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Abstract

We show that any algebraic computation tree or any

fixed-degree algebraic tree for solving the member-

ship question of a compact set S ~ R“ must have

height greater than Cl(log(@i(S))) – cn for each i,

where pi(S) is the i-th Betti number. This general-

izes a well-known result by Ben-Or [Be83] who proved

this lower bound for the case i = O, and a recent re-

sult by Bjorner and Lovtisz [BL92] who proved this

lower bound for all i for linear decision trees.

1 Introduction

Problems in geometry and combinatorial optimiza-

tion can often be phrased as membership problems for

sets S ~ Rn: given an input E = (zl,zz,...,z~ )e

R“, decide whether i? e S. Two standard complexity

models for the membership problems are the fixed-

degree algebraic tree model and the algebraic com-

putation tree model (see e.g. [SY82] [Be83]). Let

cd(s) and C(S) denote the complexities, i.e., the

minimum heights of any tree for solving the mem-

bership problem for S, in the degree-d algebraic tree
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and the algebraic computation tree models. There is

a wealth of literature on the algebraic decision tree

complexity for the membership problems (see e.g,,

[DL75][SY82][Be83] ~LY92][BL92]~92] [GKV93] and

references therein).

A general approach to derive lower bounds in this

area is to establish links between the computational

complexity for S and well-known topological (or geo-

metrical) properties of S. Dobkin and Lipton [DL75]

showed that PO(S), the number of path-connected

components of S, is an important topological prop-

erty from this viewpoint; they proved that Cl(S) ~

Cl(log PO (S)), i.e., any algebraic tree using linear tests

requires at least Cl(log /30(S)) tests to solve the mem-

bership problem for S. Steele and Yao [SY82] ex-

tended this bound to general fixed-degree algebraic

trees, showing Cd(S) + n log cd(s) ~ ~(log PO(S)).

Ben-Or [Be83] improved these bounds, showing that

both cd(s) (for fixed d) and C(S) are at least

fl(log PO(S)). An intriguing question asked in [Be83]

was: would the higher Betti numbers ~i (S) (i > O),

which describe subtler topological properties of S,

provide lower bounds to Cd(S) and C(S)?

Bjorner, Lovzisz, and Yao [BLY92] made a step to-

wards answering this question, showing that Cl(S) ~

C!(log [x(S) [), where x(S) = ~izO(–l)i~i(S) is a

special alternating sum of pi(S) known as the Eu-

ler characteristic. They used this bound to show

that any linear decision trees must use at least

fl(n log(n/k)) tests to solve the “k-equal problem” –

the problem of deciding whether there are k identical

elements out of n input numbers. This was extended
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in Yao ~a92] to general algebraic trees, in which it

was shown that cd(s), C’(S) ~ Cl(log Ix(S)!) – cn for

all fixed d.

Recently, Bjorner and Lovtisz [BL92] made another

step towards linking & with computational complex-

ity, showing that for linear decision trees fl(log /3~(S))

is a lower bound for all i ~ O; more precisely, they

showed Cl(S) ~ log3(~i20 pi(s)).

In this paper, we extend [BL92] to general alge-

braic trees, thus giving a fairly complete answer to

the question raised in [Be83] concerning the link be

tween algebraic decision tree complexity and higher

Betti numbers. We proved that, for any compact set

S ~ R“, Cd(S), C(S) > ~(log(~i>o @i(S))) – cn

(for all fixed d). We also apply t~is bound to a

class of problems, demonstrating in particular that

sometimes tight lower bounds for problems can be

obtained in an unexpectedly easy way.

We remark that Hotz and Sellen [HS93] indepen-

dently proved a similar bound for the special case

i= 1, showing C(S) ~ f2(log(~l (S))) – cn.

2 An Overview of the Proofs

In order to prove the above-mentioned results, we

need to formulate them in a more general setting.

We will introduce the needed concepts in the Section

3, and state the main theorems in Section 4. The

proofs are given in Sections 5-8.

It is possible to explain in a few paragraphs the

critical new insights we employ for the proofs. This

section is devoted to an exposition of these insights,

without getting into technical details. For concrete-

ness, we consider only fixed-degree algebraic trees.

A general methodology for proving lower bounds

is to seek a weight measure v which asso-

ciates with each set A ~ Rn a real num-

ber v(A) z O. Two desirable properties are:

(a) The measure is subadditive, i.e. v(A U

B) < v(A) + v(B) for disjoint A, B; and

(b) There is an upper bound exp(O(m+n)) on v(A) if

the set A can be built with m polynomial inequalities

or equalities of degree d (fixed d).

Let S ~ R“, and T be a degree-d algebraic tree

for the membership question of S. Let Vl ~ R“ de-

note the set of inputs reaching a leaf .4. Then by

definition S must be the disjoint union of Vt over all

leaves .4 with a “yes” answer. It follows from (a) and

(b) that v(S) <(# of yes leaves). exp(O(m + n)) S

3m exp(O(m + n)), where m is the height of T. This

leads to the desired lower bound m ~ Cl(log(v(S))) –

cn. It works for the case when v is @o, and when v is

the Euler characteristic X.

For Betti numbers pi with i > 0, require-

ment (a) becomes an essential obstacle. Two dis-

joint sets with small Betti numbers can acquire a

substantial jump in Betti numbers when they are

unioned together. For example, consider the set

X defined as {(O, V), (l, y), (z, i) [0 < u < r%~ E

{0,1,2,... , m}, O < z < 1 } where m is large. One

can write X as the disjoint union of A and B, where

A={(O, y)lO<y~rn} and13= S-A. Itis

clear that /30(A) = /?o(B) = 1, @i(A) = ~i(B) = O

for all i >0. However, the Betti numbers of X are

Po(X) = l, BI(X) = m,@i(X) = O for i >1, where

the large /31 value comes from the m independent

loops in X,

To overcome this obstacle, we observe that the m

loops in X actually have not disappeared without

a trace in B. In fact, if we take the m points in

the closure of B but not in B itself (i.e. (O, i) for

iE{o, 1,2,”””,m}), and glue them together as one

point, we get back in B the m missing loops. This

suggests that we use for v(S) not pi (S) but the rel-

ative Betti numbers pi (~, $ – S), which for our pur-

pose are essentially the Betti numbers of ~ with all

the points in S – S glued into one point. We can show

that this v is indeed subadditive for the type of sets

we are interested in,

To satisfy requirement (b), we use the standard

bounds on the Betti numbers of algebraic sets ss in

previous investigations. Some additional arguments

are needed in the present case, due to the fact that we
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need to bound not the Betti numbers, but the relative

Betti numbers fli (VZ, ~1 – VZ). The sets V1, VL – V1 do

not have a natural simple representation in degree-d

polynomial constraints, and have to be transformed

by topological methods before the standard bounds

can be applied.

Remark 1 In [BL92] ~i(Y) is used as the measure

v(Y) (where Y are polyhedra). The obstacle men-

tioned above does not arise because the proof man-

ages to discuss only sets Y that are open relative

to the affine subspaces spanned by Y. (Thus, for

the set X discussed earlier, the proof would involve

pi (~z – W instead of hi(x).) Their method depends

critically on the fact that only linear objects are in-

volved for linear decision trees, and seems difficult to

generalize to general algebraic decision trees.

3 Background

An algebraic set in Rn is the set of points 5 c Rn sat-

isfying a finite set of polynomial equations. The fol-

lowing bound due to Oleinik-Petrovsky-Milnor-Thom

is well known:

Lemma 1 ([OP49] [0152] [Mi64] [Th65]) Let S =

{Flfi(Z) = O, 1 ~ i ~ r} ~ R“. Then all the Betti

numbers of S are finite, and ~i>o /3i (S) ~ d(2d –

1)’- 1 where d is the maximum degree of any fi.

Let Rn be the Euclidean space Rn compactified by

adjoining to it an element w @Rn (point at infinity).

It is convenient to think of Rn ss an n-dimensional

sphere in Rn+l. Using the notations in ~92], let

J.+l ~ R“+l denote the n-dimensional sphere cen-

tered at (0,0,. . . ,0, 2/3) with radius 1/3. Let p~ :

R“ ~ R“+l be the inverse stereographic map, given

by pm(u) = (0,0,... ,0,1), and p~(zl,zz,...,z~) =

(Z,(l – yn+l), zz(l – yn+,), . . .,zn(l – yn+,), yn+l),

where yn+l is the unique solution to the system of

constraints O < yn+l <1 and ~l<i<n z~(l–yn+l)z+

(Yn+I ~ z/s)2 = 1/9. Then p. i; ~homeomorphism

from R“ onto Jn+l. Geometrically, if we identify

5=( Z1,22, . . . ,Zn) with the point (ZI, Z2, o~.,zn, O)

and draw a line in Rn~l between it and the north

pole of J.+l, then p.(5) is the unique point where

the line intersects Jn+l.

A set S ~ Rn is called semi-algebraic if its image

~n (S) is a semi-algebraic set in Rn+l. Clearly, if S

does not contain u, this usage agrees with the stan-

dard meaning of being a semi-algebraic set in Rn. In

this paper, unless otherwise specified, the compacti-

fied space is assumed to be the underlying space.

Lemma 2 (see ~92]) If S ~ Rn – {w} is defined by

r degree-d polynomial equalities and s degree-d poly-

nomial strict inequalities, then p(S) ~ Rn + 1 can bs

described by r+ 1 degree-d’ polynomial equalites ancl

s + 2 degree-d polynomial strict inequalities, where

d’ = max{d, 2}.

For any set S ~ Rn, let 6S = S – S, where ~ is the

closure of S (with respect to the topology of Rn ). Let

~i(S) denote the i-th Betti number of S, and @~(S)

denote the rank of the i-th relative homology group

Hi(s, 6S). Note that ~~(S) = @i(S) if S is closed (iIIl

the topology of &).

A set in Rn is said to be semi-closed if it can be ex-

pressed as the difference of two closed sets, or, equiv-

alently, as the intersection of an open set and a closedl

set. Clearly, if S and W are semi-closed, then S n W

is semi-closed. The next simple fact will be useful.

Lemma 3 If S is a semi-closed set in Rn, then 6S is

closed,

Proof Omitted in this extended abstract. •l

We use the term algebraic decision trees as an ab-

breviation for both algebraic computation trees and

fixed-degree algebraic trees. Let T be any algebraic

decision tree for solving some membership problem in

Rn. For each leaf 1, let V1 ~ Rn – {w} denote the set

of input points Z c R“ reaching L Let LT,Ye~ be the

set of all YES leaves, and LT,no be the set of all NO

leaves.

There is a large class of membership problems for

which our method gives rise to lower bounds in an

appealing combinatorial form. An afline subspace ar-

rangement A = {Kl, K2, . . . Kt} in Rn is a finite col-

lection of nonempty atline subspaces Ki of R“. We as-
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sume that Ki ~ Kj for d i # j. Let VA = U1<i<tKi..-

There is an extensive literature on the topological

structures of affine subspace arrangements and their

associated VA (see Bjorner [Bj92] for a comprehen-

sive survey). Each affine subspace arrangement A

gives rise to a natural membership question, that for

the set VA.

4 The Results

Let S ~ R“ be a semi-closed semi-algebraic set not

containing w.

Theorem 1 Any algebraic decision tree T for

solving the membership question of S must satisfy

&Lwes 9;(W) Z %(S) for all i Z 0.

Remark 2 Any algebraic decision tree for S can be

turned into one for Rn – S, by exchanging the yes-

no answers at the leaves. Thus, Theorem 1 implies

‘hat Z&LT,~O tP!(U) 2 /3j(Rn – S) for all i z O.

This proves a version of a conjecture made by Bjorner

and Lov&z ([BL92, Conjecture 2.5]). (The original

conjecture haa pi instead of ~~.)

Remark 3 For the case of linear decision trees (i.e.,

d = 1), each V1 is a convex polyhedron of certain

dimension (call it dim(u)). Thus, for i 21, /3~(u) =

6i,dim(Vl). It follows that, for i ~ 1, the number of

leaves with i-dimensional Vt is greater than or equal

to /3j(S). (This is similar to the main result proved

in [BL92].)

Theorem 2 There exist positive constants

), q, Ad, qd such that

C(VA) ~ ~ logz(~ @:(S)) – qn

i~O

cd(vA) z hlogz(~~:(~)) – ~~n>

i~o

for all d~ 1.

Remark 4 If S is a compact set as a subset of R“,

then 9;(S) = P;(S, 0) = Pi(S) for all i. Thus, Theo-

rem 2 implies the result about the membership ques-

tion for compact sets S as stated in the abstract.

The next result applies Theorem 2 to yield

lower bounds for a class of problems. Let A =

{K~, K2,..., Kt } be any affine subspace arrangement

in Rn. A subcollection ~ ~ A is called a ~ree sub-

set of d if YF = nK~3K is nonempty and that

(a) codim(Y~) = ~K~~ codim(K), and (b) for all

Kj @ F, YF ~ Kj. Let NA be the number of free

subsets of A.

Theorem 3 Let A be any affine subspace

ment in Rn. Then

C’(VA) z A log2 NA – qra

Cd(VA) ~ & 10g2 NA - qdn,

for all d ~ 1.

Remark 5 As discussed in [BLY92], the

arrange

“k-equal

problem” can be phrased as the membership ques-

tion for VA, where A = {Ki1,i2,...,ik 11 ~ il < iz <

. . . < i~ S n } is the affine subspace arrangement with

Kil,ia,...,ih being the subspace defined by xi, = zi, =

. . . = Xik . It was observed in [BL92] that Betti num-

ber bounds lead to somewhat stronger bounds than

the Euler characteristic bounds in [BLY92], due to

our knowledge about & for this VA (see Bjorner and

Welker [BW92]). We now demonstrate that the Betti

numbers bounds (in the form of Theorem 3) are also

simpler to use in this case. It is easy to see that there

are at least

(mh)/@/k)’%‘n/k)n/(n/k)’
& (n/~)w-w

independent subsets of d. Theorem 3 immediately

gives fl(log NA) – cn = Q(n log(n/k)) – cn as a lower

bound to the complexity of solving the “k-equal prob-

lem.”

Remark 6 As another example, consider the fol-

lowing k-matching-equal pmblerw given an input E =

(~i,jll ~i,~<n) CR’”} decide whether there exists

a k-matching {(il, jl), (i2, jz), . . . . (i~, j~)} such that

Zil,jl = zi2,j2 = ., . = Xik,jk. Let &k,n denote the

natural affine subspace arrangement corresponding to

it.
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For the case k = n, it is easy to see that NM.,=

is at least as large as I/N! times the number of

Latin squares of dimension n. It is known from Hall

[Ha48] (for more information see [BR91]) that the

number of such Latin squares is ~ n!(n– 1)!. . . 2!1! =

ee(nz 1%’). It follows from Theorem 3 and an obvi-

ous upper bound using sorting that, in this case, the

algebraic decsion tree complexity for the k-matching-

equal problem is @(n2 log n). This can be extended

to prove that the algebraic decsion tree complexity

for the k-matching-equal problem is @(nz log n) for

al12~k~n.

5 Proof of Theorem 1

We first state a simple fact from algebraic topology

(see e.g. [Ro, Corollary 8.43]).

Lemma 4 Let K c R“ be a simplicial complex, and

V, W, V n W be sub complexes of K. Then /3i(W, V n

W) = @i(VUW, V) for all i ~ O.

The next lemma gives the crucial subadditive prop-

erty of Betti numbers needed for the proof of the

theorem. Let X ~ R“ be a semi-algebraic set not

containing w (the point at infinity), and let ~ be a

polynomial in n variables. Let A be the set of points

3 in X satisfying ~(Z) s O, and B = X – A.

Lemma 5 If X is semi-closed, then ,B/(X) S p~(A) +

~~(l?) for all i ~ O.

Proof A basic fact from algebraic topology (see

[Ro, Theorem 5.9]) states that, if Xl ~ Xz ~ X3,

then with the natural interpretation

. . . + Hi(X2, X3) + Hi(Xlj X3) + ~i(xl ,x2) + o“ “

is part of an exact sequence. This implies

@i(xl, ‘3) < Pi(Xl, X2) + /3i(X2, X3).

Let Xl, XZ, X3 be respectively the sets X, AU 6X,

and 8X. We obtain

We claim that

To prove (3), let W = A, V = 6X. (Note that 8X is a

closed set by Lemma 3.) Then VrIW = An(X–X) =:

~rl(~-X) = A–X = Z–A = fiA. Since V, W, VrlW

are all semi-algebraic sets in Rn (regarded as the

sphere Sn s I?n+l ), one can find a simultaneous sim-

plicial triangulation for V, W, V n W, V U W (see e.g.

[Hi75]). As these sets are closed, they are simplicial

sub complexes of the simplicial complex K = V U W’.

Using Lemma 1, we obtain immediately (3). Equa-

tion (2) can be similarly proved.

It follows from (l)-(3) that &(x, 6X) S

~i(~, c$A) + ~i(~, c$B). ❑

We now prove Theorem 1. For each node v G T, let

L“ be the set of leaves 1 c LT,Yes that are descendant~~

of v. Let Sv = UZeLv Vt. Note that Sv is semi-closed,

since it can be written in the form S n F n G, where

FJGc R” – {w} are semi-closed; F is defined by a

finite set of polynomial equations and G by a finite

set of polynomial (strict) inequalities.

We claim that, for each v, ~tc~, n(u) Z p~(sv )

Note that v = root gives the theorem. We prove the

claim by induction on the size ILV 1. The claim is obvi-

ously true for ILV I = O. If ILV I = 1, let 1 be the unique

leaf contained in LV; clearly, VI = S’v and the claim is

true. Let IL. I >1. Denote by VI, V2, V3 the children of

v corresponding to the branches ~(i) <0, ~(;) = 0,

and j(;) > 0. (For fixed-degree algebraic trees, j’

is the polynomial test function associated with v; for

algebraic computation trees, f = pq, where p/q is the

rational function corresponding to the value acquired

by the program variable Zv at v.) By the induction

hypothesis, z~e~v, b~(v~) > R(%) for 1 S ~ S 3

To complete the inductive step, it suffices to prove

that

x @:(s”,) 2 /3;(s”). (4)

l<j53

By definition, Su, = S. n {Elf(;) < 0}, S., =

S“ n {iIf(E) = O}, and S“, = S“ fl {~lf(~) > 0}.

619



Apply Lemma 5 with A = Sv, U S., and B = SV3, we

have

%(s”) s B:(sv, u s“,) + fl(s”,).

Similarly, we can obtain

/%(s”l LJs),) s P;(s”,) + m%).

The above two inequalities imply (4) immediately.

This completes the inductive step, and the proof of

Theorem 1.

6 Two Lemmas

We derive in this section two preliminary lemmas

needed for proving Theorem 2. Let r,s ~ O be in-

tegers, and ~i (z7, gj (5) be any degree-d polynomials

in n variables, for 1 < i ~ r, 1 ~ j ~ s. We prove

upper bounds on the Betti numbers of semi-algebraic

sets defined by constraints involving fi, gj.

Lemma 6 Let W = {Zl,fi(F) = O,gj(~ ~ 0,1 ~

i~r,l~j~s}~~—{u}. If Wisbounded asa

subset of R“, then ~izO @i(W) ~ d(2d - l)n+$-l.

Proof One first uses topological arguments to re-

late the Betti numbers of W to some related alge-

braic sets, and then applies the standard upper bound

(Lemma 1 in Section 3) on the Betti numbers of al-

gebraic sets. We give the details below.

Let V ~ R“+’ be the set of all (E, ~ =

(x,,... ,z~,%l,.. ., z,) satisfying f~(;) = O, gj(E) +

z~=Oforl~i~r,l~ jSs. Let V’ =

vn{(~,~l%j Z 0,1 <j S s}. Note that V,V’

are bounded as subsets of Rn~8, since W is bounded

in Rn by assumption.

Clearly, the mapping i? ~ (2, Z) with ~j =

_ iS a homeomorphism from W to V’. This

implies that for all i ~ O,

fl~(W) = @i(V’). (5)

Note also that we have by Lemma 1 that

We will now prove

(7)

Clearly, Lemma 6 follows from (5) - (7). Let
$, : V’ ~ V be the inclusion map, and @ :

V ~ V’ be the map @(cl, -.., zn, zl, z,), z,) =

(z~,. -., zn,lzll,... , I.z, l). Then the induced homo-

morphisms ~~ : H*(v’) + H*(v), $. : H*(V) +

If. (V’) have as its composition & o+: the identity

map from H* (V’) onto itself. This implies

rank(I1.(V)) z rank (@~(H*(V’))) = rank(H*(V’)),

and hence (7). Cl

Lemma 7 Let A = {Z[fi(d) = O,gj(S) < 0,1 ~

i ~ r,l ~ j ~ s} ~ .&n – {w}. Then ~i>o/3~(A) ~

(2d’ + 1)”+2s+5, where d’= max{d, 2}. -

Proof We assume that A is a bounded set when

considered ss a subset of Rn, and prove the following

stronger statement:

If A is unbounded as a subset of Rn, we can apply

the above bound to its inverse stereographic image

P.(A) G R“+l . By Lemma 2, this amounts to re-

placing nbyn+l, dbyd’, rbyr+l, andsbys+2,

resulting in the bound stated in Lemma 7.

We first give an overview of the proof. By defini-

tion, flj(A) = pi (~, 6A). From basic algebraic topol-

ogy, one can conclude that /3~(A) ~ /?i (~)+ @i-1 (6A).

Although ~, 6A are semi-algebraic sets, the known

upper bounds on the Betti numbers of semi-algebraic

sets (such ss Lemma 6) cannot be applied directly,

since ~, 6A do not have a natural simple representa-

tion in terms of the polynomials fi, gj. TO overcome

this problem, we construct two sets A’, D with simple

representations using fi, gj (see below) and such that

~i(~, c$A) = Pi(A’, D). Lemma 6 can then be applied

to A’ and D.

To carry out the above plan, let A’ ~ R“ – {w}

be the set of all Z such that fi(~) = O,gj(;) ~ O
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foralll ~i~r,l~j~s. Let D=A’n

{~1Hl<j<.$ 9J.(2) = O}. Note that A’, D are bounded

as sets in Rn, since A is bounded as a set in R“; A’, D

are also closed (in Rn as well as in R“ ).

Claim @i(A, 6A) = ~i(A’, D).

To prove the Claim, let V = D, W = ~. It

is straightforward to verify that V fl W = 6A and

V U W = A’. Now, observe that V, W, V n W are

compact semi-algebraic sets in Rn, and thus can be

simultaneously triangulated as simplicial complexes

(see [Hi75]). The Claim then follows from Lemma 4.

It follows from the Claim that

~j(A) = @i(A’, D). (8)

Now, there is an exact sequence

. . . -+ LTi(D) ~ Hi(A’) ~ Hi(A’j D) ~ Hi.l(D) ~ .

by bssic homology theory (e.g. [Ro88, Theorem 5.8]).

Thus, with P-1 (D) understood to be O, we have for

all i ~ O,

&(A’, D) S @i(A’) + &-l(D). (9)

By Lemma 6,

~@i(A’) s d(~d- ~)n+,-1 (lo)

i~O

A similar bound on /3i- 1(D) does not immediately

follow from Lemma 6, since one of the defining con-

straints ~l<j <. 9j (E) = O is of degree sd. To obtain

a good bou~d~ consider the set D1 ~ k“+’ – {w}

defined as the set of all (~l,...,~n,~l,~s),~s) satis-

fying .fi(:) = o,gj(~) <0,1< ~ S r,l < j < S, and

q = 91(~),~2 = 92(~)’zl, “ “ “,.ZS = 9S(Z)Z,.-1,ZS = o.

It is easy to see that D1 is homomorphic to D. Now,

one can apply Lemma 6 to D1 which leads to

~Pi(D) = ~Pi(D,)

i~O i~O

< (d+ 1)(2$+ 1)”+2’-1. (11)

It follows from (8) - (11) that ~i20 8;(A) 5 (2d +

l)n+2s. n

7 Proof of Theorem 2

Without loss of generality, we can assume that S #

0, Rn. Let d Z 1, and T be any degree-d algebraic

tree for solving the membership question for S. Let

m be the height of T. Clearly, m ~ 1 as S # 0, R“.

For each leaf 4 c LT,yes, Vt is the set of all E satisfying

m (or fewer) constraints ~i (~) = O,gj(F) < 0, where

fi, gj are the degree-d polynomials employed as tests

at nodes along the path from the root to L By Lemma

7, we have

~~i(ti) ~ (2d’+ I)~+z~+5,
i~O

where d’ = max{d, 2}. Theorem 1 then implies

~i20~~(S) ~ ~~e~~,ye, ~i~o~~(~) S lLT,Y@l “

(2d’ + 1)n+Z~+5 < sm .(2d’+ l)”+2m+5. Thus, m, the

height of T, is at ~ast as large ~ & log(~i20 B~(S))–

q@ for some positive constants &, ~& This proves

Theorem 2 for the case of tied-degree algebraic trees.

We now turn to the case of algebraic computation

trees. The proof follows the same outline, but addi-

tional arguments are needed to handle the program

variables created at arithmetic nodes.

As discussed in Lubiw [Lu90], one can eliminate all

the division arithmetic operations in any algebraic

computation tree with at most a constant factor in-

crease in the height of the tree. Essentially, each pro-

gram variable z can be simulated by a pair of program

variables (p, q) such that z = p/q and that only ad-

ditions, subtractions and multiplications are used for

assignment instructions. From now on, we assume

that division operations are not used.

Let T be any algebraic computation tree which

solves the membership problem for

the height of T. We will show

S. Let m denote

–qn. (12)

for some positive constants }, q.

For each 4 c LT,Ye$, let VZ be the set of all inputs

FE R“ – {w} reaching 4. As mentioned in [Be], w are
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semi-algebraic sets. In fact, one can transform T into

a (possibly) high-degree algebraic tree, by eliminating

all arithmetic nodes and replacing the instruction z“ :

Oat each branching node v with a suitable polynomial

test p.(Z) :0, while keeping the original leaves 1 with

the same VI. Thus, by Theorem 1, we have

for all i ~ O.

Let t E LT)YeS. We will prove that

(13)

As in the case of fixed-degree trees, (12) follows from

(13) and (14) by a standard argument.

Let VI = root, , V2, . . . . V*+ I = 1 be the sequence of

nodes along the path & from the root to L Clearly,

t ~ m. Let {vi I i E 1}, be the set of arithmetic nodes

along ~,andlet l’={ 1,2, . . ..tl–l. Let~i, i~l}

be the programming variables created at nodes vi.

We agree that, for j c {1,..., n}, the symbol

z_j stands for ~j; also, for ~ c {n + 1, . . . . n’} for

some n’, each z_j stands for some constant used

in the computation tree. With this understanding,

each arithmetic node vi performs an assignment of

the form Zi - .zj o %k where o e {+,—,*} and

j,k E {–n’, –n’+l, .,o, i–l}–{O}– l’; each

branching node vi performs zj : 0 for some j E

{–n, -n+l,...,l }l{o}ol -l’.

Note that Vf may not be bounded sets in R“; the

program variables Zi take on values that are poly-

nomials in the input variables Z1, ..., z~, and may

become unbounded in this case. We want to rep-

resent V1 (in fact pn (Vt)) in the coordinates ~ =

(Y1, Y2, ””” , Yn+l) aa a bounded set in R“+l, and also

to replace program variables zi by a pair of program

variables (~i, ~i) whose values are bounded.

We first make a simple observation, which follows

from the facts that xj = yj/(1 –Yn+l) and that z~ are

assigned values which are polynomials in the z ‘s. Let

us make this explicit. Define e-i = 1, a_i(y3 = yi for

l~i~n, ande -j ‘Oj Q-j(?7’)S Z-j fern< j~n’.

For i E I with zi ~ Zj o Zk being the assignment, we

define ai, ei inductively as below. If o = *, then ei =

ej +e~ and ai(~ = aj(y~ak(y~. If o c {+,–}, let ei =

max{ej, ek}; ai(~ = Uj(@o ((1 – y~+l)eJ’-e’a~(~) if

ej ~ ek, and ai(~ = ((1 – yn+l)ek-eiaj(y~) OUk(~ if

ej < ek. It is easy to see that one has:

Fact 1 For each i G I, the value assigned to ~i is

equal to ai(~(l – yn+l)-e’.

For each j 6 I’, let z~(j) relj O be the branching

label going out to the next node vj+l. Fact 1 implies:

Fact 2 pn(Vt) is exactly the set of all ~ E Rn+l that

satisfy the constraints ~l<i<n y? + (Yn+I - 2/3)2 –

1/9 = O, 1 – yn+l >0, yn~l-> O, and aP(j)(~ relj O

for all j E I’.

We now relate q. (Vl) to some algebraic set

whose Betti numbers can be estimated from Lemma

7. We associate with each vi, 1 ~ i ~ t,

one or more polynomial constraints in variables

Y1, Y2> ”””! Yn+l, vi, Wi, ~ c ~. The idea is to separate

out the singular part of zi, by having wi and ~i taking

on the values (1 – ym+l )e~ and ai (~, respectively.

To simplify notations, for each 1 ~ i < n, the sym-

bol u-i stands for yi, w-i stands for 1 – y.+l. For

n + 1 ~ i s n’, let u_i stands for ~_i (which is a

constant), and w-i stands for the constant 1.

CASE (A): i c I’. We associate with vi the inequality

.fi(a, ~, @ rdi O, where fi is the linear polynomial

‘W).

CASE (B): i c 1 and the assignment is ~i + zj *

%k. We associate with Vi two polynomial constraints

gi(~, Z, @ = O and hi(d, Z, @) = O, where gi is ui –

?..!jUk and hi is wi — ‘wjwk.

CASE (C): i c 1 and the assignment is ~i + zj o ~k,

where o G {+, –}. We associate with vi two polyno-

mial constraints gi (Z, ii,@) = O and hi (~, ii,@) = O.

There are two sub cases: (a) if ej ~ ek, then gi is

wkui — (’wkuj O Wjuk) and hi is W~ — Wj; and (b) if

ej < ek, then gi is WjUi — (’wkuj O ‘Wj Uk) and hi is

wi — wk.

Furthermore, let f. be the polynomial ~l<i<n Y?+
--

(yn+l – 2/3)2 – 1/9, go be the polynomial 1 – y~+l,
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and ho be the polynomial y~+l. We also need some results from the theory of sub-

Note that fj, gi, hi all have degree at most 2. space arrangements. Let LA be the poset formed by

the collection of all nonempty intersections ISi, flKi, n
Let &f ~ Rn+2111+l be the set of all (~, 2, @ satis-

...flKip,il<iz<... < iP, ordered by reverse inclu-
fying fo(~, Z, d) = O, go(~, Z, @ >0, ho(~, Z, ID) >0,

fi(lZ Z @ d 0, 9j(Z Z ~) = 0, hj(?i, Z @ = O for
sion, LA is called the intersection semilattice, and it

contains a minimum element O = R“. Let pc~ (z, y)
i c I’, j E 1. Our next goal is to prove

be the Mobius function defined on LA. The topolog-

We sketch the proof of (15). First one can prove

by straightforward induction that, for each ~ E R“+l,

any point (~, ii, d) E M must satisfy ‘hi = ai (y~, Wi =

(1 – yn+l)et for all i E 1. This shows that Al is

equal to the set of all (~, ai(~(i E l), (1 –y~+l)e’(i E

1)) such that fo(~, d, d) = O, go(~, i?, t) > 0,

ho(~, ii, d) > 0, fi(~, ii, 0) rdi O, gj(r, ~, @ = 0,

hj(~,il,ti) = Ofori c I’, j c Iwhenweset ui = ai(~

and wi = (1 — yn+l)ei. A comparison with Fact 2

leads to (15).

Note that q. (Vl) and M are bounded as sets in

Rn+l and R“+21~l+l. The mapping ~ ~ (~, ai(@)(i E

1), (1 –yn+l )“ (i G 1)) is thus a homeomorphism from

P. (Vi) onto ~. Furthermore, this maps the subset

6pn(VL) onto 6M. Thus, H*(qn(VZ), 6qn(Vl)) is is~

morphic to H* (M, 8M). This proves

P;(u) = LZ(%(W) = P:(J’f).

ical structure of VA is closely related to the algebraic

properties of LA (see e.g. [Bj92]). For our purpose,

the following result is sufficient (essentially due to

Goresky and McPherson [GM88], and given in the

present form in Bjorner and Lov&z [BL92]).

Fact 3 Ei>o @i(~A) 2 ~ij<.ec~ IP.G (k z)l, where

~i stands fo~ the i-th reduced Betti number.

We can now prove Theorem 3. Observe that, for

all i ~ O, ~i(S, zo) = ~i(S) for any set S ~ Rn and

point Z. ~ S (see e.g. [Ro, Theorem 5. 17]). It follows

that /3j(VA) = ~~(~A,W) = ~~(~A) fOr all i ~ 0. BY

Fact 3, this means

The plan is to show that there are NA elements x

with non-vanishing pLA (O, x). For each free subset 3

But M ~ Rn+2111+1 is defined by degree-2 poly-
of d, let X7 6 Ch denote the element nKerK. It

is easy to verify that the induced poset P between O
nomial equalites and no more than 11’I + 2 strict

and XF (inclusive) is isomorphic to the poset 111~1.
inequalities. By Lemma 7, ~i>i ~~ s (2 “ 2 +

As Y is free, clearly the value of the Mobius func-
~)n+21Zl+l+2(11’l+2)+s < 5~+z~+10.-This proves(14)— tion pc~(O, z) for any z c P is the same as pp(b, z).
and completes the proof of Theorem 2.

Thus, pc~ (0, XF) = PBITI(O, ~) = (–1)171 . It follows

from (16) that ~i>o /3~(~A) z ‘NA. Theorem 3 now

8 Proof of Theorem 3
follows from Theorem 2.

Some background results are needed. Let B~ denote Acknowledgments The author thanks Anders
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