
Semi-automatic generation of UML models from natural languageSemi-automatic generation of UML models from natural language
requirementsrequirements

Deva Kumar Deeptimahanti, Ratna Sanyal

Publication datePublication date

01-01-2011

Published inPublished in

India Software Engineering Conference;

LicenceLicence

This work is made available under the CC BY-NC-SA 1.0 licence and should only be used in accordance with
that licence. For more information on the specific terms, consult the repository record for this item.

Document VersionDocument Version
1

Citation for this work (HarvardUL)Citation for this work (HarvardUL)

Deeptimahanti, D.K. and Sanyal, R. (2011) ‘Semi-automatic generation of UML models from natural language
requirements’, available: https://hdl.handle.net/10344/2348 [accessed 25 Jul 2022].

This work was downloaded from the University of Limerick research repository.

For more information on this work, the University of Limerick research repository or to report an issue, you can
contact the repository administrators at ir@ul.ie. If you feel that this work breaches copyright, please provide
details and we will remove access to the work immediately while we investigate your claim.

https://creativecommons.org/licenses/by-nc-sa/1.0/
mailto:ir@ul.ie

Semi-automatic Generation of UML Models from Natural
Language Requirements

Deva Kumar Deeptimahanti
Lero- The Irish Software Engineering Research Centre

University of Limerick
Limerick, Ireland

deva.kumar.deeptimahanti@lero.ie

Ratna Sanyal
Indian Institute of Information Technology- Allahabad

Uttar Pradesh, India

rsanyal@iiita.ac.in

ABSTRACT

Going from requirements analysis to design phase is considered as
one of the most complex and difficult activities in software
development. Errors caused during this activity can be quite
expensive to fix in later phases of software development. One
main reason for such potential problems is due to the specification
of software requirements in Natural Language format. To
overcome some of these defects we have proposed a technique,
which aims to provide semi- automated assistance for developers
to generate UML models from normalized natural language
requirements using Natural Language Processing techniques. This
technique initially focuses on generating use-case diagram and
analysis class model (conceptual model) followed by
collaboration model generation for each use-case. Then it
generates a consolidated design class model from which code
model can also be generated. It also provides requirement
traceability both at design and code levels by using Key-Word-In-
Context and Concept Location techniques respectively to identify
inconsistencies in requirements. Finally, this technique generates
XML Metadata Interchange (XMI) files for visualizing generated
models in any UML modeling tool having XMI import feature.
This paper is an extension to our existing work by enhancing its
complete usage with the help of Qualification Verification System
as a case study.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/ Specifications -
Methodologies (UML model generation, structured), Tools. D.2.2

[Software Engineering]: Design Tools and Techniques- Object-

oriented design methods, Computer-aided software engineering

(CASE). I.2.7 [Artificial Intelligence]: Natural Language
Processing – Text analysis.

General Terms

Design, Experimentation

Keywords

Requirement engineering, Natural Language Processing, Unified
Modeling Language

1. INTRODUCTION
Analyzing requirements, building analysis and design models

are cumbersome and complicated tasks, which need automated
support. Errors caused during these phases can be quite expensive
to fix later on. One of the main reasons for potential problems is
the way requirements are specified and analyzed. Software
requirements are most often specified in Natural Language (NL).
In a typical software industry, Software Requirement
Specifications (SRS) is written in NL to enhance communication
between different stakeholders [1]. Michael Jackson [2], mentions
“requirement engineering is where informal meets formal”. So NL
SRS are very useful at this development stage for understanding
between both the groups. However, requirements described in NL
can often be ambiguous, incomplete, and inconsistent [1].
Moreover, the interpretation and understanding of anything
described in NL has the potential of being influenced by
geographical, psychological and sociological factors. It is usually
the job of requirements analysts to detect and fix potential
ambiguities, inconsistencies, and incompleteness in requirements.
But, human reviewers can overlook defects in NL requirements,
which can lead to multiple interpretations and difficulties in
recovering implicit requirements if analysts do not have enough
domain knowledge [3, 4]. Furthermore, it is not possible to
perform complete automated analysis of NL requirements in order
to detect and resolve these problems. But, tool support for
automating some of these tasks is highly desirable.

However, building models from NL requirements is difficult
and time-consuming task. Design models such as use-cases,
sequence diagrams, and class diagrams are usually used to
document requirements in a more structured way. Some of these
models have formal semantics and are amenable to automated
analysis. Many approaches and tools have been proposed to
bridge the gap between requirement analysis and design phases by
developing Object Oriented (OO) models from requirements [5-
8]. Section 2 discusses some of these approaches and addresses
their limitations. Our previous work, Static UML model Generator
from Analysis of Requirements (SUGAR), [9, 10] just focused on
generating static UML models such as use-case and analysis class
models from NL requirements. This paper is an extension to our
earlier work [9-11] describing a technique named as UML Model
Generator from analysis of Requirements (UMGAR), to provide
semi-automated support for developing both static and dynamic
UML models from NL requirements and evaluated with the help
of a case study. Our technique exploits three efficient NLP
techniques for parsing sentences and performing various analyses
such as pronoun resolution, morphological analysis.

Next section discusses the brief literature review along with
limitations of existing research followed by contributions from
UMGAR. Section 3 describes the technologies used, process
architecture of UMGAR. Section 4 describes the use of UMGAR
with a case study. Finally section 5 concludes the paper and
provides our future focus.

2. BACKGROUND AND MOTIVATION
Several research works identify the possible usage of Natural

Language Processing (NLP) techniques over NL requirements
[13], precisely:
1. Scanning of requirement documents
2. Searching requirements from these documents
3. Extracting requirements from documents
4. Tagging the text for identifying many things
5. Finding similar or duplicate requirements
6. Finding probably ambiguous requirements

In a pioneering work, Ryan [13] claims that NLP is not suitable
to be used in requirement engineering (RE), as NL would not
provide a reliable level of understanding, and even if it could,
using such resulting system in RE is highly questionable. The
primary reason is the complexity of the requirements themselves.
But later on Kof [14] opposes Ryan’s [13] and claims as:
1. NLP usage in RE is not to understand text but to extract

concepts contained in NL document;
2. Even though domain model generated from NL document is

incomplete as information that is thought to be “common
domain knowledge” is omitted in the requirements text. As
the task of requirement engineer is to detect such omissions,
such incomplete domain model can act as an indicator for
some omissions in text.

Kamsties [15] mentioned that problems with requirements can
possibly be avoided either by detecting ambiguity or by using a
restricted form of such language. Berry [16] proposed following
features to reduce disadvantages of using NL specifications.:
1. Learn to write less ambiguously and less imprecisely
2. Learn to detect ambiguity and imprecision
3. Use a restricted natural language which is inherently

unambiguous and more precise
In a nutshell, even though several problems exist with NLP in

processing text, there are quite a number of NLP applications
developed in RE. In relation to generate UML models from NL
requirements, there have been several attempts at providing
tooling support. Based on an extensive literature review, due to
space limitation the following previously cited papers provide a
short critique of existing tools for automatically generating UML
models from NL requirements. We divide this discussion into two
categories as structural models and behavioral models.

2.1 Structural Model Generation
A Natural Language- Object Oriented Production System (NL-

OOPS) LOLITA was proposed by Mich [7] which generates OO
analysis models from SemNet obtained by parsing NL SRS
documents. It considers nouns as objects and identifies
relationship among objects using links. This approach lacks
accuracy in selecting objects for large systems and cannot
differentiate objects and attributes.

Börstler [17] provides a tool for constructing an object model
automatically based on pre-specified key words in use-case
description. The verbs in the key words are transformed to
behaviors and nouns to objects, but require excessive user

interaction to associate behavior to the object. Nanduri and
Rugaber [18] developed a tool using syntactic knowledge by
extracting objects, methods and associations and generates object
diagram from NL SRS. However, these models are validated
manually and user needs to have extensive domain knowledge.

CM-Builder analyzes requirements texts and builds a Semantic
Network, to construct an initial UML Class Model [5]. This
model can be visualized in a graphical CASE tool by converting it
into standard data interchange format, CDIF where human analyst
can make further refinement to generate final UML models.
However, CM-Builder makes extensive use of NLP techniques for
generating only analysis class model.

Linguistic assistant for Domain Analysis (LIDA) [8] identifies
model elements through assisted text analysis and validates by
refining the text descriptions of the developing model. LIDA
needs extensive user interaction while generating models because
it identifies only a list of candidate nouns, verbs and adjectives,
which need to be categorized into classes, attributes or operations
based on user’s domain knowledge. Another tool has been
developed by Popescu et.al [19] with the aim of identifying
ambiguity, inconsistency and under specification in requirement
documents by creating object-oriented models automatically by
parsing NL SRS according to constraining grammar. These are
later diagrammed which enable human reviewer to detect
ambiguities and inconsistencies.

2.2 Behavioral Model Generation
There are relatively few attempts at providing tools for

generating behavioral models like sequence or collaboration
models from NL use-case specifications, from which design class
model is generated. Li [20] reports a semi-automatic approach to
translate narrative use-case descriptions to sequence diagrams
using syntactic rules and parser. He proposed eight syntactic rules
to handle simple sentences which need human intervention which
are insufficient to handle different types of verb phrases.

Use Case Driven Development Assistant Tool (UCDA) [6]
generates Class Model by analyzing NL requirements. It assists in
generating use-case diagrams, use-case specifications, robustness
diagrams, collaboration diagrams and class diagrams. Our
approach is similar to this, but UMGAR uses accurate NLP tools
in extracting models and provided design traceability mechanisms
and grammatical rules for collaboration diagram generation. Main
disadvantage of UCDA is that it depends on Rational Rose, a very
expensive environment, for visualizing UML models. Montes et.al
[21] and Diaz et.al [22] developed a tool to generate conceptual
model, sequence diagrams, and state diagrams by analyzing a
system's textual descriptions of the use-case scenarios in Spanish
language.

Yue et.al [23] proposed a method to generate activity diagrams
from use-case specifications using transformation rules. In our
case, we generated collaboration diagrams from use-case
specifications, as activity diagrams fails in representing which
objects execute which activities, and the order in which messaging
works between them. Similarly a commercial tool named
Ravenflow [24] provides mechanism to generate activity diagrams
(process diagrams) from structured text written using rewriting
rules. This has major limitation in representing alternative flows.

2.3 Comparative Analysis
It is obvious from the previous discussion that there have been

several efforts to exploit the NLP technologies for automating

requirements analysis phase. In this section, we provide a brief
comparative analysis of existing tools and their respective
limitations that have provided the motivation for developing
UMGAR. This discussion is based on the comparative analysis of
NLP systems provided by Li et.al [25].

Table 1 shows comparison among available tools with respect
to features mentioned above (Y- Yes, N- No, High- H (High user
interaction), Medium- M, and Low-L).

Table 1. Comparison of available tools

Feature

N
L

-O
O

P
S

 [
7

]

R
E

C
O

R
D

 [
1

7
]

N
a

n
d

u
ri

[1

8
]

C
M

-B
u

il
d

er
 [

5
]

L
ID

A
 [

8
]

P
o

p
es

cu
 [

1
9

]

U
C

D
A

 [
6

]

L
i

[2
0

]

M
o

n
te

s
[2

1
,

2
2

]

S
U

G
A

R
 [

9
,

1
0
]

Use-case Model N N N N N N Y N N Y

Analysis Class model Y N Y Y Y Y Y N Y Y

Interaction diagram N N N N N N Y Y Y N

Design class model N Y N N N N Y N Y N

XMI support N N N Y N N N N N N

Normalize
requirements

N Y N Y N N Y Y N Y

User Interaction H H H M H M L H M L

Following limitations are interpreted using table:
1. Most existing tools do not provide automatic normalization

of NL requirements. Absence of such causes information loss
when processing complex requirements.

2. Most of them just focus on generating analysis class model;
and only tools reported in [6, 17, 21, 22] generate design
class model. None of the existing techniques are able to
generate full set of possible UML models.

3. Only CM-Builder [5] provide an intermediate representation
of the generated models to visualize these in CDIF supported
UML modeling tools.

4. The existing tools also limit the size of requirements to be
handled and can work on very small set of requirements
(typically <200 words) [25] and require developers support
to refine models and identify inconsistencies in requirements.

2.4 Contributions of UMGAR
Existing tools provide varying level of automation. We believe

that complete automation of this activity with NLP may be
impossible in the near future. However, more advanced
automation can be provided. To address existing limitations,
UMGAR makes following contributions aimed to support
automatic generation of possible UML models from SRS written
in natural language without need of extensive domain expertise
and user interaction:
1. UMGAR follows Use-case Driven Object- Oriented Analysis

and Design (OOAD) [26] techniques for object elicitation
from complex NL requirements using efficient NLP tools
like Stanford Parser [27], JavaRAP [28], and WordNet 2.1
[29], which can handle large requirements documents.

2. It provides a XMI parser to generate XMI file [12] and can
be visualized in any UML modeling tool which has XMI
import feature.

3. We have proposed eight syntactic reconstruction rules [9-11]
to handle large NL SRS and normalize complex requirements
into simple ones to reduce their ambiguity. It can also handle
compound word morphological analysis where WordNet [29]

fails, identified 247 determiners which are specific for
requirements engineering.

4. Provides traceability from requirements down to design and
implementation phases using Key-Word-In-Concept (KWIC)
and concept location feature [30] respectively.

5. UMGAR uses a glossary to avoid any communication gaps
among team members and creates unambiguous
requirements.

6. We have proposed eight rules for generating collaboration
diagram from use-case specification template covering major
event flows which occurs in use-case specifications.

3. THE APPROACH
UMGAR aims to assist requirements analysts and designers in

generating analysis and design class models from NL
requirements using sophisticated NLP technologies reported in
[27-29]. Currently UMGAR can generate use-case diagrams,
analysis class model, collaboration diagram, and design class
model.

3.1 Process Architecture of UMGAR
UMGAR’s process architecture as shown in figure 1 consists of

two components:
1. Normalizing requirements component (NLP Tool Layer)
2. Model Generator component

Figure 1. The process architecture of UMGAR

3.1.1 Normalizing requirements component
This component has two sub-components which aims at

normalizing (rewriting) NL requirements to remove ambiguity in
sentence structures and introduces control constructs to organize
interactions in the statement sentence structure [31].

3.1.1.1 Syntactic Reconstruction
UMGAR accepts stakeholders’ requirements in NL format as

input and decompose complex sentence structure into simple
sentence structures to extract all possible information from the
requirements document. Since, there is no tool available to
perform automatic syntactic reconstruction of NL sentences; we
have defined eight syntactic reconstructing rules that have been
implemented in UMGAR [9-11] UMGAR scans each sentence to
test whether that requirement satisfies the Statement sentence
structure which is of the form “Subject: Predicate” or “Subject:
Predicate: Object”, and applies rules accordingly. Subject and

object are usually represented as a noun phrase (denoted by NP)
and a predicate as verb phrase (denoted as VP). Currently
UMGAR accepts requirements expressed in active-voice form. If
a requirement sentence does not satisfy the following rules, then it
prompts a message to user to change sentence accordingly to the
statement structure.

3.1.1.2 Technologies Used
Following NLP tools are applied on normalized requirements:

1. Stanford Parser [27] is a highly optimized probabilistic
context-free grammar (PCFG) NL parser implemented in
java. It is used to generate parse tree for each requirement
from which artifacts like actors, use-cases, classes, methods,
associations, and attributes can be extracted.

2. WordNet2.1 [29]- UMGAR uses WordNet to perform
morphological analysis for converting plurals into singulars.
But it fails in case of handling plural form for compound
words, for which we implemented twenty-one rules to nullify
the effect of obtaining more classes. For example, for
“Verification officers”, WordNet strip off suffix and return
just the word “Verification” which creates ambiguity.

3. JavaRAP [28] helps resolve pronouns up to third person
pronouns which is an implementation of classic Resolution
of Anaphora Procedure (RAP) algorithm given by Lappin
and Leass. JavaRAP [28]. UMGAR uses this to replace all
the possible pronouns with its correct noun form.

3.1.2 Model Generator component
This component generates various OO models like use-case

diagram, analysis class model, and collaboration diagram and
design class model from normalized requirements. This
component consists of following three sub- components:

3.1.2.1 Use-case Model Developer
From normalized statement sentence (“Subject: Predicate” or

“Subject: Predicate: Object”), UMGAR identifies subject and
object as actors, predicates as use-cases, and associates actors and
use-cases using parse tree generated from Stanford Parser [27].

3.1.2.2 Analysis class model developer
UMGAR uses a combination of Noun-phrase technique [32]

and RUP [33] to generate analysis class model. This component
uses Stanford Parser [27] to identify all candidate classes from
requirements and generates analysis class model by attaching
attributes and methods with associated class object. Glossary is
checked against candidate classes to eliminate redundant classes.
To eliminate ambiguity, morphological analysis using WordNet
[29] is performed to suppress plural form of class objects to
singular form.

3.1.2.3 Design class model developer
Use-case scenario should be manually specified using the rule

“Who do what to whom?” which describes who initiates the
message, and what it wants to send and to whom. The
collaboration diagram is generated using proposed rules in section
4.3.1. Stanford Parser is used to parse both basic and alternative
flows in the use-case specification template to identify sender,
receiver and the messages between them. UMGAR generates a
design class model from the generated collaboration diagram.

Figure 2 shows the sequence of steps followed while using
UMGAR. Also process of generating models is explained clearly
along with a case study in the following section. More
explanations are given in Section 4.

Figure 2. Work Flow of UMGAR

4. USING UMGAR
This section explains the process of using UMGAR along with

a case system “Qualification Verification System (QVS)”, which
has twenty-six requirements with some complex requirements as
follows:

Candidate will register with system to hire services. Candidate

can provide information about his academic, work experience

and referee details. Candidates may make verification request

during registration or some time later. Candidate updates his

details at any time. System will inform service seeker about

approximate time period required to provide service. System

records details of candidate. System shall keep status of each

request up-to-date. System shall interact with education institute

systems to verify originality of degree. System asks type of service

required. Service may be Standard, Silver or Gold. System enters

request as a record in system. System informs about outcome to

the candidate. Referees send recommendation letters using system

on behalf of students. Customers pay fee for each type of service.

Customer may be candidate or employer. Standard service

verifies details of education. Silver service verifies details of

education and profession. Gold service verifies details of

education, profession and recommendation letters from referees.

Employer accesses system to hire services of system for

verification purposes. Employer registers with system. After,

employer should provide system with information on type of

service required along with candidate unique identification

number. System records details of employer. Verification officer

accesses system to retrieve verification and inquiry requests.

Verification officer performs all types of verifications requested

by candidate and employers upon retrieving requests. Verification

officer also verifies authenticity of referee. Verification officer

uses system to send to referees a request for a recommendation

letter when candidate requests gold service.

Using proposed syntactic reconstruction rules [9-11], all these
26 requirements are normalized automatically into 33 simple
sentences, so that each requirement can be of the form “Subject-
Predicate” or “Subject-Predicate-Object”. Using third
reconstruction rule [10], compound requirement - “Candidate can
provide information about his academic, work experience and
referee details” can be reconstructed as “Candidate can provide
information about his academic details. Candidate can provide
information about his work experience details. Candidate can
provide information about his referee details.”

This normalized document is later parsed using JavaRAP tool
[28] to replace pronouns by corresponding nouns. Specific
determiners are removed from the simplified text using list of
identified 247 determiners to remove ambiguity to further extent.
Stanford Parser [27] displays parse tree for each simple
requirement statement in subject, predicate and object form from
which required information can be extracted as shown in Figure 7.

4.1 Use-case Model Developer
This section explains process for generating use-case model

from processed NL requirements using following steps.

4.1.1 Identifying the Actors
Candidate actors are identified by examining who is using a

system or who is affecting a system or for whom system is
intended [26]. Actors mostly are subjects (Noun Phrases (NP))

and objects of a sentence. UMGAR extracts all such noun phrases
which tend to be actors.

From this case study, a total of 9 noun phrases are identified
namely: candidate, employer, verification officer, referee, standard
service, silver service, gold service, customer and system. As actor
is one who is interacting with system from outside, so System
noun phrase is not treated as an actor. As a result, QVS finally has
8 actors as shown in Figure 3.

4.1.2 Identifying the Use-cases
The process of identifying use-case is related to actors [26].

The use-cases identified by UMGAR are mostly the predicates
(verb phrases (VP)) in the sentence which are associated with an
actor (subject) (NP: VP).

Each verb phrase should contain a verb denoted as VBZ
(singular verb). VP’s is an important category which has seven
forms like transitive, intransitive, di-transitive, prepositional,
intensive, complex transitive and non-finite [31]. Requirement
structure mainly depends on the verb phrase type. So, VP’s are
properly analyzed to extract exact use-cases associated with the
actor. Figure 3 shows 23 use-cases that are identified. 8 use-cases
associated with System are not shown.

4.1.3 Relationships between actors and use-cases
Association relationships for the use-case diagram can be

identified from the sentences which are of the form Subject-
Predicate-Object, and by identifying prepositions between
predicates and objects. In some cases, predicates internally
contains NP which represent an actor (e.g.: Verb + Preposition +
Noun), at such cases, UMGAR identifies prepositions like “from,
to, about, with, in etc.” and associates use-case and actor together.
As actors like standard, silver and gold services share common
use-cases, UMGAR identifies such commonalities and represent
them together. So, generated use-case diagram shows a total of 20
use-cases. Use-case model generated and visualized in Enterprise
Architect [35] is as shown in Figure 3.

4.2 Analysis Class Model Generator
UMGAR uses Noun-Phrase approach [32] and RUP [33] for

identifying classes. Using Stanford parser [27], identified nouns
are considered as candidate classes, verbs as methods and
adjectives as attributes of associated class. UMGAR aims at
associating these attributes and methods to the associated class.

Noun-phrase approach initially considers all identified nouns
from the case study as candidate classes. To suppress plural forms
of the noun phrases, morphological analysis on nouns are
performed using “Word Net 2.1” [29]. After doing so, UMGAR
obtains a total of 18 objects namely: Candidate or employer,
candidate, verification officer, service seeker, registration,
customer, gold service, education institute system, service,
standard service, any time, employer, referee, silver service,
verification request, system, request, “standard, silver or gold”.
These 18 classes are categorized into following classes, to include
or exclude a particular class:
1. Redundant classes: UMGAR maintains a glossary with all

noun phrases occurring in the system along with their
synonyms. Using glossary, UMGAR identifies service seeker
as similar to customer, as a result customer replaces service
seeker context throughout the document.

2. Attribute classes: If a particular class represents values or list
of values (Boolean, list, etc.), such classes are treated as
attributes of a class but not as a class. UMGAR maintain a
list of such words observed from various requirement
documents in a separate document which carries values or
list of values (attribute sense), and if such words occurs in
the noun lists are eliminated. For this case, UMGAR
identifies “any time” as an attribute class which depicts some
invariable time to update candidate details.

3. Adjective classes: If the identified noun-phrase contains an
adjective, then it is treated as an adjective class. Adjective
classes for this case are Standard Service, Silver Service and
Gold Service. As none of these adjective classes are found in
attribute class list, all these three classes are included to final
class list. If any class is found in both adjective and attribute
class list, UMGAR removes such class from the list.

4. Irrelevant classes: Manual interference is needed to identify
irrelevant classes at this point. For this case study, from
remaining classes, “request”, “verification request”,
“candidate or employer”, “registration”, “standard, silver or
gold” are eliminated. Words “request”, “verification request”

and “registration” can be methods of a class, and “candidate
or employer” and “standard, silver or gold” are already
individually treated as classes.

Finalized classes after executing the Noun-Phrase technique is
turned out to be candidate classes as shown in Figure 4.

4.2.1 Relationships among Objects
Using UMGAR, following relationships are identified from the

case study. The current version of UMGAR can successfully
handle association and inheritance relationships. We are working
on implementing aggregation relationships.
1. Association: Identifying association relationship is done in

two phases, first by searching prepositional phrases between
noun phrases, such as “has, next to, part of, works for,
contained in, and talk to”. And if the parsed sentence is in the
form of Subject: Predicate: Object, then it associates subject
and object accordingly. A total of 7 association relationships
are identified. For example, “System records details of
candidate”, which is of the form Subject: Predicate: Object,
in which system (subject) and candidate (object) are
associated with each other.

Figure 3. Use-case Diagram for Qualification Verification System (QVS)

Figure 4. Class identification using Noun-identification technique [32]

2. Inheritance (Super-sub relationships): UMGAR searches
each requirement for phrases like “may be”, “is a type of”
between two objects. If “may be” is found between subject
and object, UMGAR represents inheritance relation
(direction) from object to subject, and if “is a type of” phrase
occurs then inheritance is from subject to object. For this
case, UMGAR identified two requirements having “may be”
phrases for which inheritance relationship is depicted from
object to subject, namely from employer and candidate to
customer, and from standard service, silver service and gold
service to service.

3. Composition/ Aggregation among objects: The identification
of this relationship needs human intervention. However,
UMGAR can identify such chances if requirement document
contains phrases like comprises, have, include, possess,
contains, and “is a part of” between subject and object. If
“comprises, have, include, possess and contains” occurs
between subject and object, then composition (strong
dependency) relation exists from object to subject, and if “is
a part of” phrase occurs, then aggregation (weak) relation
occurs from subject to object.

Using Stanford Parser [27], each requirement is parsed to
extract verbs and adjectives associated with the noun phrase
which are methods and attributes of class (NP) respectively.
Finally, generated analysis class model is as shown in Figure 5

class Analysis Class Model

candidate

+ make_verification_request()

+ provide_information()

+ register()

+ updates()

customer

+ pay_fee()

employer

+ accesses_system()

+ registers()

gold serv ice

+ verifies()

referee

+ send_recommendation_letters()

silv er serv ice

+ verifies()

standard serv ice

+ verifies()

system

+ asks_type_of_service()

+ enters_request()

+ inform_service_seeker()

+ informs_about_outcome()

+ interact()

+ keep_status()

+ records_details()

verification officer

+ accesses_system()

+ performs_all_types_of_verification()

+ uses_system()

+ verifies_authenticity()

Serv ice

+ verifies() : void

Education Institute System

Figure 5. Analysis class diagram for QVS

LIDA [8] identifies OO artifacts based on frequency of
occurrence. Later on, developer based on his/her domain
knowledge has to categorize them manually into classes, attributes
and methods. However, UMGAR overcomes this problem using
efficient NLP tools. Table 2 shows the artifacts automatically
generated by UMGAR for QVS without any human intervention.

Table 2. OO Artifacts automatically extracted using UMGAR

Classes Attribute Method Association Inheritance

11 - 23 7 5

4.3 Design Class Model Developer
This section describes the process of generating collaboration and
design class model using “Perform Verification” use-case

specification of “Qualification Verification System (QVS)”.
Figure 6 shows the use-case execution scenario describing both
basic and alternative flows of the use-case specification [33].

4.3.1 Collaboration Diagram Generator
UMGAR parses each use-case specification to elicit both actors

and objects associated with the use-case, from which
collaboration diagram is generated. Each use-case identified
during use-case diagram development should be properly
specified using the rule “Who do what to whom?”, which
describes who initiates the message, and what it want to send and
to whom according to use-case specification template. In order to
perform this task, UMGAR reconstructs use-case specification
into simple sentences in the form of Subject: Predicate or in
Subject: Predicate: Object using previous eight syntactic
reconstruction rules. For collaboration diagram generation, verb
phrase (VP) structures are analyzed. Structure of an event mainly
depends on the VP types as described in section 4.1.2. UMGAR
handles all such possibilities to identify receiver objects and
messages. Following grammatical rules are used for generating
collaboration diagram:
1. Subject (NP) in the sentence is considered as sender object.
2. Object (NP) is considered as receiver object. And Predicate

(VP) can also contain noun phrase which can be treated as
receiver object based on the VP structures.

3. The verb phrase between subject and object is taken as
message passed between objects.

4. If sentence is having subject and predicate, without any
object, then sequence stated in the use-case specification
helps to identify the relation between both messages.

5. Conditional statements represent sequence of statements; and
can be handled by keeping If clause at the beginning of the
sentence and an end_If clause at the end of the sentence.

6. Concurrent statements show sequence of actions performed
at the same time, and are handled by inserting
Start_ConCurrent clause at the beginning and
End_Concurrent clause at the end of concurrent statements.

7. Iterative statements are handled by inserting Start_While
statement at the beginning and End_While at the end of the
iterative statements.

8. Synchronization statements are handled by keeping
Start_Sync word after the first sentence to show the
synchronous message started and after the last sentence End_
Sync word is used.

UMGAR first extracts associated actors with this use-case from
the primary actor’s field in the use-case specification template.
Stanford Parser [27] is used to identify objects and associated
messages between those objects from the parse tree generated for
each flow of event (both basic and alternative flows).

The Use-case specification described in figure 6 is simple
without any conditional, concurrent, iterative or synchronization
statements. As a result, only first four rules are sufficient for
generating collaboration diagram from this use-case scenario. Out
of 15 event flows (11 are basic flows and 4 alternative flows)
having internal sub-flows, 13 events use first three rules as they
are in Subject: Predicate: Object form to identify sender object,
receiver object and message between the objects. Only 2.1 and 5.1
alternative flows are in Subject: Predicate form, so rule 4 is used
to trace the message sequencing. For event 2 (“System verifies
login information of candidate”), the parse tree generated by
UMGAR using Stanford Parser is shown in Figure 7.

Figure 6. Use-case Specification Template for “Perform Verification” Use-case

Figure 7. Parse tree for Basic Flow-event 2

According to Figure 7, the system acts as sender object,
candidate as receiver object and “verifies login information” is
message passed between sender and receiver objects. Figure 8
shows the collaboration diagram generated for the “Perform
Verification”.

4.3.2 Design Class Model Generator
Figure 9 shows the design class model generated using the

collaboration diagram generated for “Perform Verification”
scenario. All 8 artifacts (3 actors and 5 objects) of collaboration

are considered as design classes and message associated with each
actor and object is attached as methods to these classes with
proper association relationships. Inheritance relationship is
explicitly stated in brief description on use-case specification
template, “Requester may be employer or candidate”. UMGAR
identifies the relationships from the event flow sequence specified
in use-case specification using rules described in section 4.2.1.

4.4 Key-Word-In-Context
After generating the OO models, in order to trace requirements

from models, UMGAR implements Key-Word-In-Context
(KWIC) approach, to provide traceability between requirements
and OO design models. This feature traces requirements
associated with the keyword and display them, gives user a chance
to edit and change the requirements which are reflected in entire
system. Figure 10 shows the features of KWIC, when the term
“Gold” a class name of QVS in the analysis class model is
searched for, KWIC window shows the requirements associated
with this term.

sd Collaboration_Performs_v erification

Verification officer

Candidate

Employer

System

Current employer

Education institute

system

Requester

Referee

1: registers for verification()

2: veri fies login information()

2.1: [if candidate login details are incorrect]:displays an error message()

3: records details()

4: registers for verification services()

5: verifies login information()

5.1: [if employer login details are incorrect]:displays an error message()

6: provides service type required for verification of candidate()
7: records detai ls()

8: retrieves verification requests()

8.1: verify candidate qualification()

8.2: verify candidate work history()

8.3: verifies authenticity of referee()

8.4: sends recommendation letter()

9: informs()

Figure 8. Collaboration diagram for Perform Verification use-case

class Design Class Model for Perform Verification Use case

Verification Officer

+ informs() : void

+ retrieves_veri fication_requests() : void

+ verifies_authenticity() : void

+ verify_candidate_qual ification() : void

+ verify_candidate_work_history() : void

System

+ records_detai ls() : void

+ verifies_login_information() : void

Employer

+ provides_service_type_required() : void

+ register_for_verification_services() : void

Current EmployerEducation

Institute System

Requester

Referee

+ sends_recommendation_letter() : void

Candidate

+ registers_for_verification() : void

Figure 9. Design class model for selected use-case Scenario

Figure 10. Key Word In Context (KWIC)

4.5 XMI Parser
Previous tools developed for generating UML models from NL
requirements use canvas or integrated to some modeling tool. The
diagrams visualized on canvas have problems regarding editing
and updating as we observed in SUGAR [9, 10]. In order to avoid
such problems, UMGAR provides an efficient XMI parser to
support the visualization and manipulation of the generated
models in any modeling tool, which has XMI import feature. The
XMI file [12] generated by UMGAR’s parser follows XMI v2.1
specifications. This parser is currently supporting all models
generated by UMGAR. Models can be modified after imported
into modeling tool. We have successfully tested this XMI parser
over Argo-UML [36] and Enterprise Architect [35] UML
modeling tools.

4.6 Code Generation and Concept Location
Java Code model is generated for each design class model

developed using code generation feature of UML modeling tool.
Even though this code model is abstract, this feature helps user to
start coding as soon as requirements are gathered. Main goal for
code generation is to explain the importance of concept location
[30] feature in providing traceability between requirements and
code by providing search functionality for a particular
requirement in code. This search technique is implemented using
Vector Space Model (VSM) technique [34] to identify the code
file associated with a particular requirement or query. As software
tends to change regularly affecting all artifacts, a developer should
be able to locate code for a particular requirement. So a concept
location feature is helpful in such circumstances enabling
traceability from requirements to code by retrieving all possible
source code files according to the relevancy of the requirement
query used, making maintenance an easy way.

The VSM is traditionally used where the collection of
documents are placed in term-space (consists of terms or words)
and it is required to find the most relevant document for a given
query. The similarity between the query and all documents in the
collection is computed and the best matching documents are
returned. Implementation process of concept location includes the
following steps:
1. Using Stop Word methodology, all frequently occurring

terms in code such as class, braces, parenthesis, visibility
access levels are removed.

2. Each term in a document is represented in the form of m × n
matrix, where m is the number of terms and n is the number
of documents.

3. Entry aij in this matrix represents the weight of ith term in jth

document.
4. For each search query, results are retrieved depending on the

weight of the related term in descending order.
VSM can also be used to perform requirements similarity.

Figure 11 shows the documents (indexed source code files)
retrieved for term “Employer”.

Figure 11. Concept location for term “Employer”

5. CONCLUSIONS AND FUTURE WORK
This paper has presented a semi-automated technique to assist

developer in generating UML based analysis and design models
from normalized NL requirements. Our comparative evaluation of
the current tools developed for the similar objectives (described in
section 2.3) has enabled us to assert that UMGAR has several
advantages over them based on its features. UMGAR successfully
addresses the problems caused by lack of domain knowledge by
using efficient NLP tools like Stanford Parser, WordNet2.1 and
JavaRAP. We have presented and discussed various features of
UMGAR by using “Qualification Verification System (QVS)”
case system. Our results are quite encouraging in terms of
automatic identification of OO elements found from the case
systems by UMGAR. UMGAR is also able to visualize UML
diagrams in any UML modeling tool that has XMI import feature.
Currently UMGAR requires human interaction during elimination
of irrelevant classes and identification of aggregation/composition
relationship among objects. UMGAR can be applied across all
domains over unlimited requirements (size) expressed in NL.
Future work for extending UMGAR will focus on the following
issues:
1. The generated design class model lacks method signatures as

it is developed from collaboration diagram. Multiplicity
among classes is still to be addressed.

2. Generating state charts diagrams from use-cases to test class
models without the need of generating code, so that test cases
are based on requirements to test the system behavior.

3. In future, we plan to evaluate benefits and limitations of
using UMGAR with industrial case studies and analyze how
developers will be benefitted through these semi-automatic
assisting models (with and without) in building good and
robust domain model. Currently we have evaluated this
technique using the case systems published in previous
existing research papers [6, 8] for comparative analysis,

where UMGAR obtained better results with respect to
number of OO artifacts identified.

ACKNOWLEDGEMENTS
This research was started at Indian Institute of Information

Technology- Allahabad, India and later supported by the
Programme for Research in Third-Level Institutions (PRTLI 4)
funded by the Higher Education Authority (HEA), Republic of
Ireland and in part, by Science Foundation Ireland grant
03/CE2/I303_1 to Lero - the Irish Software Engineering Research
Centre (www.lero.ie). First author is thankful to Dr. Muhammad
Ali Babar for his useful feedback on earlier version of this paper
and for providing problem context of the case study.

REFERENCES
[1] Ambriola, V. and Gervasi, V. Processing natural language
requirements. Proceedings of the 12th International conference

on automated software engineering (ASE), 36-45, (1997)
[2] Jackson, M. Problems and requirements [software
development], Proceedings of the second international

symposium on requirement engineering, pp. 2, (1995).
[3] Boyd, N. Using Natural Language in Software Development.
Journal of OO Programming 11(9), pp. 45-55, (1999)
[4] Osborne, M. and MacNish, C. K. Processing natural language
software requirement specifications. In Proc. of 2nd IEEE Int.

Conf. on Req. Engineering, pp. 229-236, (1996)
[5] Harmain, H. M. and Gaizauskas, R. CM-Builder: an
automated NL-based CASE tool. In Proc. of the 15th IEEE Int.

Conf. on Automated Software Engineering, pp. 45-53, (2000)
[6] Kalaivani S, Dong L, Behrouz H. F and Eberlein, A. UCDA:
Use Case Driven Development Assistant Tool for Class Model
Generation. In Proc. of 16th Int. Conf. on Software Engineering

and Knowledge Engineering, Banff, Canada, pp. 324-329, (2004).
[7] Mich, L. NL-OOPS: from natural language to object oriented
requirements using the natural language processing system
LOLITA. Nat. Lang. Eng., 2, 2, pp. 161-187 (1996)
[8] Overmyer, S. P., Benoit, L. and Owen, R. Conceptual
modeling through linguistic analysis using LIDA. In Proc. of the

23rd Int. Conf. of Software Engineering (ICSE), Toronto, Canada,
pp. 401–410, (2001)
[9] Deeptimahanti, D. K. and Sanyal, R. An Innovative Approach
for Generating Static UML Models from Natural Language
Requirements. Springer Berlin Heidelberg, Communication in

computer and Information Science, Advances in Software

Engineering, Springer, Vol. 30, page 147 (2009)
[10] Deva Kumar, D. and Sanyal, R. Static UML Model
Generator from Analysis of Requirements (SUGAR).
International Conference on Advanced Software Engineering and

Its Applications (ASEA 2008), pp. 77-84 (2008)
[11] Deeptimahanti, D. K. and Babar, M. A. An Automated Tool
for Generating UML Models from Natural Language
Requirements. IEEE / ACM Int. Conf. on ASE, 2009
[12] OMG XML Metadata Interchange. Object Management

Group, MOF 2.0/XMI Mapping, v.2.1.1 (2007),
http://www.omg.org/docs/formal/07-12-02.pdf (2007)
[13] Ryan, K. The role of natural language in requirements
engineering. Proceedings of the IEEE Int. Symposium on

Requirements Engineering. San Diego, CA, pp. 240-242., (1993).
[14] Kof, L. Natural Language Processing for Requirement
Engineering: Applicability to large Requirements Documents,
Requirement engineering 9(1), pp. 40-56, (2004).

[15] Kamsties, E. and Paech, B. Taming Ambiguity in Natural
Language Requirements. In ICSSEA, Paris, Foundations of

decision and computing sciences, 29 (1-2), pp. 89-101, 2000.
[16] Berry, M D. Ambiguity in Natural Language Requirements
Documents, Innovations for Requirement Analysis. From
Stakeholders’ Needs to Formal Designs, Lecture Notes in

Computer Science, Vol. 5320/2008, pp. 1-7, 2008
[17] Börstler, J. User-Centered Requirements Engineering in
RECORD - An Overview. Proc. of Nordic Workshop on

Programming Environment Research’96, Denmark, pp. 149-156.
[18] Nanduri, S. and Rugaber, S. Requirements validation via
automated natural language parsing. Journal of Management

Information Systems 1995-96; 12(3): pp. 9-19, 1996
[19] Popescu, D., Rugaber, S., Medvidovic, N. and Berry, D. M.
Reducing Ambiguities in Requirements Specifications Via
Automatically Created Object-Oriented Models. In Innovations

for Requirement Analysis. From Stakeholders’ Needs to Formal

Designs. Springer, pp. 103-124. 2008.
[20] Li, L. A Semi-Automatic Approach to Translating Use Cases
to Sequence Diagrams. Proc. of the Technology of Object-

Oriented Languages and Systems, pp.184, June 07-10, 1999.
[21] Montes, A., Pacheco, H., Estrada, H. and Pastor, O.
Conceptual Model Generation from Requirements Model: A
Natural Language Processing Approach. LNCS. Vol. 5039 , pp.
325-326, Springer, 2008
[22] Isabel Diaz, Lidia Moreno, Inmaculada Fuentes and Pastor,
O. Integrating Natural Language Techniques in OO-Methods.
Computational Linguistics and Intelligent Text Processing,

LNCS, Vol. 3406, pp. 177-188, Springer 2005.
[23] Tao Yue, Lionel C Briand and Yvan Labiche, An Automated
Approach to Transform Use Cases into Activity Diagrams,
Modelling Foundations and Applications, LNCS, Volume 6138,
pp. 337-353, (2010)
[24] RAVENFLOW, http://www.ravenflow.com/
[25] Li K. Dewar R.G. and Pooley R.J. Object-Oriented Analysis
Using Natural Language Processing, in proc. of ICYCS'05,
Beijing, China, 2005
[26] Simon B., Steve M. and Farmer R. Object-Oriented Systems

Analysis and Design Using UML. Publisher McGraw Hill, 2005.
[27] Klein, D. and Manning, C. Stanford Parser 1.6. Stanford

Natural Language Processing Group, City, 2007.
[28] JavaRAP, last accessed 2nd December, 2010,
http://aye.comp.nus.edu.sg/~qiu/NLPTools/JavaRAP.html,.
[29] WordNet 2.1, last updated
http://wordnet.princeton.edu/wordnet/, 27th October, 2010
[30] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J., An
Information Retrieval Approach to Concept Location in Source
Code, in Proceedings 11th IEEE Working Conference on Reverse

Engineering (WCRE'04), pp. 214-223, 2004.
[31] Roberts, P. Patterns of English. Publisher Harcourt, Brace,
and World, Inc., New York, 1956
[32] Rebecca Wirfs-Brock and McKean, A. Object Design: Roles,

Responsibilities, and Collaborations. Addison-Wesley, 2003,
ISBN 0201379430.
[33] Kruchten, P. The Rational Unified Process An Introduction,
3rd edition. Addison-Wesley Professional, 2003.
[34] Garcia, E. Description, Advantages and Limitations of the

Classic Vector Space Model, 2007. http://www.miislita.com/term-
vector/term-vector-3.html.
[35] Enterprise Architect 7.1, http://www.sparxsystems.com.au/
[36] ArgoUML 0.30.2, http://argouml.tigris.org/

	Semi-automatic generation of UML models from natural language requirements

