
Real-Time Pattern Matching and Quiwi-Real-Time Construction of

Suffix Trees

Preliminary Version

S. Rao Kosaraju*

Ilepartment of (~onlputer Science

The .Johm Hopkins University

Baltimore, MD 21136

Abstract

We design simple real-time algorithms for the following

problems for any text string T = tltz...tn and pattern

string P = plpz...pm: (a) given T#P as input, test

whether Pfi is a substring of T, and (b) given T#P
as input, test whether P is a substring of T. Even

though these results were claimed in a voluminous pa-

per by Slisenko, the design of a convincing and un-

derst anrlable solution is a well-known open problem.

Our algorithm is based on a novel top-down suffix tree

construction algorithm. This algorithm does not con-

struct the suffix tree in real-time; but. it constructs

enough of the suffix tree in real-time so that it can

respond to pattern match queries in real-time.

1 Introduction

A hnear-ttme algorithm runs in 0(71) steps on any in-

put of length 71. A real-time algorithm must satisfy

the additional requirement that on any input symbol,

the algorithm spends only 0(1) steps. In a quasz-real-

time algorithm for a data structure, O(1) steps can

be performed on each input symbol, and all the data

structure queries can be answered in real-time. There

is no requirement on the internal evolution of the data

structure.

We construct the sufiix tree of a text in quasi-real-

time in the sense that pattern match queries can be

handled in real-time. In particular, we design real-

time algorithms for the following problems for any text

string T = tltz... tn and pattern string P = plpz...pm:

*Supported by NSF grant C(llV910729:~

Permission to copy vdthout fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinety. To copy otherwise, or to republish, requires a fee
and/or specific permission.

STOC 84- 5/84 Montreal, Quebec, Canada
63 1994 ACM 0-89791 -663-8/84/0005...$3.50

(a) given T#P as input, test whether PR is a substring

of T, and (b) given T#P as input, test whether P is

a substring of T.

These problems are of some practical significance.

An example is the processing of a long DNA sequence

in real-time so that any intervening searches for DNA

pattern strings can be done in real-time. Another

application is automatic telephone message handlers.

Here the text is the messages from various callers and

the patterns are the identification sequences for indi-

viduals inquiring about the arrival of messages.

A new linear-time suffix tree construction algorithm

is developed in section 2. The algorithm is converted

into a quasi-real-time algorithm in section 3. Finally,

in section 4, we show how to make use of this algo-

rithm in answering pattern match queries in real-t irne.

In this preliminary version we emphasize the intuition

behind the algorithms at the expense of formal proofs.

2 A New Linear-time Algo-

rithm

After reviewing the terminology for suffix trees, we

develop a new linear-time suffix tree construction al-

gorithm in this section.

2.1 Suffix Trees

For any input X = Z1x2...xn and 1< i < 7t, let Sufizi,

or the ith sufiix, be ai.. .Zn$ where $ is a special symbol

not in the alphabet of X, and su#ixn+l he $. For any

I < z’ < n + 1, let ~x(< i) be the compact trie for

suffixes 1,2, . . . , i, and let xx (~ i) be the compact trie

forsufiixes i,i+l, . . . ,71+1 of X. Zx(z 1) is the sufiz

tree for X. Let XX(i..j, ~ k) be the compact trie for

suffixes i, i+l,..., j, k, k+l ,...,?1+1. Thus ~X(i..i, ~ k)

is the compact trie for suffixes i, k, k+l,...,n+l. When

X is understood, we suppress it. Thus, we write 2X (~

310

http://crossmark.crossref.org/dialog/?doi=10.1145%2F195058.195170&domain=pdf&date_stamp=1994-05-23

all

ab

ab

Figure 1: Z(>7)for babaabababab.

j) simply as x(> j). For X=babaabababab, X(> 7) is

shown in Figure 1.

Note that each edge is labeled by a substring of X.

In the actual implementation, each label is represented

by two pointers into X. The parent and the grarrd-

parent of any node u are denoted by parent(u) and

gparent(u), respectively. The head of any edge (u, V)

is the node v. In addition to the nodes of the tree, it is

convenient to be able to refer to each position (locus)

within a label. The string for a locus, u, is the con-

catenation of the labels on the path from the root to

that locus, and is denoted by UU. If u is a node then

we say that au occurs explicitly; otherwise it occurs

implicitly. The locus for UU is u. Thus in Figure 1,

abab occurs explicitly and its locus is us; ba occurs

implicitly and its locus is in the edge between U4 and

U5. The node of any locus u is u itself if u is a node,

otherwise it is the head of the edge on which u lies. A

locus is specified by its node together with the proper

offset. Thus, in Figure 1, the locus of ba is specified

by U5 and an offset of 1. The depth of any locus u is

the length of au.

2.2 Additional Links

There are two well-known linear-time algorithms for

the construction of a sufiix tree: McCreight’s and

Weiner’s algorithms [McC76, Sei77, CS85, Wei73]. As

in these algorithms, we maintain additional links be-

tween nodes of the tree. Our algorithm is based on

Mc.(.;reight’s algorithm; but our links are the union

of the links maintained by the two algorithms.

We refer to the links corresponding to Mcl;reight’s and

Weiner’s algorithms as ill- and W- links, respectively.

We first specify these links in detail.

At each node, u, for each input symbol c, there is

u: U1 u~ U3 U4 us 7891011121:]

~a(U): U;- –uz w-7- 9 – 11–

Wb(~) : U4 US ~*_–____8-Io -12

Figure 2: W-links of Figure 1.

u: UIU2U3U4U57891011 121:1

M(u): – U4 U5 U1 U2 8 9 10 11 12 1:3 u]

Figure 3: M-links of Figure 1.

a W-link denoted by W,(u). It specifies the locus of

Cuu . If co,, occurs explicitly the link is said to be

ezplicit, otherwise the link is implzcit. If CUU doesn’s

occur in the tree, then the link has the special value “-

“. For the example of Figure 1, the W-links are listed

in Figure 2. (The implicit links are superscripted with

*).

At each node, u, there is an A4-link denoted by

M(u). If 0.=(’(!, where c is a single symbol, then

A4(u) specifies the locus of a. If cr occurs explicitly

the link is said to be ezpiicit, otherwise the link is im-

pltcit. If a doesn’s occur in the tree, then the link has

the special value “-”. For the example (of Figure 1, the

A4-links are listed in Figure 3. (There are no implicit

links).

Every sufhx tree construction algorithm includes a

new srrflix into the tree by finding the maximum length

prefix of this suffix that is a path in the tree and in-

stalling the new suflix at the corresponding 10C.US. This

locus is the insertion 10CU.S for the new suffix. The

length of this prefix is the insertion depth of the new

suffix. In Figure 1, .sulliz3 = baabababab$ has an inser-

tion depth of 2. Note that this suffix can be included

as the child of a new node, x, obtained by splitting

the (u4, u5) edge into 2 edges (u4, *) and (z, us) with

labels a and b, respectively. The label of the (z, kaf4)
edge is abababab$.

2.3 McCreight’s Algorithm

As stated earlier, our linear-time algc)rithm is based

on Mc(.height’s algorithm. In the follc~wing we sketch

Mc.Creight’s algorithm; the details can be obtained

from [Mc(.;76]. The algorithm inserts sufix 1, SU&X2,

. . . . SUflXn+l into an initially empty tree. At any

instant assume that the algorithm already has con-

structed x(< i) with its associated M-links with the

possible exception of the &Z-link of par’ent(leaf$). The

insertion of Sufizi+l into it is shown ~cherrlatically in

Figure 4. The parent (leafi) is denoted by ~i.

311

U2

rescan

----.-.---
7CL

i scan

. .
.

\ . .

M- “., :..
.

‘y.”

i+l’--’

~ “A

Figure 4: Insertion of Sufizi+l by Mc.(.;reight’s algo-

rithm.

In 2(< i), [McC76], all nodes other than the root,

leaf ~, and T, have explicit AZ-links. The root and Jeaf ~

cannot have A4-links; mi has an ~-link ~llt it can be

implicit. McOreight’s algorithm might not compute

the M-link of m, even when this link is an explicit one.

The insertion of su@ri+ ~ is as follows.

If mi’s M-link exists, we follow its M-link to UI,

LZ(m~), and proceed directly to scan described below.

If r~s &f-link is missing, we first perform the following

mscarz and then perform scan.

rescan: We climb up to UZ, parcnt(7r~), follow its &f-

link to u~, locate U1, as described below, and then

create an M_-link from Ti to U1. Initially we are at U2

and U3. At any instant we will be at some locus, z, on

the edge (U2, Ti) and some node, v, on the path from

U3 to U1. We repeat the following until v becomes U1.

We choose the outgoing edge of “v, say (v, v’), whose

label’s first syrnhol matches with the first next symbol

011 (a:, mi). If the (~, mi) string is longer than the (v, v’)

string, then on (U2, ri) we advance by the length of the

string of edge (v, v’) and we move to node v’; i.e. make

v = w’. If the (x, m,) string is not longer than (v, v’)

string, we advance to node Xa, and we advance along

(v, v’) by the length of (z, Ti) string, reaching node UI.

scam Trace down a path from node U1 by making

symbol-by-symbol comparisons of the labels on the

edges and the corresponding symbols of Su@zi+l until

a rnisrnatc.h occurs. This locates mi+l, the insertion

10CUS for SUfiZi+l, where we install leafi+l.

Finally we create an M-link from leafi to leafi+l, comp-

leting the insertion of ,su&zi+l by Mc,(;reight’s algo-

rithm. During this insertion process, we denote the

instantaneous position on the path from U1 to ri+l as

the locus of Suf)ixi+l.

In the following, we modify McCreight’s algorithm

so that we can achieve the following additional goal: In

tile suffix tree, for any locus u axld any symbol

c we want to compute the locus of cow in 0(1)

steps. Observe that this goal can be accomplished if

the suflix tree has W-links at its nodes.

2.4 Modified McCreight’s Algorithm:

Algorithm MM

Algorithm MM maintains both A4- and IV-links at ev-

ery instant. As in McCreight’s algorithm, in x(> i),

node fii might not have its A4-link. We make a cor-

responding natural compromise for the IV$,-link value

of every node between us and ul (excluding us, but

including U1 if U1 is a node). Note that the correct

value for each of these nodes is xi. At this instant

the Wz, -link we maintain at each of these nodes is the

child of ~i which was the head of the edge that was

split to create fl~.

We implement each &f-link by a pointer in the ob-

vious way. However, our implementation of W-links is

non-standard. It is easy to observe [Wei73] that in the

tree several nodes can have their WC-links, for some

C, point to the same node. In our irnplernentation,

all such links will point to an aumhary node which in

turn points to the correct node. (This indirect linking

mechanism will allow us to achieve certain monotonic-

ity properties that are crucial in the development of

the quasi-real-time algorithm.) Each W-1ink is speci-

fied by 2 fields: the subscript field, and the link field.

In Figure 1, the Wb-links of both U3 and ieaf ~ are

leaf8. Thus the first field at both the nodes is b, and

the second field contains the same auxiliary node. The

second field of the auxiliary node contains 8, the in-

dex of the leaf pointed to, and the first field contains

a special designated value to indicate that the node is

an auxiliary node. Our algorithm keeps track of the

depth of any node in the tree in a separate field at

that node. We ignore the trivial problem of how this

computation is incorporated into the algorithm. Even

though each W-link chains through an auxiliary node,

we describe each link as a single link. Even though

an implicit link points to a node, we can find the ex-

act locus in 0(1) steps. For example, in Figure 1,

Wb(us) = 8, depth(u3) = 4, and depih(/eaf8) = 5. we

can infer that Wb-link of U3 is an implicit link and it

312

U2 M-

/
/

/
/

..&.’.-”
,’ :

,>. -q-.+.
\/ \

/ \

M- “

~i
u,

i

\ -.

Irescan

)

scan

“\ -.
\ . ‘X,+,)..)’ -7

\ \
\ : i--

A

M~’<. ‘\ ,’>-----~
-.~i, ‘

-- A>-..

i+l”” ““

Figure 5: W-links created when Sufizi+l is inserted.

points to (u5, leaj~) edge between ab and $.

Assume that we have already constructed the suffix

tree Z(S i) with the associated A4- and W’- links. The

insertion of sufizi+l into it and the creation of M-1inks

are as described in the previous subsection. Figure ij

shows the W-links that get created. The links are

shown unlabeled.

Note that the WZ,-link of leaj’i+l points to ieafi,

and all the other W-links at leaf i+ ~ are undefined. If

mi+ 1 is created by splitting an edge, then its W-links

are the same as the W-links of the head of the edge

it was created from. The WZ, -link from each node

between us and u~ (excluding us, but including U*)

must point to node m~. During the r-cscan step when

the first node on this path is encountered, we create

an auxiliary node with a link to ~i, and replace the

previous W$,-link of the node encountered by a WZ,-

link to the auxiliary node. On each subsequent node

on the path between U3 and U1, we replace its previous

WC, -link by a WZi-link to the auxiliary node.

Lemma 1 In x(< i), gimn any locus u and any SYTIt-

bol c, we can jind the locus of CUU, when it exists, in

O(1) steps.

313

...Xi.~ Xi.~+~ ...Xi., Xi) ~i+,~l+z..,~i+k~i+k+l ““

I

Figure 6: Path extension.

2.5 New Linear-Time Algorithm: Al-

gorithm LT

Algorithm LT inserts suffixes in phases. Even though

it is based on Algorithm MM, which inserts sufiz,

first and Stifizm+ ~ last, it inserts sufizn+l first.

Assume that at the beginning of a phase we have

X(Z i + 1) with all its M-links and W-links. (That

is, we have already inserted .su@zi+l, sufi-xi+2,

Sufizn+l .) Here we require that every node in the

tree must have its M- and W- links correct as defined

originally. In particular, note that every node other

than the root must have an A4-link. (Algorithm MM

makes an exception for the parent of the last leaf in-

stalled.) During this phase we insert into x(> i + 1)

an interval of suflixes i – k + I,i – k + 2,..., i for a

suitable k, resulting in X(> i – k + 1) with all its

M-links and W-links. The insertions are done in the

order i – k + I,i – k + 2,i. First we describe how

the interval of suffixes is identified.

Interval Identification

on input symbol x; we compute the locus of Zixi+l.

This clearly can be done in 0(1) steps, (If this locus

does not exist, then Sufixi forms the interval. We in-

sert it and create the necessary links, completing the

current phase.) Then on input symbol xi-.1 we com-

pute the locus of ~i_1~~Z~+lZi+2, starting at the locus

of %ixi+l. In generaI, on input Zi_j we compute the

10CUS of xi_jxi_j+l . ..~i+j~i+j+l starting the locus of

Xi–j+l . ..xi+j. as shown in Figure 6.

If the locus of z~-j+l . . .Xi+j is u, then the locus of

Zi–jzi–j+l . . .Xi+j can be computed in 0(1) steps as

given in lemma 1. Let this locus be u’. Then from UI

we simply walk clown along the symbol Zi+j +1 in the

tree X(> i+ 1) to complete the step. Hence each length

2 path extension can be performed in O(1) steps.

Suppose the locus for xi–k . ..xi+k+l does not exist

in X(> i + 1). This can be due to the non-existence of

the WZ,_, -link or the non-existence of the extension on

symbol zi+k+l. Then suffixes i–k+l, i–k+2,i–l. i

form the interval of suffixes inserted in the current

phase. For the example of Figure 1, let the previ-

ous phase enci with X(> 7). C)n X6 = b, the 10-

cus k between U4 and U5 ~ since Z6Z7 = ba. On

25 = a, the locus is us, since x5xIjxj’Zs = abab. Since

L P

*A~5~Ij~T~8$$l = aababa iS nOt a path in x(> 7), SUf-

fixes 5 and 6 form the current interval of suffixes.

Before describing the details of the insertion pro-

cess, let us highlight the importance of what has been

achieved. Since xz_~+l ...x~+~ is a path in Z(Z i + 1),

each zlxl+l...zi~~) i—k+l<~<i, is apath in

~(~ i + 1). (A Sllfix of a path is a path.) Thus, we

have:

Lemma 2 Irre.spectaue of the order in which we insert

the suflze.s of the current int~rval, every one of the

sufizrs i—k+ 1, i— 1, i gets inserted at an zmcrtion

depth not 1?ss than k + 1.

In the next section when the algorithm is converted

into a quasi- real-t,irne algorithm, this propert y plays

a critical role. (Since no insertion depth is less than

k -I-1, any pattern match query for a pattern of length

at most k can be performed correctly while the current

insertions are in progress.)

In addition, since x~–~...~~+k+l is not a path in ~(~

i + 1), if we were to insert su&xi_k into Z(2 i + 1),

its insertion depth will not be more than 2k + 1. We

can easily establish the following lemma.

Lemma 3 If thf tnsertton depth of leafi_k zn X(Z

i + 1) is not more than 6, then the zn.seriion depth of

leaf,_h in 2(Z i – k + 1) is not more than 6 + k.

The following is an immediate consequence of this

lemma.

Corollary 4 The insertion depth of it’af~..k in Z(>

i – k + 1) ZS not more than 3k + 1.

Note that 2(> i – k + 1) is the suflix tree at the be-

ginning of the next phase. The above bound on the

insertion depth will be important in establishing the

0(71) speed bound for the overall algorithm.

Imerticm of Suffixes

Now we describe the details of the insertion of suffixes

i–k+ l,..., i–l, iinto Z(~i+ l).

We first insert sufiz~_~+l. The interval iden-

tification step has already located the locus of

~~_k+lx~–k+z...$~+k. i,From that locus, which is at

depth 2k, we walk clown the tree one symbol at a

time until we locate the insertion 10CUS for SUfiZi_k+l ,

where we install s-ufiz, _k+l resulting in Z(i–k+l...i–

k+l, ~i+ l). (So farsuffixesi -k+l, i+l, i+2?,. . .

n + 1 have been inserted.) Then we apply Algorithm

MM and insert sufiixes i – k + 2, . ..li – l,i in order.

Then we create a IV., -link from leafi+l to leaf, and

an M-link from leaf ~ to leaf ~+1. At this stage, even

though we have inserted sufixes i – k +1, i – k + 2, i

into 2(z i + 1), the resulting Z(Z i – k + 1)need not

have all its links. Since we followed Algorithm MM,

the M-link of z, = parent (leaf,) and the W-1inks that

point to m, might be absent. Note that M’ (xi) must

be a node in 2(> i – k + 1).Thus if the J4-link of m,

is absent, we climb up to the parent of ~,, traverse its

A4-link and create the W-links for nodes that need to

have W-links to parent(i) by following the rescan step

of Algorithm MM. Finally we create the M-link of m~.

We now argue that this algorithm runs in linear-

time. By making use of corollary 4 we can easily prove

the following lemma.

Lemma 5 Let the nmt phase. insert k’ suf%es. Then

the anseriion depth of any sufix in the next phase is

not more than 3k + k’. The number of steps needed to

perform the next phase as not more than cl(k+ k’), for

a tsuitably large constant c1.

Now let Algorithm LT insert the n + 1 suffixes in m

phases, and let it insert ki sutlixes in the iih phase.

Then, by lemma 5, the total number of steps per-

formed by the algorithm is not more than c1 (O + kl) +

cl(kl + kz) + . . . + cl(km-l + km) which is not more

than 2CI (7~ + 1). Hence Algorithm LT runs in 0(7L)

steps.

The following lemma specifies the progress that can

be achieved during an intermediate instant of the in-

sertion stage.

Lemma 6 There exists a constant C2 such that tf we.

perform Czm steps, for any @ ~ 1, on the current task

starting with sufixi_k+l and at locus depth 2k, them

the [OCUS depth of insertion of any unfinished sufix in

the current interval is at least maz{k, m}.

3 Quasi-Real-time Algorithm:

Algorithm Q

Now we show that Algorithm LT can be adapted to

run in quasi-real-time so that the suffix tree construct-

ion can proceed uninterrupted as more input is re-

ceived. Throughout we assume that the input symbols

get stored in an array so that any previous input sym-

bol can be accessed in a single step. We also assume

that the input is received right-to-left. In addition,

whenever a leaf gets created a pointer from the corre-

sponding position in the array to the leaf will also be

created. This will permit accessing [eaji for any given

i in a single step.

In Algorithm LT we assumed that when the current

phase started, Z(Z i + 1) was completely computed.

In Algorithm Q, x(> i + 1) will be constructed only

partially, and there will be unfinished insertion tasks,

running in the background, arranged in a stack. Each

unfinished task corresponds to the unfinished insertion

stage of one of the previous phases of Algorithm LT.

314

Each task on the stack carries enough information so

that, on a subsequent update step we can resume the

unfinished insertions of the task from where we left,

off. This information is the following: the interval of

sutiixes, the index of the current su~x, if the cur-rent,

suffix is not the first suffix of the interval then a pointer

to the last leaf inserted, and a pointer to the locus

of the current suflix. The last pointer is specified by

the head of its edge and the depth of the locus. This

depth of the locus of the current, sufiix is denoted as the

curr~nt dqth of thp task. Even though from the above

inforrnatiou we can compute in ()(1) steps whether

the task is currently performing rescan or scan, for

simplicity, we assume that a separate field carries this

information.

When we initiate an update of a task on the stack,

if the stack was in rescan step then we make a signif-

icant change to the rescan step. We do not simply

resume where we left off. Assume that the task was in

rescan, the current sufiix is .st~fizt+l, and the locus of

this suffix was node v, as shown in Figure 8 (ignoring

the rectangular nodes). When we initiate the update,

let v’ = IVl(gparent(ieafi)). If dcpth(v’)< depth(v),

then we resume the rescan normally; otherwise we

make v = v’ and resume the rescan from the new

v. This important modification takes into considera-

tion the possibility that from the instant the task was

last updated, the gpurent(leajt) might have changed.

Many additional nodes could have been inserted dur-

ing this time interval. Such inserted nodes are shown

as- rectangles. (This modification permits skipping

over such inserted nodes. All the links will also he

set properly because of the way the W-1inks are im-

plemented.)

When updates are performed on a task, we make

sure that no A4- or W-link is left “ dangling”. That, is,

if we were in the process of changing a link, then we

finish the change as part of the update step.

The following algorithm makes use of a suitably

large constant c.

Outline of Algorithm Q:

Initially the stack is empty.

At any stage, let the top two tasks on the stack be D

and D’, with D at the top. (If D’ is absent, then ignore

the operations on it.) Let the number of suffixes in the

interval of tasks D and D{ be d and dj, respectively.

on each new input symbol received, perform path ex-

tension by length 2 in 0(1) steps. In addition, on each

input symbol, perform c update steps on each of D and

D’ until dcpth(D’) equals Zd’ + d or until D’ finishes

or until D finishes.

If one of the first two conditions holds, then perform c

locus
---- _

Figure 7: Locus at update time.

update steps on Dk only. If the third condition holds,

then pop D and terminate the updates.

If the path cannot be extended by length 2, the task

of inserting the current interval of suffixes is pushed

onto the stack as a new task.

In the above algorithm when we update D’ special

care needs to be exercised. If the current loci of D

and D’ are on the same edge and if D’ splits that edge,

then the corresponding W-1ink of D has to be properly

adjusted. We claim that a suitably large constant c can

he chosen for the algorithm such that the invariants

below can be maintained.

At any stage, let the stack contain the tasks Dk,

Dk_l ,..., Do, with ~k at the top, and]Iet the number

of suffixes in the interval of each task Di be di. Assume

that we have already performed c updates St times on

task Di. Let the number of input symbols received

during the current phase be dk+l. (Tlhis can be less

than the number of input symbols received from the

instant Dk was pushed on the stack.)

Invariant 1: If we complete Do, D1 ,..., Dk in order on

the current sufix tree and then insert the suflixes of

the current phase, the resulting suffix tree is the suffix

tree for the input received so far.

Invariant l?: For each i = O, 1, k, max{a’,, si} >

3di+1 + di+2j where dk+z = O.

—

Invarzant 3: For each i = O, 1, k– 1, ?l/,ax{di,,sz} >

current depth of Di+ 1.

As a consequence of the second invariant and lem-

mas 5 and 6, we can infer that the maximum depth of

315

insertion of any unfinished sufiix in Di~2 is less than

the minimum depth of insertion of any unfinished suf-

fix in Di, and the maxirnurn depth of insertion of any

suffix in the current phase is less than the minimum

depth of insertion of any unfinished sufiix in Dk – 1.

The third invariant implies that the current, depth of

D~+l is less than the minumum depth of insertion of

any unfinished suffix in D%.

We prove that the above two properties remain in-

variant in the final version. We now present an infor-

mal justification of these invariants.

If the other invariants hold, the first invariant might

fail because W-links can be implicit. Suppose current

loci of several tasks are on the same edge, and suppose

that one of these tasks splits that edge into two edges.

We can show, based on invariants 2 and 3, that the

split must happen at the shallowest locus. In such a

case our indirect linking scheme maintains all the links

properly.

Between the instants Di and Di+l got pushed on

the stack at least di+l c updates must have been per-

formed on Di. During the time when Di+2 was the

current phase an additional di+2 c updates must have

been performed on t)~. Hence invariant 2 holds. An

analogous argument establishes invariant 3.

4 Pattern Matching Problems

We make use of the above quasi-real-time algorithm to

develop real-time algorithms for some pattern match-

ing problems.

Prolj~em 1: Let the input be T#P where T = t1t2...tn

is the text and P = p1p2...pm is the pattern. We want

to test whether PR is a substring of T.

We apply the quasi-real-time algorithm and cons-

truct the suffix tree for X = TR$. Since our quasi-

real-time algorithm processes X right-to-left, the input

requested is in the proper order. After receiving #, we

walk down the path p1p2...p~ starting at the root. on

each input symbol pi, we update the tasks on the stack

assuming that the path extension step has succeeded.

(In reality, we don’t perform the path extension test at

all.) We can infer from invariants 2 and 3 of Algorithm

Q that at every instant the minimum depth of inser-

tion of any suffix of any task on the stack is greater

than the length of the pattern received. (.;onsequentlyj

the cleaning up of the sufiix tree can be maintained

ahead of the pattern. The path for F’ exists in the

suffix tree if and only if P is a substring of TR, t. c., if

and only if F’R is a substring of T.

Problem 2: Let the input be T#F’, as before. We

want to test whether P is a sulxstring of T.

As before we apply the quasi-real-time algorithm for

X = TR$. After receiving # we process P by applying

lemma 1. After processing plp2...pi we will be at the

locus of pz...pl. on input symbol p~+l we apply lemma

1 and reach the locus of pi+lpl . ..pl in 0(1) steps. As

before, the tasks on the stack get updated while each

input symbol is processed. The path pmpm–l . ..pl ex-

ists if and only if PR is a substring of TR, Z.e., if and

only if F’ is a substring of T.

Acknowledgements: 1 acknowledge my deep gratitude

to Professor Art Delcher for enthusiastically listening

through my ideas and for suggesting several improve-

ments to the presentation.

References

[(.;L90]

[CS85]

[McC:76]

[Sei77]

[Wei73]

W. L. (.~hang and E. L. Lawler. Approxi-

mate string matching in sublinear expected

time. In Proc. of 31st Annual IEEE Symp.

on Foundations of Computer Science, pages

116-124, 1990.

M. T. (jhen and J. Seiferas. Efficient and ele.

gant subword tree construction. In A. Apos-

tolic and Z. Galil, editors, Conibinato-

rial Algorithms on Words, pages 97-107.

Springer-Verlag, 1985.

E. M. McCheight. A spat.e-ec.onomical suf-

fix tree construction algorithm. 3. of ACM,

pages 262-272, 1976.

J. Seiferas. Subword trees, February 1977.

class Notes.

P. Weiner. Linear pattern matching algo-

rithms. In Proc. of l~th Annual IEEE Symp.

on Switching H Automata Theory, pages l–

11, 1973.

316

