Real-Time Pattern Matching and Quasi-Real-Time Construction of Suffix Trees
 Preliminary Version

S. Rao Kosaraju*
Department of Computer Science
The Johns Hopkins University
Baltimore, MD 21136

Abstract

We design simple real-time algorithms for the following problems for any text string $T=t_{1} t_{2} \ldots t_{n}$ and pattern string $P=p_{1} p_{2} \ldots p_{m}$: (a) given $T \# P$ as input, test whether P^{R} is a substring of T, and (b) given $T \# P$ as input, test whether P is a substring of T. Even though these results were claimed in a voluminous paper by Slisenko, the design of a convincing and understandable solution is a well-known open problem. Our algorithm is based on a novel top-down suffix tree construction algorithm. This algorithm does not construct the suffix tree in real-time; but it constructs enough of the suffix tree in real-time so that it can respond to pattern match queries in real-time.

1 Introduction

A linear-time algorithm runs in $O(n)$ steps on any input of length n. A real-time algorithm must satisfy the additional requirement that on any input symbol, the algorithm spends only $O(1)$ steps. In a quast-realtime algorithm for a data structure, $O(1)$ steps can be performed on each input symbol, and all the data structure queries can be answered in real-time. There is no requirement on the internal evolution of the data structure.
We construct the suffix tree of a text in quasi-realtime in the sense that pattern match queries can be handled in real-time. In particular, we design realtime algorithms for the following problems for any text string $T=t_{1} t_{2} \ldots t_{n}$ and pattern string $P=p_{1} p_{2} \ldots p_{m}$:

[^0](a) given $T \# P$ as input, test whether P^{R} is a substring of T, and (b) given $T \# P$ as input, test whether P is a substring of T.

These problems are of some practical significance. An example is the processing of a long DNA sequence in real-time so that any intervening searches for DNA pattern strings can be done in real-time. Another application is automatic telephone message handlers. Here the text is the messages from various callers and the patterns are the identification sequences for individuals inquiring about the arrival of messages.

A new linear-time suffix tree construction algorithm is developed in section 2. The algorithm is converted into a quasi-real-time algorithm in section 3. Finally, in section 4 , we show how to make use of this algorithm in answering pattern match queries in real-time. In this preliminary version we emphasize the intuition behind the algorithms at the expense of formal proofs.

2 A New Linear-time Algorithm

After reviewing the terminology for suffix trees, we develop a new linear-time suffix tree construction algorithm in this section.

2.1 Suffix Trees

For any input $X=x_{1} x_{2} \ldots x_{n}$ and $1 \leq i \leq n$, let suffi i_{i}, or the $i^{\text {th }}$ suffix, be $x_{i} \ldots x_{n} \%$ where $\$$ is a special symbol not in the alphabet of X, and suffi x_{n+1} be $\$$. For any $1 \leq i \leq n+1$, let $\Sigma_{X}(\leq i)$ be the compact trie for suffixes $1,2, \cdots, i$, and let $\Sigma_{X}(\geq i)$ be the compact trie for suffixes $i, i+1, \cdots, n+1$ of $X . \Sigma_{X}(\geq 1)$ is the suffix tree for X. Let $\Sigma_{X}(i . . j, \geq k)$ be the compact trie for suffixes $i, i+1, \ldots, j, k, k+1, \ldots, n+1$. Thus $\Sigma_{X}(i . . i, \geq k)$ is the compact trie for suffixes $i, k, k+1, \ldots, n+1$. When X is understood, we suppress it. Thus, we write $\Sigma_{X}(\geq$

Figure 1: $\Sigma(\geq 7)$ for babaabababab.
j) simply as $\Sigma(\geq j)$. For $X=b a b a a b a b a b a b, \Sigma(\geq 7)$ is shown in Figure 1.

Note that each edge is labeled by a substring of X. In the actual implementation, each label is represented by two pointers into X. The parent and the grandparent of any node u are denoted by parent (u) and $\operatorname{gparent}(u)$, respectively. The head of any edge (u, v) is the node v. In addition to the nodes of the tree, it is convenient to be able to refer to each position (locus) within a label. The string for a locus, u, is the concatenation of the labels on the path from the root to that locus, and is denoted by σ_{u}. If u is a node then we say that σ_{u} occurs explicitly; otherwise it occurs implecitly. The locus for σ_{u} is u. Thus in Figure 1, $a b a b$ occurs explicitly and its locus is $u_{3} ; b a$ occurs implicitly and its locus is in the edge between u_{4} and u_{5}. The node of any locus u is u itself if u is a node, otherwise it is the head of the edge on which u lies. A locus is specified by its node together with the proper offset. Thus, in Figure 1, the locus of $b a$ is specified by u_{5} and an offset of 1 . The depth of any locus u is the length of σ_{u}.

2.2 Additional Links

There are two well-known linear-time algorithms for the construction of a suffix tree: Mc('reight's and Weiner's algorithms [McC76, Sei77, (S855, Wei73]. As in these algorithms, we maintain additional links between nodes of the tree. Our algorithm is based on Mc('reight's algorithm; but our links are the union of the links maintained by the two algorithms. We refer to the links corresponding to McC'reight's and Weiner's algorithms as M - and W - links, respectively. We first specify these links in detail.

At each node, u, for each input symbol c, there is

$$
\begin{array}{ccccccccccccc}
u: & u_{1} & u_{2} & u_{3} & u_{4} & u_{5} & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
W_{a}(u): & u_{2}^{*} & - & - & u_{2} & u_{3} & - & 7 & - & 9 & - & 11 & - \\
W_{b}(u): & u_{4} & u_{5} & 8^{*} & - & - & - & - & 8 & - & 10 & - & 12
\end{array}
$$

Figure 2: W-links of Figure 1.

$$
\begin{array}{ccccccccccccc}
u: & u_{1} & u_{2} & u_{3} & u_{4} & u_{5} & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
M(u): & - & u_{4} & u_{5} & u_{1} & u_{2} & 8 & 9 & 10 & 11 & 12 & 13 & u_{1}
\end{array}
$$

Figure 3: M-links of Figure 1.
a W-link denoted by $W_{c}(u)$. It specifies the locus of $c \sigma_{u}$. If $c \sigma_{u}$ occurs explicitly the link is said to be explicit, otherwise the link is implicit. If c σ_{u} doesn's occur in the tree, then the link has the special value "". For the example of Figure 1, the W-links are listed in Figure 2. (The implicit links are superscripted with *).

At each node, u, there is an M-link denoted by $M(u)$. If $\sigma_{u}=c \alpha$, where c is a single symbol, then $M(u)$ specifies the locus of α. If α occurs explicitly the link is said to be explicit, otherwise the link is implacit. If α doesn's occur in the tree, then the link has the special value "-". For the example of Figure 1, the M-links are listed in Figure 3. (There are no implicit links).

Every suffix tree construction algorithm includes a new suffix into the tree by finding the maximum length prefix of this suffix that is a path in the tree and installing the new suffix at the corresponding locus. This locus is the insertion locus for the new suffix. The length of this prefix is the insertion depth of the new suffix. In Figure 1, suffix $x_{3}=b a a b a b a b a b \$$ has an insertion depth of 2 . Note that this suffix can be included as the child of a new node, x, obtained by splitting the $\left(u_{4}, u_{5}\right)$ edge into 2 edges $\left(u_{4}, x\right)$ and $\left(x, u_{5}\right)$ with labels a and b, respectively. The label of the ($x, l e a f_{4}$) edge is abababab $\$$.

2.3 McCreight's Algorithm

As stated earlier, our linear-time algorithm is based on Mc(ireight's algorithm. In the following we sketch McCreight's algorithm; the details can be obtained from [McC76]. The algorithm inserts suffix ${ }_{1}$, suffi x_{2}, \ldots...suffi x_{n+1} into an initially empty tree. At any instant assume that the algorithm already has constructed $\Sigma(\leq i)$ with its associated M-links with the possible exception of the M-link of parent (leaf ${ }_{z}$). The insertion of suffix i_{i+1} into it is shown schernatically in Figure 4. The parent (leaf f_{i}) is denoted by π_{i}.

Figure 4: Insertion of suffi x_{i+1} by McCreight's algorithm.

In $\Sigma(\leq i),[\mathrm{McC} 76]$, all nodes other than the root, leaf f_{i}, and π_{i} have explicit M-links. The root and leaf i_{i} cannot have M-links; π_{i} has an M-link but it can be implicit. Mc(.reight's algorithm might not compute the M-link of π_{\imath} even when this link is an explicit one. The insertion of suffix x_{i+1} is as follows.

If π_{i} 's M-link exists, we follow its M-link to u_{1}, $M\left(\pi_{i}\right)$, and proceed directly to scan described below. If $\pi_{i}^{\prime} s M$-link is missing, we first perform the following rescan and then perform scan.
rescan: We climb up to u_{2}, parent $\left(\pi_{i}\right)$, follow its M link to u_{3}, locate u_{1}, as described below, and then create an M-link from π_{i} to u_{1}. Initially we are at u_{2} and u_{3}. At any instant we will be at some locus, x, on the edge $\left(u_{2}, \pi_{i}\right)$ and some node, v, on the path from u_{3} to u_{1}. We repeat the following until v becomes u_{1}. We choose the outgoing edge of v, say $\left(v, v^{\prime}\right)$, whose label's first symbol matches with the first next symbol on (x, π_{i}). If the $\left(x, \pi_{i}\right)$ string is longer than the $\left(v, v^{\prime}\right)$ string, then on $\left(u_{2}, \pi_{i}\right)$ we advance by the length of the string of edge $\left(v, v^{\prime}\right)$ and we move to node v^{\prime}; i.e. make $v=v^{\prime}$. If the $\left(x, \pi_{i}\right)$ string is not longer than $\left(v, v^{\prime}\right)$ string, we advance to node π_{i}, and we advance along $\left(v, v^{\prime}\right)$ by the length of $\left(x, \pi_{i}\right)$ string, reaching node u_{1}. scan: Trace down a path from node u_{1} by making symbol-by-symbol comparisons of the labels on the
edges and the corresponding symbols of suffi x_{i+1} until a mismatch occurs. This locates π_{i+1}, the insertion locus for suffix x_{i+1}, where we install leaf f_{i+1}.
Finally we create an M-link from leaf to leaf $_{i+1}$, completing the insertion of suffix x_{i+1} by McCreight's algorithm. During this insertion process, we denote the instantaneous position on the path from u_{1} to π_{i+1} as the locus of suffix x_{i+1}.

In the following, we modify Mc('reight's algorithm so that we can achieve the following additional goal: In the suffix tree, for any locus u and any symbol c we want to compute the locus of $c \sigma_{u}$ in $O(1)$ steps. Observe that this goal can be accomplished if the suffix tree has W-links at its nodes.

2.4 Modified McCreight's Algorithm: Algorithm MM

Algorithm MM maintains both M - and W-links at every instant. As in McCreight's algorithm, in $\Sigma(\geq i)$, node π_{i} might not have its M-link. We make a corresponding natural compromise for the $W_{x_{t}}$-link value of every node between u_{3} and u_{1} (excluding u_{3}, but including u_{1} if u_{1} is a node). Note that the correct value for each of these nodes is π_{i}. At this instant the $W_{x_{i}}$-link we maintain at each of these nodes is the child of π_{i} which was the head of the edge that was split to create π_{i}.

We implement each M-link by a pointer in the obvious way. However, our implementation of W-links is non-standard. It is easy to observe [Wei73] that in the tree several nodes can have their W_{c}-links, for some c, point to the same node. In our implementation, all such links will point to an auxvliary node which in turn points to the correct node. (This indirect linking mechanism will allow us to achieve certain monotonicity properties that are crucial in the development of the quasi-real-time algorithm.) Each W-link is specified by 2 fields: the subscript field, and the link field. In Figure 1, the W_{b}-links of both u_{3} and leaf 9 are leaf f_{8}. Thus the first field at both the nodes is b, and the second field contains the same auxiliary node. The second field of the auxiliary node contains 8 , the index of the leaf pointed to, and the first field contains a special designated value to indicate that the node is an auxiliary node. Our algorithm keeps track of the depth of any node in the tree in a separate field at that node. We ignore the trivial problem of how this computation is incorporated into the algorithm. Even though each W-link chains through an auxiliary node, we describe each link as a single link. Even though an implicit link points to a node, we can find the exact locus in $O(1)$ steps. For example, in Figure 1, $W_{b}\left(u_{3}\right)=8$, depth $\left(u_{3}\right)=4$, and depth $\left(\right.$ leaf $\left._{8}\right)=5$. We can infer that W_{b}-link of u_{3} is an implicit link and it

Figure 5: W-links created when suffi x_{i+1} is inserted.
points to $\left(u_{5}, l e a f_{8}\right)$ edge between $a b$ and $\$$.
Assurne that we have already constructed the suffix tree $\Sigma(\leq i)$ with the associated M - and W-links. The insertion of suffix x_{i+1} into it and the creation of M-links are as described in the previous subsection. Figure 5 shows the W-links that get created. The links are shown unlabeled.

Note that the $W_{x_{i}}-\operatorname{link}$ of $l e a f_{i+1}$ points to leaf ${ }_{i}$, and all the other W-links at leaf f_{i+1} are undefined. If π_{i+1} is created by splitting an edge, then its W-links are the same as the W-links of the head of the edge it was created from. The $W_{x_{i}}$ link from each node between u_{3} and u_{1} (excluding u_{3}, but including u_{1}) must point to node π_{i}. During the rescan step when the first node on this path is encountered, we create an auxiliary node with a link to π_{i}, and replace the previous $W_{x_{i}}$-link of the node encountered by a $W_{x_{i}}$ link to the auxiliary node. On each subsequent node on the path between u_{3} and u_{1}, we replace its previous $W_{x_{i}}$-link by a $W_{x_{i}}$-link to the auxiliary node.

Lemma 1 In $\Sigma(\leq i)$, given any locus u and any symbol c, we can find the locus of $c \sigma_{u}$, when it exists, in $O(1)$ steps.

Figure 6: Path extension.

2.5 New Linear-Time Algorithm: Algorithm LT

Algorithrn LT inserts suffixes in phases. Even though it is based on Algorithm MM, which inserts suffix ${ }_{1}$ first and suffix x_{n+1} last, it inserts suffix ${ }_{n+1}$ first.

Assume that at the beginning of a phase we have $\Sigma(\geq i+1)$ with all its M-links and W-links. (That is, we have already inserted suffi x_{i+1}, suff x_{i+2}, \ldots, suffix x_{n+1}.) Here we require that every node in the tree must have its M - and W - links correct as defined originally. In particular, note that every node other than the root must have an M-link. (Algorithm MM makes an exception for the parent of the last leaf installed.) During this phase we insert into $\Sigma(\geq i+1)$ an interval of suffixes $i-k+1, i-k+2, \ldots, i$ for a suitable k, resulting in $\Sigma(\geq i-k+1)$ with all its M-links and W-links. The insertions are done in the order $i-k+1, i-k+2, \ldots, i$. First we describe how the interval of suffixes is identified.

Interval Identification

On input symbol x_{i} we compute the locus of $x_{i} x_{i+1}$. This clearly can be done in $O(1)$ steps. (If this locus does not exist, then suffix forms the interval. We insert it and create the necessary links, completing the current phase.) Then on input symbol x_{i-1} we compute the locus of $x_{i-1} x_{i} x_{i+1} x_{i+2}$, starting at the locus of $x_{i} x_{i+1}$. In general, on input x_{i-j} we compute the locus of $x_{i-j} x_{i-j+1} \ldots x_{i+j} x_{i+j+1}$ starting the locus of $x_{i-j+1} \cdots x_{i+j}$, as shown in Figure 6.

If the locus of $x_{i-j+1} \ldots x_{i+j}$ is u, then the locus of $x_{i-j} x_{i-j+1} \ldots x_{i+j}$ can be computed in $O(1)$ steps as given in lemma 1. Let this locus be u^{\prime}. Then from u^{\prime} we simply walk down along the symbol x_{i+j+1} in the tree $\Sigma(\geq i+1)$ to complete the step. Hence each length 2 path extension can be performed in $O(1)$ steps.

Suppose the locus for $x_{i-k} \ldots x_{i+k+1}$ does not exist in $\Sigma(\geq i+1)$. This can be due to the non-existence of the $W_{x_{i-k}}$-link or the non-existence of the extension on symbol x_{i+k+1}. Then suffixes $i-k+1, i-k+2, \ldots, i-1, i$ form the interval of suffixes inserted in the current phase. For the example of Figure 1, let the previous phase end with $\Sigma(\geq 7)$. On $x_{6}=b$, the locus is between u_{4} and u_{5}, since $x_{6} x_{7}=b a$. On $x_{5}=a$, the locus is u_{3}, since $x_{5} x_{6} x_{7} x_{8}=a b a b$. Since
$x_{4} x_{5} x_{6} x_{7} x_{8} x_{9}=a a b a b a$ is not a path in $\Sigma(\geq 7)$, suffixes 5 and 6 form the current interval of suffixes.

Before describing the details of the insertion process, let us highlight the importance of what has been achieved. Since $x_{\imath-k+1} \ldots x_{i+k}$ is a path in $\Sigma(\geq i+1)$, each $x_{\ell} x_{\ell+1} \ldots x_{i+k}, i-k+1 \leq \ell \leq i$, is a path in $\Sigma(\geq i+1)$. (A suffix of a path is a path.) Thus, we have:

Lemma 2 Irrespective of the order in which we insert the suffixes of the current interval, every one of the suffixes $i-k+1, \ldots, i-1, i$ gets inserted at an insertion depth not less than $k+1$.

In the next section when the algorithm is converted into a quasi-real-time algorithm, this property plays a critical role. (Since no insertion depth is less than $k+1$, any pattern match query for a pattern of length at most k can be performed correctly while the current insertions are in progress.)

In addition, since $x_{i-k} \ldots x_{i+k+1}$ is not a path in $\Sigma(\geq$ $i+1$), if we were to insert suffi x_{i-k} into $\Sigma(\geq i+1)$, its insertion depth will not be more than $2 k+1$. We can easily establish the following lemma.

Lemma 3 If the insertion depth of leaf $i-k$ in $\Sigma(\geq$ $i+1)$ is not more than δ, then the insertion depth of leaf f_{2-k} in $\Sigma(\geq i-k+1)$ is not more than $\delta+k$.

The following is an immediate consequence of this lemma.

Corollary 4 The insertion depth of leaf li-k in $\Sigma(\geq$ $i-k+1$) 2 s not more than $3 k+1$.

Note that $\Sigma(\geq i-k+1)$ is the suffix tree at the beginning of the next phase. The above bound on the insertion depth will be important in establishing the $O(n)$ speed bound for the overall algorithm.

Insertion of Suffixes

Now we describe the details of the insertion of suffixes $i-k+1, \ldots, i-1, i$ into $\Sigma(\geq i+1)$.

We first insert suffi x_{i-k+1}. The interval identification step has already located the locus of $x_{i-k+1} x_{i-k+2} \ldots x_{i+k}$. ¿From that locus, which is at depth $2 k$, we walk down the tree one symbol at a time until we locate the insertion locus for suffix i_{-k+1}, where we install suffix x_{-k+1} resulting in $\Sigma(i-k+1 \ldots i-$ $k+1, \geq i+1$). (So far suffixes $i-k+1, i+1, i+2, \ldots$,$n+1$ have been inserted.) Then we apply Algorithm MM and insert suffixes $i-k+2, \ldots, i-1, i$ in order. Then we create a $W_{x_{i}-}$ link from leaf f_{i+1} to leaf f_{2} and an M-link from leaf ${ }_{i}$ to leaf f_{i+1}. At this stage, even though we have inserted suffixes $i-k+1, i-k+2, \ldots, i$ into $\Sigma(\geq i+1)$, the resulting $\Sigma(\geq i-k+1)$ need not have all its links. Since we followed Algorithm MM,
the M-link of $\pi_{2}=$ parent $\left(\right.$ leaf $\left._{2}\right)$ and the W-links that point to π_{2} might be absent. Note that $M\left(\pi_{i}\right)$ must be a node in $\Sigma(\geq i-k+1)$. Thus if the M-link of π_{2} is absent, we climb up to the parent of π_{2}, traverse its M-link and create the W-links for nodes that need to have W-links to parent (i) by following the rescan step of Algorithm MM. Finally we create the M-link of π_{i}.

We now argue that this algorithm runs in lineartime. By making use of corollary 4 we can easily prove the following lemma.

Lemma 5 Let the next phase insert k^{\prime} suffixes. Then the insertion depth of any suffix in the next phase is not more than $3 k+k^{\prime}$. The number of steps needed to perform the next phase is not more than $c_{1}\left(k+k^{\prime}\right)$, for a suitably large constant c_{1}.

Now let Algorithm LT insert the $n+1$ suffixes in m phases, and let it insert k_{i} suffixes in the $i^{t h}$ phase. Then, by lemma 5 , the total number of steps performed by the algorithm is not more than $c_{1}\left(0+k_{1}\right)+$ $c_{1}\left(k_{1}+k_{2}\right)+\cdots+c_{1}\left(k_{m-1}+k_{m}\right)$ which is not more than $2 c_{1}(n+1)$. Hence Algorithm LT runs in $O(n)$ steps.

The following lemma specifies the progress that can be achieved during an intermediate instant of the insertion stage.

Lemma 6 There exists a constant c_{2} such that of we perform $c_{2} \alpha$ steps, for any $\alpha \geq 1$, on the current task starting with suffi x_{i-k+1} and at locus depth $2 k$, then the locus depth of insertion of any unfinished suffix in the current interval is at least $\max \{k, \alpha\}$.

3 Quasi-Real-time Algorithm: Algorithm Q

Now we show that Algorithm LT can be adapted to run in quasi-real-time so that the suffix tree construction can proceed uninterrupted as more input is received. Throughout we assume that the input symbols get stored in an array so that any previous input symbol can be accessed in a single step. We also assume that the input is received right-to-left. In addition, whenever a leaf gets created a pointer from the corresponding position in the array to the leaf will also be created. This will permit accessing leaf for any given i in a single step.

In Algorithm LT we assumed that when the current phase started, $\Sigma(\geq i+1)$ was completely computed. In Algorithm Q, $\Sigma(\geq i+1)$ will be constructed only partially, and there will be unfinished insertion tasks, running in the background, arranged in a stack. Each unfinished task corresponds to the unfinished insertion stage of one of the previous phases of Algorithm LT.

Each task on the stack carries enough information so that on a subsequent update step we can resume the unfinished insertions of the task from where we left off. This information is the following: the interval of suffixes, the index of the current suffix, if the current suffix is not the first suffix of the interval then a pointer to the last leaf inserted, and a pointer to the locus of the current suffix. The last pointer is specified by the head of its edge and the depth of the locus. This depth of the locus of the current suffix is denoted as the current depth of the task. Even though from the above information we can compute in $O(1)$ steps whether the task is currently performing rescan or scan, for simplicity, we assume that a separate field carries this information.

When we initiate an update of a task on the stack, if the stack was in rescan step then we make a significant change to the rescan step. We do not simply resume where we left off. Assume that the task was in rescan, the current suffix is suffix x_{2+1}, and the locus of this suffix was node v, as shown in Figure 8 (ignoring the rectangular nodes). When we initiate the update, let $v^{\prime}=M\left(\right.$ gparent $\left(\right.$ leaf $\left.\left._{i}\right)\right)$. If depth $\left(v^{\prime}\right) \leq \operatorname{depth}(v)$, then we resume the rescan normally; otherwise we make $v=v^{\prime}$ and resume the rescan from the new v. This important modification takes into consideration the possibility that from the instant the task was last updated, the gparent (leaf $)_{\imath}$) might have changed. Many additional nodes could have been inserted during this time interval. Such inserted nodes are shown as rectangles. (This modification perrnits skipping over such inserted nodes. All the links will also be set properly because of the way the W-links are implemented.)

When updates are performed on a task, we make sure that no M - or W-link is left "dangling". That is, if we were in the process of changing a link, then we finish the change as part of the update step.

The following algorithm makes use of a suitably large constant c.

Outline of Algorithm Q:

Initially the stack is empty.
At any stage, let the top two tasks on the stack be D and D^{\prime}, with D at the top. (If D^{\prime} is absent, then ignore the operations on it.) Let the number of suffixes in the interval of tasks D and D^{\prime} be d and d^{\prime}, respectively.
On each new input symbol received, perform path extension by length 2 in $O(1)$ steps. In addition, on each input symbol, perform c update steps on each of D and D^{\prime} until depth(D^{\prime}) equals $2 d^{\prime}+d$ or until D^{\prime} finishes or until D finishes.

If one of the first two conditions holds, then perform c

Figure 7: Locus at update time.
update steps on D_{k} only. If the third condition holds, then pop D and terminate the updates.
If the path cannot be extended by length 2 , the task of inserting the current interval of suffixes is pushed onto the stack as a new task.

In the above algorithm when we update D^{\prime} special care needs to be exercised. If the current loci of D and D^{\prime} are on the same edge and if D^{\prime} splits that edge, then the corresponding W-link of D has to be properly adjusted. We claim that a suitably large constant c can be chosen for the algorithm such that the invariants below can be maintained.

At any stage, let the stack contain the tasks D_{k}, D_{k-1}, \ldots, D_{0}, with D_{k} at the top, and let the number of suffixes in the interval of each task D_{i} be d_{i}. Assume that we have already performed c updates s_{i} times on task D_{i}. Let the number of input symbols received during the current phase be d_{k+1}. (This can be less than the number of input symbols received from the instant D_{k} was pushed on the stack.)
Invariant 1 : If we complete $D_{0}, D_{1}, \ldots, D_{k}$ in order on the current suffix tree and then insert the suffixes of the current phase, the resulting suffix tree is the suffix tree for the input received so far.

Invariant $\underset{\sim}{\text { g. }}$. For each $i=0,1, \cdots, k, \max \left\{d_{i}, s_{i}\right\} \geq$ $3 d_{i+1}+d_{i+2}$, where $d_{k+2}=0$.
Invariant 3: For each $i=0,1, \cdots, k-1, \max \left\{d_{i}, s_{i}\right\}>$ current depth of D_{i+1}.

As a consequence of the second invariant and lemmas 5 and 6 , we can infer that the maximum depth of
insertion of any unfinished suffix in D_{i+2} is less than the minimum depth of insertion of any unfinished suffix in D_{i}, and the maximum depth of insertion of any suffix in the current phase is less than the minimum depth of insertion of any unfinished suffix in D_{k-1}. The third invariant implies that the current depth of D_{i+1} is less than the minumum depth of insertion of any unfinished suffix in D_{2}.

We prove that the above two properties remain invariant in the final version. We now present an informal justification of these invariants.

If the other invariants hold, the first invariant might fail because W-links can be implicit. Suppose current loci of several tasks are on the same edge, and suppose that one of these tasks splits that edge into two edges. We can show, based on invariants 2 and 3, that the split must happen at the shallowest locus. In such a case our indirect linking scheme maintains all the links properly.

Between the instants D_{i} and D_{i+1} got pushed on the stack at least $d_{i+1} \mathrm{c}$ updates must have been performed on D_{i}. During the time when D_{i+2} was the current phase an additional $d_{i+2} c$ updates must have been performed on D_{i}. Hence invariant 2 holds. An analogous argument establishes invariant 3 .

4 Pattern Matching Problems

We make use of the above quasi-real-time algorithm to develop real-time algorithms for some pattern matching problems.
Problem 1: Let the input be $T \# P$ where $T=t_{1} t_{2} \ldots t_{n}$ is the text and $P=p_{1} p_{2} \ldots p_{m}$ is the pattern. We want to test whether P^{R} is a substring of T.

We apply the quasi-real-time algorithm and construct the suffix tree for $X=T^{R} \$$. Since our quasi-real-time algorithm processes X right-to-left, the input requested is in the proper order. After receiving \#, we walk down the path $p_{1} p_{2} \ldots p_{m}$ starting at the root. On each input symbol p_{i}, we update the tasks on the stack assuming that the path extension step has succeeded. (In reality, we don't perform the path extension test at all.) We can infer from invariants 2 and 3 of Algorithm Q that at every instant the minimum depth of insertion of any suffix of any task on the stack is greater than the length of the pattern received. Consequently, the cleaning up of the suffix tree can be maintained ahead of the pattern. The path for P exists in the suffix tree if and only if P is a substring of T^{R}, i.e., if and only if P^{R} is a substring of T.
Froblem 2: Let the input be $T \# P$, as before. We want to test whether P is a substring of T.

As before we apply the quasi-real-time algorithm for $X=T^{R} \$$. After receiving \# we process P by applying
lemma 1. After processing $p_{1} p_{2} \ldots p_{i}$ we will be at the locus of $p_{2} \ldots p_{1}$. On input symbol p_{i+1} we apply lemma 1 and reach the locus of $p_{i+1} p_{2} \ldots p_{1}$ in $O(1)$ steps. As before, the tasks on the stack get updated while each input symbol is processed. The path $p_{m} p_{m-1} \ldots p_{1}$ exists if and only if P^{R} is a substring of T^{R}, i.e., if and only if P is a substring of T.

Acknowledgements: I acknowledge my deep gratitude to Professor Art Delcher for enthusiastically listening through my ideas and for suggesting several improvements to the presentation.

References

[CL90] W. L. (hang and E. L. Lawler. Approximate string matching in sublinear expected time. In Proc. of 31st Annual IEEE Symp. on Foundations of Computer Science, pages 116-124, 1990.
[CS85] M. T. Chen and J. Seiferas. Efficient and elegant subword tree construction. In A. Apostolico and Z. Galil, editors, Combinatorial Algortthms on Words, pages 97-107. Springer-Verlag, 1985.
[McC76] E. M. McCreight. A space-economical suffix tree construction algorithm. J. of $A C M$, pages 262-272, 1976.
[Sei77] J. Seiferas. Subword trees, February 1977. Class Notes.
[Wei73] P. Weiner. Linear pattern matching algorithms. In Proc. of 14 th Annual IEEE Symp. on Switching ${ }^{89}$ Automata Theory, pages 111, 1973.

[^0]: *Supported by NSF grant CCR-9107293
 Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association of Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

