups GI, G~. Groups

are defined with respect to tl < t;l < . . . < tk

that are defined inductively as follows. As the base

case tl = O. Let ti+l (i > 1) be the first time

after ii such that every processor P is either expe-

rienced a fault before t;+l, or has finished some job

that F’ started after time ti. Note that for all i,

ti+l – t; s 2.0 PT. G~ cent ains exactly those pairs

(J, P) where P is a nonfaulty processor at time t~+l

and J is the last job assigned to P before time t~+l.

119

When there is no confusion, we say that a job J is

in Gi if there is pair (J, F’) E Gi. Let Si be the

earliest time that a job J E Gi is assignment to a

processor. Notice that between times; and ti+l the

assignments made by ROTARY are exactly those in

Gi. Furthermore, no job in Gi finished before time

ti+l. See figure 1 for an example illustrating the

definitions of the -ti’s, Sz’s and Gi ‘s.

We will treat each group as a stage in a man-

ner similar to the lower bound proofs. We let #(i)

denote the minimum, over all jobs J in Gi, of the

number of processors that J is assigned to in G~.

If $(i) s 2 then we say that G; is full. If Gi is

full then at least q/2 of the jobs in G; will finish by

time ti+2, the time that the next stage ends. Hence

there can be at most O(~) full stages. From here

on we will ignore any decrease in the size of Q due

to full stages, and concentrate on the decrease in

nonfull stages. So let us assume that every Gi is

not full.

We say that a stage Gi is healthy if the number

of processors that experienced faults while running

2J At leastan inst ante of a job in G? is at most ~.

k/2 of the Gi’s must be healthy. So we assume that

every Gi is healthy. If this assumption is not valid

then the number of stages will at most double. In

other words, it suffices to get a upper bound on the

number of healthy stages.

In this context, we use u(i) to denote the num-

ber of distinct jobs in Gi. So u(l) ~ m. For the

moment assume q 2 m/2. Hence, @(i) > (~)/~(i).

Since each stage is healthy, u(i + 1) < (~)/@(i).

Substituting we get u(i + 1) ~ u(i)(~). Expand-

ing this recurrence we get u(i + 1) ~ m(~)i.

As in the case of the lower bound proof, we now

find an upper bound on k satisfying the equations

u(k) ~ 1 and u(k + 1) = O. This is equivalent to

solving k log ~ s log m. By solving this, we get

k<2 1~,~~ for large enough m.
W :)

We now consider the case where A > m/2. Let

n; (i ~ 1) be the number of stages executed by Ro-

TA RY when the total number of faults experienced

is between m – m/2i–1 and m– m/2;. So the previ-

ous argument shows that nl = ~(log m/ log log m).

Let k. = O, and Iii = ~~=1 n; for i ~ 1.

So between time t~t and t~,+l at most half of

the processors functioning at time tk, fault. So

by our previous argument, with the number of

faults being at most half the available processors,

u(k;+l) < u(ki)(~)n’. Expanding this recurrence

yields U(ki+l) S m ~~=1 (~)”’.

So we now determine how large ke = ~~=1 n;

can be subject to m ~$=l(~)n~ ~ 1. By symme-

try we can assume, without loss of generalit y, that

n~>n2 >... > ne. Then each ni, 1 ~ i ~ t/2,

must satisfy n; ~ ke/21. So we consider the fol-

‘ti2 > 1, or equivalentlylowing inequality m(~) _

(~)k~12 < m. This simplifies to (~) log(~) <

log m. For the moment assume q z m/ log m.

Then 1 ~ log log m, and (~) log(~) s log m im-

plies ke = O(log m/ log log m). Now assume q <

m/ log m. We now prove that kl = O(log m). No-

tice that 1 s log m. So, without loss of general-

ity, assume that 8/ s kg, and hence (~) log(~) s

log m implies ke = O(log m). ■

We now modify ROTARY to reset Q randomly on

each rot ation through Q.

ALGORITHM RANDOM ROTARY: Initially, we uni-

formly at random select a permutation of the jobs

and assign these jobs to the queue Q in this order.

When a processor P becomes idle then the job at

the front of Q is removed and assigned to P. If

Q ever becomes empty then it is reset to contain

a random permutation oft he remaining unfinished

jobs. If some copy of a job J finishes execution

then all copies of J are terminated.

Theorem 5 For A permanent faults, the competitive

ratio, with respect to make-span, of the Random Ro-

tary is O(R . max(log* m – log* ~, ~)).

Proof Sketch: Much of the proof is identical to the

proof of theorem 4. It suffices to consider only the

identical processors case. We say time O is 2.0 PT

units after the arrival of the last job. We define Gi,

t;, and si as before. We now say that a stage Gi is

full if for all J c G; it is the case that @(J) ~ 8.

There can still be at most O(:) full stages. We

continue to assume that every stage is healthy and

not full. We start by assuming J s m/2.

Now consider stage i. We consider only the sub-

set G: of assignments made after the first time Q

was reset after time si and before the last time

it was reset before time ti+l. We can partition

G; into subclasses FI,. . ., Fe where Fi represents

120

time

I

PI P2 P3 P4 P~ P~ P7 P~ Pg

Figure 1: Job assignmentsin a stage

the job assignments after the jth resetting, but be-

fore the (j + l)st resetting, of Q within this stage.

Notice that each job in G: occurs exactly once in

each of those t subclasses Fj ‘s. We assume that

the number of jobs in Q at time Si was u(i). It

only benefits the on-line algorithm if this number

has decreased since time ti.Hence, W – 2 s 4,

Since G, is not full this implies * s 1. Among

jobs and processors involved in I“, every permu-

tation of assignments is equally likely. If there are

~j faults within I“, then the probability that no

copy of a job J finishes during this stage is at

~). (Note the probability of a jobmost 11~=1 (~(i)

not finishing is maximized if we assume these prob-

abilities are independent.) This product is maxi-

mized, subject to ~~=1 fj s ~, if all the jj are

equal to R. The constraint that X$=l ~j S ~

comes from our assumption that every stage is

healthy. Hence, we can upper bound the proba-

bility that a job J is unfinished at the end of this

stage by (-) ~. By substituting for 1 and sim-

plifying, this probability is at most (~)nfl~fzl.

Therefore, the expected value of u(i + 1) is at

most u(i)(~)~14U(i). Since the variance U2 is also

O(u(i)(~)~/4U(i)) applying Chebyshev’s inequal-

ity yields u(i + 1) < 2u(i)(~)ni4U(;) with proba-

bility y 1 – O (1/02). As in theorem 2 the solution

to this recurrence is O(log* m – log* ~ + 0(1)).

Also as in theorem 2, Chebyshev’s inequality shows

t~+]

that all the inequalities involving the u(i)’s hold

with high probability. Furthermore, the inequal-

ities for the u(i)’s show that the probability y that

u(i) > 1 decreases at least exponentially after stage

log* m – log* y. Hence, the expected number of

nonfull stages is O (log* m – log’ ~).

If q s m/2 it is still the case that !2k + log* ~ +

O(1) s log* m and hence k = O(loig* m). Hence,

the total number of nonfull stages is still O(log” m).

The result then follows since the number of full

stages is O(m/q). ■

3 Average Response-Time

We present a nonclairvoyant deterministic algo-

rithm that is O (l?~)-competitive with respect to

average response time. We show that this is asymp-

totically optimal, even for randomized algorithms.

We assume static release times, disallow preemp-

tion, and consider only permanent faults. Since

average response time and total response time dif-

fer by exactly a multiplicative factor of n for any

algorithm, the competitive ratios, with respect to

these measures, will be identical. We generaIly

compute total response times since they are more

convenient. We also assume that we have a lower

bound of 1 on the length of any task. This is not

an unreasonable restriction since we could take our

unit of length to be the time to execute one instruc-

tion on the fastest processor.

121

ALGORITHM GEOMETRIC ROTARY: Once again

the algorithm consists of stages, and u(i) denotes

the number of jobs that have not yet been run to

completion at the time that stage i starts. We now

describe stage i (i ~ O). If u(i) 2 2m then add

one copy of each the u(i) jobs to a queue Qi. Else

if u(i) < 2m then Qi contains [8m/u(i)l copies

of each of these u(i) jobs. When a processor P be-

comes idle the next job J on Qi is removed and run

from the beginning for 2; time units (or to comple-

tion) on P (unless a fault occurs while J is being

processed on P). If J has not finished after 2; time

units then it is set aside until the next stage. Stage

i ends when Qi becomes empty and every job J

that was in Qi has been run for 2; units, or every

copy of J has experienced a fault. ■

Theorem 6 Given static release times, GEOMETRIC

ROTARY is O(l?~)-competitive, with respect to av-

erage response time, for A permanent faults.

Proof Sketch: It is sufficient to prove a bound of

O(~) for identical processors. At any point in time

there is a lower bound to the possible length of

any job, which is the longest that some copy of

the job has been run by the on-line algorithm. By

considering this lower bound as true length of each

job, we can calculate a lower bound to the off-line

minimum tot al response time. So for example, if

all of the n jobs remain unfinished after stage i, and

all these jobs were allowed to run for their full 2i

time slice in stage i, then the optimal total response

time is at least ~ ~~~~ j2i, which is the minimum

total response time for scheduling n jobs of length

2; on the m processors. Let OPT; be this lower

bound after stage i. Note that OPT; is monotone

nondecreasing with respect to time. At the end of

the stage O the total response time experienced by

the on-line algorithm so far is O(OPTO).

Now consider a stage i > 0 where u(i) ~ 2m.

Since the total number of faults is at most m, at

least half of the jobs in Qi ran for their full 2i-1

time slice in stage i – 1. Hence, at least m jobs

increased their minimum possible length by 2i–2

during stage i – 1. The increase in OPT during

stage i – 1 (i.e., OPTi_l – 0PTi.2) had to be
(~(~)-~)in(j 2;–2), which is the mini-at least m ~j=l

mum total response time for packing the (u(i) – m)

jobs of length 2i–2 into m processors. This sum is

at least (u(i) – m)22i–3/m. The increase in to-

tal response time experienced by the on-line algo-

rithm during stage i is at most u(i)22i/q. Since

u(i) – m ~ u(i)/2, the increase in OPT during

stage i – 1 (i.e., OPTi–l – 0PTi_2) will be used to

pay for increase in the total response time experi-

ence by the on-line algorithm in stage i.

Let k be the first stage where u(k) < 2m. Now

consider a stage i ~ k, Let s(i) be the num-

ber of the unfinished jobs at start of stage i with

actual length at most 2i. The increase in to-

tal response time experienced by the on-line al-

gorithm during this stage is 0(2iu(i)2/q). This

is 0(2iu(i)77z/q). In contrast OPT increases by

at least 2i–l(u(i) – s(i)). We now consider two

cases. If s(i) ~ 7u(i)/8 then the increase in OPT

can be used to pay for this stage. We call this a

paying stage. Therefore, the cumulative response

time incurred by GEOMETRIC ROTARY during pay-

ing stages is O (OPT). So, it suffices to consider

nonpaying stages where s(i) ~ 7u(i)/8. If there

are ~(i) faults in this stage then at most ~(i)/~(i)

jobs will have all their copies faulted on this stage.

Recall ~(i) = [8m/u(i)l represents the multiplic-

ity of the jobs. Since the number of faults is at

most m, u(i + 1) ~ m/@(i) + (u(i) – s(i)). Since

m/q5(i) < u(i)/8 and (u(i) – s(i)) ~ u(i)/8 it fol-

lows that u(i + 1) ~ u(i)/4.

So every stage after the kth is either a paying

stage, or the cost incurred by the on-line algorithm

goes down by a factor of 2 from the previous stage

(paying or not) since the time slice doubles and

the number of jobs goes down by a factor of 4. As

a consequence, the cumulative response time in-

curred during nonpaying stages is asymptotically

equal to the response time incurred during paying

stages that includes the kth stage. The result fol-

lows since the cost incurred during paying stages

and during the kth stage is O(OPT). ■

Theorem 7 With static release times, and related

processors, every randomized algorithm is f2(R~)-

competitive with respect to average response time.

Proof Sketch: Similar to the proof of theorem 3. ■

4 Transient Faults

In this section we assume that the duration of all

faults is O, and disallow preemptions. Here A de-

122

notes the total number of faults. Note that it is

possible for the number of faults ~ to exceed m.

Theorem 8 In the case of identical processors, the

competitive ratio, with respect to make-span, of Ro-

tary is ~(max(~, ~)), for A transient faults.

Furthermore, this competitive ratio is optimal for de-

terministic algorithms.

Proof Sketch: First consider the upper bound. As

in the proof of theorem 4, the schedule is divided

into stages. Since the tot al number of faults is ~,

the number of stages experiencing more than m/2

faults each is at most 0(~). So, we can concentrate

on stages with at most m/2 faults each. Since faults

are transient, at the beginning of each stage all (i.e.,

m) processors are available. Therefore, following

the proof of theorem 4, the number of remaining

stages is at most O (~O=~Jl~ ~,).

We now consider t~; lo&e; bound. Notice that

in the proof theorem 1 we allowed the on-line al-

gorithm m functioning processors on each stage.

Thus the proof carries over here to show a bound

of fl(max(~Og~#,~ ~ ~, ~)) in the case of identical

processors. “ ■

The proofs of the following theorems follow the

same reasoning as the proof of theorem 8.

Theorem 9 In the case of identical processors, the

competitive ratio, with respect to make-span, of Ran-

dom Rotary is O(max(log” m – log” ~, -#), for A

transient faults. Furthermore, this competitive ratio

is optimal for randomized algorithms.

Theorem 10 For static release times and identi-

cal processors, the competitive ratio, with respect

to average response time, of Geometric Rotary is

O(max(l, A/m)), for A transient faults. Furthermore,

this competitive ratio is optimal for deterministic and

randomized algorithms.

For the related processors case, the lower bound

for transient faults differ from that of permanent

faults. In particular, for transient faults and re-

lated processors the lower bound for the identical

processors case can not be generalized in the same

manner as the permanent fault case (i.e., multiply

the bound by R) when R is large. It appears that

the bounds on the competitive ratio depend in a

nontrivial way on the relationship among the three

parameters R, A and m, and the expression summa-

rizing the optimal competitive ratio is significantly

more complicated than the ones presented in this

paper.

5 No Redundancy

In this section we look at the effects of not allow-

ing redundancy. That is only one copy of a job

may be running at any point in time. We primar-

ily consider only identical processors. In the case

of permanent faults, the following results can be

extended to related processors case, as in the case

of scheduling with redundancy, by multiplying each

result by R.

Theorem 11 If no redundancy is allowed then the op-

timal deterministic competitive ratio, with respect to

make-span, is O(A), for A permanent faults in a sys-

tem of identical processors. The same bound holds

for A transient faults.

The following theorem shows that randomization

has the same effect as redundancy.

Theorem 12 If no redundancy is allc)wed then the

optimal randomized competitive ratio, with respect

~Og(~ ~, ~)) for perma-to make-span, is O(max(l~gl~ ~

nent faults, and O(max(l~gl~~), ~)) for transient
1%(~

faults in a system of identical processors.

Theorem 13 If no redundancy is allowed then the op-

timal deterministic competitive ratio, with respect to

average response time, is O(A), for bc)th permanent

and transient faults.

Theorem 14 If no redundancy is allowed then the op-

timal randomized competitive ratio, with respect to

average response time, is O(max(y, l)) for perma-

nent faults, and is @(max(~, 1)) for transient faults.

6 Other Measures

In this section we consider other possible measures

of delay, and show that even on a single processor

the optimal competitive ratios for these measures

is linear in the number of jobs.

123

Theorem 15 For no faults, static release times, iden-

tical processors, and allowing preemption, every ran-

domized nonclairvoyant algorithm for minimizing the

maximum relative response time has a competitive

ratio that is Q(n).

Proof Sketch: Let m = 1, x; = 2i-1, 1 s i ~ n. It

then takes at least Q(n) tries to find the unit length

job. A maximum relative response time of 0(1) is

possible by scheduling the jobs from shortest to

longest. ■

Theorem 16 For no faults, identical processors, and

disallowing preemptions, every randomized nonclair-

voyant algorithm for minimizing the maximum idle

time is Q(n) -competitive.

Proof Sketch: Here m = 1. The lower bound con-

sists of n stages, each stage lasting n + 1 units of

time. The first stage starts at time O. At the start

of stage i two jobs arrive in the system, one of

length 1 and one of length n. If the shorter job is

always run first the maximum idle time is 1. How-

ever, if the on-line algorithm picks one of these two

jobs to run then with probability 1/2 it picks the

longer job. It must then either incur a delay of n on

the shorter job or suspend execution of the longer

job. ‘Hence at the start of the ith stage the total re-

maining execution time of jobs left unfinished from

previous stages is Q(i). Hence, at least by the last

stage some job is idled !_ ’l(n) time. ■

Theorem 17 For no faults, identical processors, and

disallowing preemptions, every randomized nonclair-

voyant algorithm for minimizing the average idle time

is fl(n)-competitive.

7 Conclusion

Fault-tolerant computing in general seems like a

natural area of application for on-line algorithms,

and we feel that it is an area that is worthy of fur-

ther investigation. The only previous application

(that we are aware of) of the recently developed

techniques in on-line algorithms to fault-tolerance

is [5].

Acknowledgments: We thank Taieb Znati for

pointing out to us the need for a theoretical analy-

sis of fault tolerant scheduling. We also thank Joel

Wein, Sundar Vishwanathan, Sunondo Ghosh and

Daniel Mosse’ for helpful discussions.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

A. Feldmann, J. Sgall, S. Teng, “Dynamic

scheduling on parallel machines”, Proceedings

of IEEE Symposium on Foundations of Com-

puting, 111 – 120, 1991.

R. Graham, E. Lawler, J. Lenstra, and A Rin-

nooy Kan, “Optimization and approximation

in deterministic sequencing and scheduling: a

survey”, Annals of Discrete Nlathematics, 5,

287-326, 1979.

T. Matsumoto, “Competitive analysis of the

round robin algorithm’, International Sympo-

sium on Algorithms and Computation, 71 – 77,

1992.

R. Motwani, S. Phillips, E. Torng, “Non-

clairvoyant scheduling”, Proceedings of the
A CiW/SIAiW Symposium on Discrete Algo-

rithms, 422 – 431, 1993.

K. Pruhs, “Average-case scalable on-line algo-

rit hms for fault replacement”, Technical Re-

port, Computer Science Department, Univer-

sity of Pittsburgh, 1993.

D. Sleator, and R. Tarjan, “Amortized effi-

ciency of list update and paging rules”, Comm-

unications of the ACiVl, 28, 202 – 208, 1985.

D. Shmoys, J. Wein, and D. Williamson,

“Scheduling parallel machines on-line”, Pro-

ceedings of IEEE Symposium on Foundations

of Computing, 131 – 140, 1991.

J. Vytopil (cd.), Formal Techniques in Real-

time and Fault-tolerant Systems, Kluwer Aca-

demic Publishers, 1993.

A. Yao, “Probabilistic computations: towards

a unified measure of complexity”, Proceedings

of IEEE Symposium on Foundations of Com-

puting, 222 – 227, 1977.

124

