
Formal Query Languages
for Secure Relational Databases

MARlANNE WINSLETT

University of Illinois

and

KENNETH SMITH

Mitre Corporation

and

XIAOLEI QIAN

SRI International

The addition of stringent security specifications to the hst of requirements for an application

poses many new problems in DBMS design and implementation, as well as database design, use,

and maintenance. Tight security requirements, such as those that result m silent masking or

withholding of true information from a user or the mtroductlon of false mformati on into query

answers, also raise fundamental questions about the meaning of the database and the semantics

of accompanying query languages. In this paper, we propose a belief-based semantics for secure

databases, which provides a semantics for databases that can “he” about the state of tbe world,

or about their knowledge about the state of the world, m order to preserve security This kind of

semantics can be used as a helpful retrofit for the proposals for a “multilevel secure” database

model (a particularly stringent form of security), and may be useful for less restrictive security

pohcies as well. We also propose a famdy of query languages for multdevel secure relational

database applications, and base the semantics of those languages on our semantics for secure

databases. Our query languages are free of the semantic problems associated with use of

ordinary SQL in a multdevel secure context, and should be easy for users to understand and

employ

Categories and Subject Descriptors: H 20 [Database Management]: General—securzty,
zntegrzty and protection; K.6.5 [Management of Computing and Information Systemsl:
Security and Protection

General Terms: Security

Additional Key Words and Phrases: Formal security models, information security, multilevel

secure databases

Thm work has been supported by IBM, by NSF under a Presidential Young Investigator award,

and by ARPA and Rome Laboratories under contract F30602-92-C-0140.

Authors’ addresses M, Winslett, Computer Science Department, University of Illinom, 1304

West Sprm@leld Avenue, Urbana IL 61801; emad: winslettt~cs.uluc, edu; K Smith, Mitre

Corporation, 7525 Colshire Drive, McLean, VA 22102; emad: kps(yrnitre.erg; X. Qian, SRI

International, 333 Ravenswood Avenue, Menlo Park, CA 94025, email: qian@csl.srl.tom,

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for dmect commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice M given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to repubhsh, requires a fee and/or

specific permission.

C 1994 ACM 0362-5915/94/1200-0626 $03.50

ACM TransactIons on Database Systems, Vol. 19, No. 4, December 1994, Pages 626-662

http://crossmark.crossref.org/dialog/?doi=10.1145%2F195664.195675&domain=pdf&date_stamp=1994-12-01

Secure Relational Databases . 627

1. INTRODUCTION

Research into database security models is still in its infancy. Current security

proposals can be broken into two groups, those that offer “discretionary”

access controls (the usual type of security that comes with current-day file

systems and databases) and those that impose “mandatory” controls. Recent

work in role-based security for databases that need discretionary access

controls is promising for many applications, although it may not by itself

offer enough facilities for applications with heavy security needs. At the other

end of the spectrum lies research into the tightest type of security: mandatory

multilevel security. Most proposals for multilevel secure (MLS) relational

databases have utilized syntactic integrity properties to control problems that

arise in the presence of very tight security, such as polyinstantiation, perva-

sive ambiguity, and proliferation of tuples due to updates, with only partial

success. We believe that many of the MLS problems can be resolved by

directly addressing the question of what an MLS database means, rather

than making syntactic adjustments to avoid semantic problems.

In the following section, we will first explain the relevance of our work for

discretionary security. We then give an overview of the basic concepts of

mandatory security, and explain the relevance of our work for mandatory

security. Section 3 explains our formal semantics for secure databases.

Sections 4 and 5 define query languages for secure databases, and show that

they satisfy mandatory security. Finally, in Section 6, we summarize our

results and describe future work.

2. RELATED WORK IN DATABASE SECURITY

2.1 Discretionary Security

In the past, database researchers have largely side-stepped the question of

security, and commercial DBMSS have typically been able to satisfy their

customers with relatively simple security facilities offered on a per-table

granularity. However, this situation is likely to change in the future, as

enterprises move from having local islands of database automation to having

an enterprise-wide information backbone (composed of cooperating heteroge-

neous databases), and then to direct sharing of information between enter-

prises on the Internet. As the legitimate direct sharing of information

increases, so does the potental for violation of privacy and inappropriate

disclosure of corporate assets, and so does need for careful control of dissemi-

nation of information through security measures.

For example, consider the demands that will be placed on a hospital

patient database in the relatively near future. Medical insurers in a fee-for-

service scenario need the hospital’s information on patient treatments in

order to process claims and issue payments. In the future, direct sharing of

that information could save both hospitals and insurers an enormous amount
of money. However, an insurer should not have access to records of patients

insured by other companies, or to other information not needed for processing

its own claims.

ACM Transactions on Database Systems, Vol 19, No. 4, December 1994

628 . Mananne Wlnslett et al

In addition, hospitals routinely make public certain information about their

patients. However, some patients may have reasons to request anonymity

when they check into a hospital; for example, they may wish to avoid the

scrutiny of the press. For these reasons, hospitals allow generally any patient

to supply an alias, an assumed name, when they arrive at the hospital, or

resort to other measures to produce a coz)er story for public consumption. A

cover story is misinformation about the correct value of a set of attributes,

promulgated at “lower” security levels in order to hide information known at

“higher” levels. For example, a famous person being treated for a socially

unacceptable ailment or procedure X might use an assumed name, or might

have a more acceptable ailment or procedure Y, such as “exhaustion,” be

given as the cause of admission. For the cover story to hang together,

however, all publicly available bits of information about the patient must be

consistent. For example, if it is known that the patient is being treated by a

specialist in X, or is on the X ward, then an announced diagnosis of Y will not

be credible. Furthermore, the cover story is for external consumption only,

and not for use inside the hospital in, for example, dispensing drugs, or in

disclosure to insurance companies. Thus one version of reality is available to

the public, another to hospital staff, and a subset of the latter information to

outside agencies such as insurers.

When these different versions of reality are mixed together in a single

database or collection of databases it is not so clear what the database really

means. For example, the question What is this patient’s diagnosis? should get

different answers, depending on who is asking the question (e.g., the patient’s

nurse, versus a reporter). However, there is also a need to be able to ask

questions relative to others’ viewpoints; for example, the nurse might need to

ask, If a reporter asks for the diagnosis of this patient, what will the answer

be? to check for the presence and credibility of a cover story. The inverse

question asked by a reporter, If a rlurse asks for the diagnoszs of this patient,

what will the answer be? should be handled in yet another way. Our seman-

tics for secure databases and our proposed extensions for secure query
languages address these concerns by giving formal recognition to the possibil-

ity of multiple versions of reality housed in a single database (or in multiple

cooperating databases).

Note that in general it is not possible to preserve privacy and maintain

security by simply omitting information. For example, suppose a reporter gets

a yes-or-no answer to the question Is Jane Doe a patient at this hospital? but

in reply to the question Is Michael Jackson a patient at this hospital? is told
1 am sorry, but I cannot dzvulge that information. The absence of an answer,

i.e., the omission of information, is sufficient in this case to give away

information and probably compromise confidentiality. As a more abstract

example, suppose a person is attempting to ascertain the value of attribute A

of a tuple t in a relational database, but is not permitted to read the value.

On attempted access, the DBMS might return an “access denied” message,

but as described above, this approach may convey too much information

about the value of t.A. As a alternative, the system might plant a cover story

to hide the actual value of attribute A, by replacing the actual value of t.A by

ACM TransactIons on Database Systems, Vol. 19, No 4, December 1994

Secure Relational Databases . 629

a null value. However, this approach may also divulge too much information.

The user, on seeing a null value for t.A, may try innocently or maliciously to

update t to replace the null by a concrete value. If the update request is

rejected, then the fact that the null really means “access denied” has been

divulged. If the update request is accepted, then the DBMS has actually got

to maintain two different values for t.A, so that the user will see the value for

t.A that he or she expects, after the update has been committed. At that

point, the DBMS is storing multiple versions of reality, and the exact

meaning of the data in the system is unclear.1

We believe that the most promising approach to security for applications

with strict security requirements is role-based security [Rabitti et al. 1991;

Ting et al. 1992], in which access to data items is allowed or prohibited based

on the role or roles in which a user is acting. Our eventual goal is to offer a

sound semantic treatment of cover stories for a role-based system. In this

paper, we take the first step toward that goal, by formalizing semantics and

query languages for databases under mandatory security.

2..2 Mandatory Security

The proposals for a multilevel secure relational model [Jajodia and Sandhu

1991; Haigh et al. 1991; Denning et al. 198’7] implement the policy of

mandatory protection defined in Department of Ilefense [1985] and inter-

preted for computerized systems by Bell and LaPadula [1974]. Under manda-

tory protection, objects (data items) are assigned a security classification, and

subjects (active processes, users) are assigned a security clearance. Classifica-

tions and clearances are both taken from a common domain of access classes,

also known as labels or levels, which form a finite partially ordered set2 that

we will call the security hierarchy or, when clear from context, simply the

hierarchy. For example, labels Top Secret (2’’S), Secret (S), Confidential (C),

and Unclassified (U) are widely used. For two labels c1 and Cz, if c1 > C2 in

the partial order, we say c1 is “higher than” or “above” Cz. If c1 > C2, we say

c1 dominates C2.

The Bell-LaPadula model imposes the “no read up, no write down” restric-

tions on accesses by subjects. Subjects are only permitted to read from a level

dominated by their own; subjects are only permitted to write to a level that

dominates their own. This is sufficient to prevent subjects from passing

information directly downward through the security hierarchy, as required by

the mandatory policy.

NILS relational models (e.g., Jajodia and Sandhu [1991], Haigh et al.

[1991], and Denning et al. [1987]) have implemented the no-read-up and

‘ The moral of th,s particular example may be that users should not have update authorization
for attributes whom ‘(real” values might not be visible to thcm.

2 Some work in mandatory security places additional requirements on the poset, such as a

requirement that it be a lattice [Denning 1976]. However, these properties are not needed in our

work.

ACM Transactions on Database Systems, Vol. 19, No 4. December 1994.

630 . Marianne Winslett et al

no-write-down restrictions by associating labels with the elements of’ a rela-

tion, such as tuples and fields. Only tuples with labels dominated by that of a

user are visible to that user. Therefore different users see different versions

of a relation, depending on their access class. A subject may only update,

delete, or insert items having his or her own labels Relations in which tuples

are visible based on their access class are called MLS relations.

There are a number of similarities between roles and this system of labels

and access restrictions. The security labels for subjects are somewhat like

roles for users. Each of these “roles” has a fixed set of access privileges

associated with it: users can write information labeled with their own label

and read information with a label dominated by their own label. However, in

practice, roles capture “need to know” information, and security labels cap-

ture an orthogonal kind of information. In a system offering both facilities, a

user would only be able to read a data item if his or her label dominated that

of the item and if he or she was in a role that had read authorization for the

item. Furthermore, mandatory security involves additional considerations not

present in a pure role-based system: beyond the obvious restrictions on

queries and updates, mandatory security has a profound impact on the

architecture of MLS DBMSS, because indirect means of downward informa-

tion flow, called covert channels, must also be prevented. For example, if a

service of the database is denied to a subject based on the presence of a tuple

at a higher level, the subject can infer its existence, resulting in downward

information flow. With respect to security, more is at stake than inferring the

presence of a particular tuple. The success or failure of the service request

can be used repeatedly to communicate one bit of information to the lower

level. Therefore, any information visible at the high level can be sent through

the channel.

The problem of polyinstantiution arises through the avoidance of a covert

channel. If a user inserts a tuple with key k, a user from a lower level cannot

be prevented from inserting a different tuple with key k at a later time, as

refusing the later insertion would open a covert channel. As a result, MLS

relations can contain multiple tuples with the same key value, known as

polyinstantiated tuples. This problem has been addressed in previous models

by means of syntactic integrity properties, which control the extent and form

of polyinstantiation (e.g., Jajodia and Sandhu [1990; 1991] and Sandhu and

Jajodia [1992]).4

We will begin our survey of related work in mandatory security by address-

‘~Many applications using mandatory security allow subjects to perform writes to data at higher

levels In a database context, however, writing-up is usually prohibited, as (at least in the

straightforward Implementation) it would allow subjects to completely overwrite data at higher

levels.

4 In our work, we seek a formal foundation for MLS databases that prevents polyinstantlatlon

from becoming an Issue. From a practical perspective, one could try to achieve this goal by

designing the schema so that individuals authorized to update a relation or attribute have labels

that allow them to see all the values that could ever appear m that relatlon, so that polyinstanti-

atlon is not needed.

ACM TransactIons on Database Systems, Vol 19, No 4, December 1994.

Secure Relational Databases . 631

ing two high-level questions: what does “MLS data semantics” mean? and

why is it important? We then survey other uses of modal logic in security

research, and then discuss issues relating to data semantics in MLS

databases.

2.2.1 Data Modeling versus Semantics of Data. When we say that we are

working on the problem of semantics for MLS databases, people often think

that we are working on the problem of data modeling for MLS applications.

For this reason, we will explain the difference between semantics of data and

data modeling, and show the utility of studying semantics of data.

We believe that the current situation in the MLS community is analogous

to the state of research on null values in relational databases in the late

1970s. The early work in the database community on the problem of null

values consisted largely of a stream of proposals and counterproposals for

what the result of a query should be when the database contained nulls.

These early proposals were operational in nature—they explained how a

query against such a database should be evaluated. Confusion reigned for

quite a few years, with each approach appearing to have its own semantic

problems.

Then researchers realized that the “bugs” in proposals stemmed from a

lack of understanding of what null values meant. People realized that nulls

were not just additional values in an attribute domain: a new definition was

needed for what a database containing nulls meant, before anyone could talk

about how queries could be evaluated, or what updates might mean. Several

solid proposals for the semantics of different kinds of nulls were quickly put

forward, and the theoretical understanding of null values quickly solidified.

Today null values are a “mature” research topic in the database world.

Quite separate from the question of what nulls meant was the issue of

semantic data modeling for applications that may have nulls. Work in that

area addressed the question of when and where applications should allow

nulls to appear as values, and offered means of expressing limits on the

appearance of nulls as annotations to an entity-relationship or relational

schema. This work was clearly useful, and its completion did not hinge on the

development of a semantics for nulls.

In our opinion, the current state of affairs in research into databases

obeying mandatory security has overtones of the long-ago null values sce-

nario. There has been a great deal of examination of the question of what

should constitute a legal instance of an MLS relational schema, and many

operational semantics for SQL operations over MLS databases have been

proposed. No obvious winner of the MLS “data model wars” has appeared,

and the models themselves have undergone steady revision over the years.

We believe that the main source of difficulties, as with null values, has been a

lack of examnation of the question of what an MLS database really means. A

null is not an ordinary value in an attribute domain, and neither is a security
label. From our point of view, the introduction of security labels radically

changes the meaning of a database, and a suitable semantics is needed before

other questions will find thoroughly satisfactory answers.

ACM Transactions on Database Systems, Vol. 19, No 4, December 1994.

632 . Mananne Wlnslett et al,

In parallel with the MLS data model wars, research has also been address-

ing the problem of semantic data modeling for MLS applications, through, for

example, additions to ER modeling paradigms to allow expression of the need

for a cover story for an attribute (e.g., Smith [1990] and Thuraisingham

[1992]). This work has been moving along smoothly; semantic data modeling

for MLS databases and semantics of MLS databases are two different prob-

lems that can be addressed in parallel, just as the questions of schema-level

modeling of nulls and the meaning of nulls are separate.

2.2.2 Modal Logic m Database Securz ty Research. We know of several

other efforts to use modal logic to help with security issues in databases.

Modal logic is just a tool, not a solution approach, and so these other authors

have used modal logic to explore questions different from those that interest

us here. We briefly survey these efforts below.

Glasgow et al. [1992] use a modal logic of knowledge as the basis for

specifying and reasoning about secure distributed systems. Their paper con-

siders multilevel security in general, and applies their techniques to a

database example: the question of describing Seaview’s policy of mandatory

security and integrity. Their interest is in security policy description, rather

than in the database concerns of query languages addressed in this paper.

Bonatti et al. [1992] use a modal logic of knowledge, belief, secrecy, and

allowability to address an aspect of the inference problem [Akl and Denning

1987; Su and Ozsoyoglu 1987; Binns 1992a; 1992b; 1993]. Bonatti et al, do not

consider multilevel security in the sense that we do here—their propositional

facts are either secret or nonsecret—but their techniques could certainly be

applied to MLS relational databases. Under Bonatti et al.’s approach, the

DBMS knows which facts are to be kept secret from a user, and also knows

the inference rules and pieces of knowledge that would allow a user to put

two facts together and conclude a third. The job of the DBMS is to keep a

transcript of the interactions between the DBMS and the user, and to answer

user queries using the following strategy: if answering an incoming query

truthfully would allow a user to conclude a secret fact correctly (based on

previous information given out, plus the current answer), then the DBMS can

either refuse to answer or, if a refusal would give away secret information,

lie. Bonatti et al.’s approach is very interesting; in an MLS context, its

dangerous assumptions are that the user knows no more than the DBMS

does about possible inferences, and that the user does not share information

with other users who have had separate dialogs with the DBMS (as answers

to the same query might be different in different dialogs).

An earlier but very similar piece of work to Bonnati et al.’s was conducted

by Sicherman et al. [1983]. They also consider the problem of keeping facts

secret, but the only strategy that the system is allowed to use is that of

keeping silent. The authors use a nonmodal formalization of the problem.

Cuppens [1992] has used a modal logic of allowability and knowledge to

investigate the aggregation problem. This problem arises when individual

data items in a grouping are classified at one level, but the grouping as a

whole is classified at a higher level; the canonical example is an organiza-

ACM TransactIons on Database Systems, VO1 19, No 4, December 1994

Secure Relational Databases - 633

tional phone book which is to be kept secret, but whose individual entries can

be given out to those who request them. Cuppens’ approach has much in

common with the Bonatti and Glasgow papers described above, as he uses

modal logic to give a nice formalization to the otherwise nasty problem of

aggregation. As in the other papers described above, Cuppens’ interests do

not extend to query languages. Our work does not address either the infer-

ence problem or the aggregation problem.

2.2.3 The Need for Semantics in Secure Databases. We believe that any

proposal for a secure relational model, under either discretionary or manda-

tory security, that presents different users with different versions of reality

should include the following elements:

(1) A formal definition of the security properties that databases under this

model will possess.

(2) A definition of the syntax of databases under the model.

(3) A semantics for databases under the model that can be used to reduce a

database containing multiple versions of reality to a set of single-level

databases, each database representing the beliefs about the state of the

world held by the users at a particular security level.

In other words, given a secure database, one should be able to answer the

question what do the subjects having role/label 1 believe to be the current

state of the world? In any ordinary (single-level) relational database, this

question has a trivial answer: the users believe that the state of the world is

exactly that given by the tuples in the database. Our approach to secure

databases rests on two assumptions: first that all the subjects at a particular

level can agree on the current state of the world, restricted to the database

schema, and second, that it is possible to set out, in a formal language, a

policy specifying exactly how to construct that state of the world by combin-

ing beliefs which are explicitly stated by subjects at that level, plus selected

pieces of information drawn from the world states believed in at lower levels.

In the remainder of this section, we will show how lack of such a semantics

leads to problems in databases that store multiple versions of reality, includ-

ing current NILS models. In our examples, we will use the recent model of

Jajodia and Sandhu [1991]; the problems we describe are present in other

MLS models as well. Under the model of Jajodia and Sandhu [1991], security

labels are attached to individual fields of a tuple, and a subject is only able to

read a particular tuple field if the subject’s label dominates that of the tuple

field.

Semantic Ambiguity. An MLS relation does not always have a single

semantic interpretation. For example, Figure 1 shows an instance of the

relation scheme SOD (Starship, Objective, Destination), where Starship is

the key, as an MLS relation under the model of Jajodia and Sandhu [1991].

Consider the two polyinstantiated tuples sharing the attribute value ‘Enter-

prise’. These tuples can be interpreted in at least two ways:

—They represent two different levels of secure understanding of a single

starship named Enterprise: the first tuple gives the perspective of an

ACM TransactIons on Database Systems, Vol 19, No 4, December 1994.

634 . Marianne Wlnslett et al,

Still’slllp h’liihl]i~) Ol),jwt IVP 01) j(’(’l lye I)wtllliitiotl I)c+littat]ol] ‘I’1l})1(’

Cl;ihk (’1.1s. (’1:1s. (’lab\

I; IIIOI l)riw 1“ I;xl)lc)laliol! 1 \’lll (All 1’

l’~tltf,rl)lih((’ I)il)lot,lacy (Rllllllll!ls (’

Fig. 1. One schema and instance for the secure SOD relation.

unclassified subject, and the second tuple gives the perspective

dential subject.

u

of a con fi-

—Two entirely different starships exist, both (unfortunately) with the name

Enterprise; one tuple refers to each ship.

One might like to know whether C subjects believe that there is one Enter-

prise or two, or are unsure.

Additionally, there is the question of what S subjects believe about the

Enterprise—do they agree automatically with beliefs from the C’ level, the U

level, or both? The question becomes more difficult if, for example, the two

tuples in the example came from parallel levels Cl and C’z that are directly

dominated by S. If Cl and Cz hold conflicting beliefs, then what is the policy

that determines the beliefs of S subjects?

Query Ambiguity. In Figure 1, when a C subject asks:

SELECT Destination
FROM SOD
WHERE Starship = ‘Enterprise’;

what should be the answer? One possibility is ‘Romulus’, because that is the

value associated with that user’s security level. Another answer could be

‘Romulus’ and ‘Vulcan’, because that is the exhaustive list of all values

associated with destinations of Enterprises in the database. Current MLS

proposals do not address the question of whose beliefs are to be consulted

when answering a query; typically they include all visible beliefs when

processing a query.

In the case of a more complicated query, the ambiguity becomes more

acute: current proposals will join together two tuples with different security

labels, even in the common case where it is clear that no subject at any level

would believe that the joined tuple reflects the state of the world correctly.

For example, let us consider the question of which starships are conducting

exploration on Romulus. This query can be written as

Ships Exploring Romulus

= ‘Starship ~~blec~lue= ‘Exploratlon>A Destlnatlon = ‘ROmulus , (SOD).

One might also express the query as

More Ships Exploring Romulus =

‘Starsbzp ‘o bJectzue= .ExP1o,at,un> (SOD) n TStarship wDestlnat LOn=’Ftomulus’ (SOD),

ACM Transactions on Database Systems, Vol. 19, No 4, December 1994.

Secure Relational Databases . 635

Fig. 2. Tuple proliferation upon update.

a phrasing which might come about through the use of 4GL code and view

definitions. Under ordinary relational algebra semantics, the answer to

ShipsExploringRomulus is the empty set, but the answer to the “equivalent”

query MoreShipsExploringRomulus is ‘Enterprise’, even though no one be-

lieves that the Enterprise is conducting exploration on Romulus.

Should these dubiously joined or intersected tuples contribute to a query

answer? In current proposals for a MLS relational model, the semantics given

for the query language is limited to a description of the “filter function” used

to screen out higher-level information that the user should not be allowed to

see. There is no built-in mechanism for specifying whose beliefs a query Q

should be evaluated over. Thus Q will generally be evaluated over a mish-

mash of information from different levels, and the answer to Q might not be

believable from any single subject’s perspective. Even if a user wished to spell

out conditions in Q, so that Q would only be evaluated over his or her beliefs

about the state of the world, this would not be possible because there is no

definition of exactly what those beliefs are, nor any easy way of specifying

them.

Intuitively, if a user from level 1 asks a query Q using ordinary SQL, we

would like to answer Q with respect to 1’s beliefs about the current state of

the world. It should also be possible for an l-level user to ask questions about

what lower levels believe to be the state of the world. In other words, an

S-user should be able to ask Where is the starship Enterprise going? and be

told that the Enterprise is heading to Pluto, if that is what S people believe.

The user should also be able to ask Where do Unclassified users think that the

Enterprise is going? and receive a (possibly different) answer. Our proposed

query languages will make these queries easy to pose.

Proliferation of Tuples Due to Updates. In Denning et al. [1987] an update

can introduce a number of new polyinstantiated tuples that is exponential in

the number of security classes involved. Jajodia and Sandhu [1991] eliminate

much but not all of this proliferation, as in the following update to Figure 1

by a TS-user:

UPDATE SOD
SET Destination = ‘Pluto’
WHERE Starship = ‘Enterprise’:

As Figure 2 shows, the number of Enterprise tuples doubles after this update

is performed. If the two Enterprise tuples refer to different secure under-

ACM Transactions on Database Systems,Vol. 19, No. 4, December 1994

636 . Marianne WAnslett et al.

standings of one ship, this update can be interpreted to mean that the

TS-user is adding a still-more-secure understanding about the destination of

the Enterprise. Doubling the number of tuples does not seem necessary to

add this understandings

The common theme in the problems just described is the lack of semantics

underlying the MLS relational model. Without a semantics, syntactic issues

cannot be resolved through connection to the semantics. For example, polyin-

stantiation has posed such a thorny issue because it is not clear what

polyinstantiation means.

Our earlier work on this problem appeared in Smith and Winslett [1992al,

where Smith and Winslett introduced the idea of database interpretations

(with a somewhat different definition than that used in this paper). In that
paper we also gave a syntax for multilevel SQL, without cross-level joins. In

this paper we have improved the syntax for multilevel SQL, changed the

intended meaning of some operations, permitted cross-level joins, and given a

formal semantics for the resulting queries, We have also addressed the

question of other formal query languages, such as secure relational algebra,

and given a semantics for them.

In other related work of ours [Qian 1994a; 1994b], Qian brings a belief-based

perspective to bear on the problem of multilevel integrity constraints. In Qian

and Lunt [1992], we also show how to retrofit our semantics to one particular

class of MLS relational models.

3. A SEMANTICS FOR SECURE RELATIONAL DATABASES

In this paper we distinguish between the semantic and syntactic aspects of

secure databases. This section describes a semantics for secure databases. In

particular, we define an interpretation (in the logic sense) of a secure database,

which draws on Kripke models [Chellas 1980] with a simple, nonlogic-based

presentation. Our database interpretations are simple and easy to under-

stand, and can be used to give meaning to syntactic features and to opera-

tions. Our interpretations can serve as a lingua franca underlying others’

syntax, providing a means of information interchange between secure

databases that use different syntax through a common understanding of the

meaning of that syntax. In this section, we will present our approach using

the terminology of multilevel secure databases, i.e., mandatory security;

however, we intend this general approach to also be extensible to the role-

based systems of the future.

‘In the SeaView system [Denning et al, 1987], all these tuples are not stored dmectly m the

database. Rather, at the physical schema level, each relation is decomposed into a set of

fragments, so that each fragment contains only reformation at a single level (plus the key). Then

at run-time, all the fragments whose labels are dominated by that of the current subject are

]omed together m a many-way join. The subject IS presented with that entire relatlon, and it is

up to the subject to determme which tuples m the relation are actually true of the world, which

are believed only by others, and which are not believed by anyone and are merely part of the

aftermath of joining together reformation originating at different levels,

ACM Transactions on Database Systems, Vol 19, No. 4, December 1994

Let us

relational

Secure Relational Databases . 637

present first a formal underpinning for ordinary (single-level)

databases. We will then extend that definition to the secure case.

3.1 Formalizmg Ordinary Relational Databases

Assume we are given a finite set of named domains, DI, ..., D~, each consist-

ing of a set of values. Then a relational database schema takes the form

{RIM,, :D,,,..., -&nl :Dlnl), Rm(Aml. ~ml, . . ., A :Dm~,n)},~~,n

where each R, is the name of a relation; A,, is the name of a unique

attribute of relation R,; and D, ~ is the domain of attribute A,J (that is, one of

Dl,.. ., D~). A relational database instance corresponding to this schema is

an assignment of a finite subset of D,l x “.” x D,., to each relation R, of the

schema. We will often use the term relational database to refer to the

combination of a schema and an instance; the meaning will be clear from

context.

A database schema may also include information about integrity con-

straints that the database must satisfy, such as key and referential integrity

constraints. These constraints can be described using an extension of the

query language, or by special-purpose constructs. We will not dictate a
particular form for expressing integrity constraints, because they will not be

a matter of concern in this paper.

Because we are interested in secure databases, we must add a final set of

features to the database schema, to describe relevant facts about security.

Intuitively, we want the schema to describe the security hierarchy of the

application domain, and to say what the security label is of the information in

the current database. We will do this by requiring that the schema contain

several special relations.

First, we require the existence of a domain called Labels, whose values are

all the different security class names in the security hierarchy. We assume

that a partial order is defined on Labels, so that 1>1’ holds iff 1 dominates

1’. Then, we require the schema to contain two unary relations,

Anyone(label : Labels) and Self(label : Labels). In the ordinary relational

databases formalized in this section, all database users have the same

security clearance 1, and the instance for Self must be {(1)}. IrI other words,

Self gives the level of the subjects whose complete beliefs are contained in the

database. We will say that the database has label 1. Similarly, the instance

for Anyone must contain all security classes 1’ such that 1>1’.6

Note that our formal treatment does not allow null values, just as ordinary

relational algebra omits consideration of nulls. Null values may be included

in the formal treatment by formalizing them in one of the standard manners

bAlthough Self could be computed on demand from Anyone using rnax, we will include Self

explicitly in the schema, as It will not ever be updated and is very useful in queries.

ACM TransactIons on Database Systems, Vol. 19, No. 4, December 1994.

638 . Mananne Wlnslett et al.

(e.g., Zaniolo [19841, Liu and Sunderraman
[1984].7

3.2 Formalizing MLS Relational Databases

[1990], and Imielinski and Lipski

Under our semantics, intuitively the interpretation of an MLS database is a

set of ordinary relational databases, one database for each label in the

security hierarchy.8 The databases all share the same schema,g and each

database is tagged with its label. Additionally there is a binary relationship

between databases in the interpretation, which holds exactly when the label

of the first database dominates the second, according to the security hierar-

chy. From the properties of the security hierarchy, it follows immediately that

the binary relationship is reflexive, antisymmetric, and transitive.

Superficially, this approach may look like database-level labeling of infor-

mation; however, that perspective is incorrect. The label on a database

indicates the label of the subjects who believe that the contents of the

database describe the state of the world accurately. The information in the

database may have come from sources at many different levels, and thus may

have many different security classifications. For example, an S subject may

agree with some U beliefs, such as an unclassified list of zip codes. Although

the zip codes have security classification U, both U and S subjects believe

that the zip code information is correct, and both will include the zip codes in

the database of beliefs at their level. For applications where it is important

for users to see the actual classification of information, we would expect to

see an additional column or columns in the relational schema, so that

subjects having clearance 1 could see the classification 1’ of each piece of

information. The issue of tracking classifications of information is an interest-

ing topic in its own right, and it would be possible to include direct support

for it in a semantics like ours, but as it is orthogonal to our concerns in this

paper, we will not consider it further.

The database tagged with a particular label contains the total beziefs of the

subjects having that label about the state of the world reflected in the

7We have omitted nulls because they cause a divergence between syntax and semantics of

ordinary relational databases, In particular, under most formal models for nulls, a single

(syntactic) database with nulls corresponds to a set of the database instances defined above—one

instance for each possible choice of values for its nulls—rather than to a single instance. This

complicates the definition of relational algebra, and means that a single (syntactic) MLS

database with nulls would correspond to a set of ordinary relational instances, with one or more

instances per level. By omitting nulls, an MLS database in our model wdl correspond to a set of

ordinary relational instances, with exactly one instance per security class. Because nulls are

omitted m the formal treatment, we hope to keep the formalities more palatable to the reader not

already familiar with the cornphcations of null values, without depriving other readers of any

new twists on the treatment of nulls.

‘There is the potential for confusion between the syntactic MLS database and Its interpretation

as a set of databases. We use the term “database” to refer to a database at a level of the

interpretation.

9If different schemas are desirable at different levels, thm can be accomplished using techniques

similar to those used in the SeaView project [Denmng et al. 1987]. The issue of different schemas

at different levels is orthogonal to our proposal for semantics.

ACM TransactIons on Database Systems, Vol 19, No. 4, December 1994.

Secure Relational Databases . 639

““”7”””””” ““ /“”””””--””””””-””

database at level C

what sabjects at level C believe to b

the state of the world

‘* o~Qoo

o (-JO *o

sul$wts at level Udatabase at level U
what subjwts at level U kelieve to b

the state of the world

Fig. 3. Relationships between subjects and databases of different levels.

schema. 10 We use the term “belieP because subjects with different labels may

make different statements about the value of the same attribute for the same

entity.

The binary relationships between databases in an interpretation are moti-

vated by Figare 3, which shows subjects and databases for three linearly

ordered levels: S, C, and U.

A subject belzeues only the contents of the database at its own level, as

represented by the thick arrow in the figure from a circle (a subject) to a box

(the database) at the same level. The subjects of each level see what they and
the subjects of each lower level believe, as represented by the thin arrows

from subjects at one level to the databases at lower levels. A subject may see

10 We use the term “belier in an intuitive manner here, not in the technical sense of modal logic

models of belief, which are not necessary in this simple application.

ACM Transactions on Database Systems, Vol. 19, No 4, December 1994.

640 . Marianne VVinslett et al

sol) S<’1(

,s1<11’s/1;/) ()/),;((’/ 11(, lxmr~ CII!zl
I’:tlt(upll;’ l)lplol)ldo” 1/(1[1111111. ~

sol) S(II

,5’(,11,./1ip ol),j(,(ti~(/)(’./lll<lll(JJl] El
}:llt(,lprii I)iplollla(”,v = LZ

sol) S(I1
,Stdl,. hip ()\)jt>((;I <, I)mtlllalioll

m
Itlltf,l’/)r’lhf, Exploration \’lll(> ill

m

.\ll}(llll’

Em

El
,s
(’

1

.\ll,lo[l(,

Cz!zi

n(’

[

.\l!>(lrll

PzIz

m

Fig, 4. The interpretation of a starship’s database

many tuples that it does not itself believe. The information about which

databases are visible from which levels is embedded in Self and Anyone.

Formally, an MLS database consists of a relational schema, as defined

above, plus an interpretation:

Definition 3.2.1. An MLS interpretation I over schema S is defined by

1= u 1,,
1~ Labels

where each 11 is an ordinary relational database over S with label 1. We will

say that 11 is the database at level 1 or the interpretation at level 1.

For example, Figure 4 shows an interpretation that might correspond to

the syntax presented in Figure 1.
Database access privileges for subjects are summarized below:

(1) Update Access: a database update request (insert, delete, update) from a
subject can only alter data in the interpretation at the subject’s own

level.

(2) Read Access: a query from a subject at level 1 can access data from
exactly those databases whose label is dominated by 1.

The read access rule corresponds to the Bell-LaPadula simple property: a

subject can retrieve exactly what it can see that someone believes. The

ACM TransactIons on Database Systems, Vol. 19, No 4, December 1994,

Secure Relational Databases . 641

update access rule states that a subject can change its own beliefs, but no one

else’s. The update access property is stronger than the Bell-LaPadula +c-prop-

erty; the latter is semantically tailored to message-passing systems, where it

would not violate security to allow a lower level to append a message to a

higher level’s message queue. We will consider queries and updates in more

detail in Sect-ion 5, including the ability to specify in a query just whose

beliefs the query is to be evaluated against.

It is important to note that the beliefs held by the subjects at level 1, as

described in the interpretation, are not cumulative. In other words, subjects

at level 1 do not have to believe anything that is believed at the levels below

them:ll each level of the interpretation holds the complete beliefs of the

subjects at that level. Often, current MLS relational model proposals seem to

assume, with out ever actually stating so, that tuples assigned lower-level

labels are sometimes believed by subjects at higher levels, i.e., that beliefs are

cumulative in some way. One of our goals in this work is to make all

assumptions regarding cumulativeness explicit, in the form of integrity con-

straints. Without such a provision, it is not possible to state unambiguously

what beliefs are held by the subjects at each level.

We anticipate that integrity constraints12 will be used extensively to relate

information believed by subjects at different levels. The integrity constraints

will form an official policy for the database, stating in a declarative fashion

how beliefs held at higher levels must relate to those held at lower levels. For
example, a typical integrity constraint might say that the subjects at level 1

agree with all the beliefs (tuples) in relation R at the levels immediately

below 1’, except when such an agreement would lead to a key conflict or

referential integrity violation at level 1 [Qian 1994a]. Or, a constraint might

state flatly that all levels must agree completely with the beliefs held at level

U regarding, e.g., the ZipCode and LocalPlanets relations. One can use these

cross-level constraints to restrict the amount and form of polyinstantiation,

and the permissible uses of cover stories.

In an MLS context, the constraints can be enforced in a variety of ways,

without violating mandatory security [Costich and McDermott 1992].

Database-integrated production rules, such as those implemented within

Starburst [Widom and Finkelstein 1990] and Postgres [Stonebraker et al.

1988], have recently been integrated into the MLS database framework

[Smith and Winslett 1992b]. We anticipate that triggered rules will be the

.-
llAn integrity constraint may require subjects at level 1 to hold some of the same beliefs as are

held at a lower level 1’, as described later. In this case, part of the mterpretation at level 1’ will

be duplicated at level 1, so each level of the interpretation still holds the complete behefs of the

subjects at that level.

lZ Our earlier discussion of integrity constraints considered only single-level integrity con-

straints, such as are found in ordinary relational databases. Here we are referring to cross-level

integrity constraints, which can be defined using the secure query language constructs in this

paper. For now, we ask the reader to assume tbe existence of a language with which one could

express cross-level constraints.

ACM Transactions on Database Systems, Vol 19, No. 4, December 1994

642 . Marianne Winslett et al.

enforcement mechanism of choice for many rules [Ceri and Widom 1990],

while some particularly common types of rules may have special-purpose

built-in constructs available at the syntactic level to declare and enforce them

(much as single-level relational systems usually have special support for

declaring and enforcing ordinary relational keys). We anticipate that secure

integrity constraints and enforcement policies will be a lively area of future

research. The big challenge in this area is to determine whether a set of

constraints has an enforcement policy that will not violate security by deny-

ing service to a user based on information not visible to the user (such as the

violation of a constraint at a higher level). Much attention has already been

paid by others to the problem of enforcing MLS key constraints in proposals

for an MLS relational model. For approaches to handling more complex

constraints, we refer the reader to our related paper [Qian 1994b]. In the

current paper, we simply assume that any integrity constraints for the

database have been compiled into an enforcement policy that will never

violate mandatory security.

Our approach to integrity constraints differs sharply from that of most

proposals for an MLS relational model, which build a variety of integrity

constraints directly into their model (e.g., “no entity polyinstantiation,” “at

most one cover story,” etc.). We do not believe that any one set of built-in

integrity constraints will be necessary and sufficient for all applications; each

of the MLS proposals to date has chosen a different set of built-in constraints.

By not including a required set of integrity constraints in our definition of an

interpretation, we make it possib~e for other authors to adopt our semantics

to give meaning to their MLS syntax: the authors need only express their

built-in constraints as integrity constraints, and supply a function to map

each instance of a database under their model to an interpretation.

The assumption of independence of beliefs held at different levels (limited

only by cross-level integrity constraints) does not have any implications for

the manner in which the database is represented syntactically. For example,

the chosen syntax may use attribute-level labeling. As mentioned earlier, any

current proposal P for an MLS relational model can be given a semantics, by
supplying a mapping from each database under proposal P to one of our

database interpretations. For example, Qian [1994a] uses this approach to

give semantics to a proposal that uses tuple-level labeling.

Just as our semantics does not restrict the choice of database syntax,

neither does it restrict the choice of database implementation. We anticipate

that most of the information believed at a particular level will also be

believed at the levels above it, and therefore a storage architecture that

avoids redundant storage of information will prove most appropriate from

that point of view (although other concerns may mitigate in favor of redun-

dant storage; see Froscher and Meadows [1989]). The repetition of shared

beliefs that is inherent in our semantics need not carry over into a redundant

storage representation. We believe that the semantic-level redundancy (i. e.,

the ability to query a complete and consistent world view, shared by all

subjects with a particular label) is needed to give the user an easy way of

understanding the content of the database.

ACM TransactIons on Database Systems, Vol 19, No 4, December 1994

Secure Relational Databases . 643

4. FORMAL QUERY LANGUAGE

In this section we present secure relational algebra, a formal query language

for use with the database interpretations defined in the previous section.

Syntactically, secure relational algebra is ordinary relational algebra, plus an

additional symbol B, which can be thought of as meaning “believes.” Then we

show how our technique of extension can be applied to any other formal query

language, including logic-based query languages.

In the remainder of the paper, we will use CL, b, c to denote constants; A,

B, C to denote attribute names; 1 to denote a constant that is a label; E to

denote a secure relational algebra expression (defined below); Q to denote a

secure query; @ to denote a selection condition; and R to denote a relation

name. Any of the above may be subscripted.

4.1 Secure Relational Algebra: Syntax and Semantics

We will use an inductive definition to define a secure relational algebra

expression (query expression for short). First, R is a query expression,

and so is the constant relation containing the m tuples

{(cll,..., can),..., (c~l, cm, }}. If El and Ez are query expressions, then

so are the following:

(1) Cartesian Product. (El x Ez);

(2) Union. (El U Ez), where El and -EZ both have arity n and have the same

underlying domain for their ith attribute, 1 < i < n;

(3) Difference. (El – Ez), where El and Ez both have arity n and have the

same underlying domain for their i th attribute, 1 s i s n;

(4) Projection. (El[Al,..., A,]), where each A, is an unambiguously refer-

ence to an attribute;

(5) Selection. (El[01), where + is a selection condition (defined below);

(6) Level Shift. (B[El] Ez), where El is a query expression whose result is a

unary relation over Labels.

Items (1) through (5) are the usual definition of relational algebra (see, e.g.,

Unman [1988] and Korth and Silberschatz [1991]), and we will not say much

about them here. Item (6) is new; intuitively, B[El] Ez poses the question

contained in Ez to the database at the level(s) determined by El.

Using an jnductive definition, the selection condition ~ occurring in E[~]

can be, as usual, any of the following:

(1) (tlop tz), where op is anyone of = , <, >, <, >, # , and each of tl

and t~ is a constant or an unambiguous reference to an attribute of E ;14

lSAL is an unambiguous reference to an attribute if A, is an integer between 1 and the arity of

El. As syntactic sugar, in our examples we will instead use references of the form A, where A M

the name of an attribute, or R. A, where R is a relation name and A k the name of an attribute.

wherever possible.

14We have assumed here that all comparators are defined across all domains. If this is not the

case, one must restrict the syntax by requiring that t~ and tz come from comparable partially
ordered domains.

ACM Transactions on Database Systems, Vol. 19, No. 4, December 1994.

644 . Marianne Wlnslett et al

From time to time, we will omit some of the required parentheses in query

expressions, using the usual precedence conventions.

We next define the interpretations (intuitively, the meaning) of query

expressions, by reducing them to ordinary relational algebra manipulations.

The interpretation of a query expression 1? at level 1 (written 1,??1) is a

relation defined as follows:

—Base Cases. IR It is the instance of R at level 1. Similarly,

I{(cll,..., cln), (cn,l,n, cmn)}limn)}li is{(cll,..., cl,,),(cml, c,cnln)}cnln)}.

—Cartesian Product. I(EI X Ez)lz = Ili’lll X Illzll.

—Union. I(E1 U I?Z)II = IEIII U l~zll.

—Difference. I(EI – Ez)ll = lE1l/ – IEZI1.

—Projection. I(EII AI, A~]Jll = lElll[Al, A,ll.

—Selection. I(El[@])ll = Il?lll[dl.

—Level Shift.

When IEl n Anyone I~ is the empty set, 15 i.e., there are no security labels

that satisfy El and are dominated by [, then the interpretation is the

empty relation, of the same arity as Ez .lG

How are these definitions different from the usual relational algebra? First,

we look at the interpretation of a query expression at a specifzc database

interpretation level; in ordinary relational algebra there is only one level to

consider. Second, our new level shift operator 17 asks for the query to be

interpreted at each of a set of levels. The syntactic restrictions given earlier

for projection, selection, union, and set difference guarantee in the usual way

that the interpretation of an expression is always well defined. Our treatment

15The intersection operator M defined as R (? S = R – (R – S), as usual

lbAn alternative, which we do not pursue here, is to let 1’ range over all of Il?l II and say that the

interpretation is undefined if

Under this approach, a run-time error will be generated if a user tries an illegal level shift, Note

that a level shift expression that only makes use of Anvone and Self (i.e., is posed in a manner

relative to the level of the issuer) could never cause a run-time error,

17We call our secure query laguages modal, due to the presence of the level shift operator, which

M called a modalzty. Semantics for modal languages are usually defined in terms of Knpke

models [Chellas 1980], that M, models consisting of interrelated possible worlds. In our context, a

Kripke model is a set of databases related to one another by the “dominates” relationship. Modal

operators are usually defined m terms of relationships between possible worlds, just as the

meaning of B depends on the < relationship between 1evels.

ACM TransactIons on Database Systems, Vol 19, No 4, December 1994

Secure Relational Databases . 645

of level shifts masks out any levels that are not visible from 1, so that the

user cannot shift to a higher level from a lower one and violate security.

If 1 is a security level, then (1) is a tuple containing 1, and {(1)} is a

relation containing the single tuple (1), A query (from level 1) is a formula of

the form 13[{ (1)}] E, where E is a query expression. (As syntactic sugar, we

will write 13[1]E as shorthand for B[{ (1)}] E when there is no possibility of

confusion.) Intuitively, when a subject at level i poses a question E, we

change the question to B[1] E (i.e., ask the question relative to 1’s beliefs) and

evaluate that as a query. II y having B[1] prepended automatically, the same

expression can be typed in by a subject at any level, to find out the query

answer from the perspective of that level: no tailoring is needed to adapt the

expression to the current subject’s level. The DBMS uses its knowledge to

prepend the correct level, rather than relying on an untrustworthy source for

that information.

We can now define the interpretation of a query Q = B[1] E. The interpre-

tation of Q, written IQl, is I-?3~. If E does not contain any level shifts, then Q

can be thought of as an ordinary relational query, applied to the database

instance at level /.

4.2 Secure Relational Algebra: Examples

We now give a series of examples to show the kinds of queries that can be

asked using secure relational algebra. Our example schema is SOD(starship,

objective, destination). These questions can be posed by a subject at any level,

using identical syntax; the DBMS will prepend B[1], where 1 is the level of

the subject, before answering the query, so that the query will automatically

be answered by examining the beliefs of the issuer.

(1) Find out (what I believe to be) the destination of the Enterprise.

(SOD[starship = ‘Enterprise’1)[destination 1

The syntax used here is that of an ordinary relational algebra query.

(2) List all starships that anyone believes to exist.

B[Anyone] (SOD[starship 1)

At each visible level, we determine the list of starships believed in at that

level, and take the union over all levels.

(3) Find all levels where someone believes that the Enterprise exists.

B[Anyone] (((SOD[starship = ‘Enterprise’]) X Self)[label])

The approach taken here is to check for the existence of the Enterprise at

each level, retaining only the name of the level when the Enterprise is

found. Only levels visible to the issuer will be checked.

(4) Find all starships that I do not believe in, but a lower level does.

(I3[Anyone – Self I(SOU starship])) – (B[self] (SOU starship 1JJ

ACM Transactions on Database Systems, Vol. 19, No. 4. December 1994

646 . Marianne Wlnslett et al

(5)

This example uses a query expression, Anyone – Self, to pick out the set

of lower levels and find what starships are believed to exist there. lS A set

difference is used to remove any starships that are also believed in at the

level of the issuer.

Find all starships that every level believes to exist. Queries with the word

euery are clumsy to pose in relational algebra, and this clumsiness carries

over to secure relational algebra; this query would be much easier to pose

in an SQL-style language than it is in relational algebra. As a first step

toward the solution, we will declare a view or a temporary relation (using

new syntax) that gives an upper bound on the answer: the set of all

starships that the issuer believes to exist.

MyStarships(starship) == (SOD[starship 1)

Next, we will determine which of these ships some other level does not

believe in.

NotBelievedIn(starship)

= (((MyStarships x Anyone)

– (B[Anyone] ((SOD[starship 1) X Self)))[starship 1)

From NotBelievedIn, we can create a list of the starships all levels believe

to exist.

EveryoneAgrees(starship) = (M-vStarships – NotBelievedIn)

(6) Find all starships that level C thinks that every level believes to exist.

B[C] EveryoneAgrees

This query forms a relation containing just the level C, and uses that

relation to pick out the levels where the query will be evaluated. If asked

by a user at a level that does not dominate C, such as level U, the

interpretation of the query is the empty relation.

4.3 Secure Relational Algebra: Properties

It will be easy to show that queries obey mandatory security (i.e., do not read

up). First, let us formalize the definition of a secure query language.

Consider an ordinary relational algebra query Q, with arity n, over a given

database schema S. Q can be thought of as a function from the set of all
instances of S to the set of all n-ary relation instances. In other words, given

a database instance 1, Q(1) is an n.-ary relation instance, the answer to the

query.

In the case of an MLS database, a query Q is a function that maps each

database interpretation I (containing one ordinary database instance 11 per

18 The expression Anyone in place of Anvone-Self would give the same answer in this example,

Similarly, B[Self](SOD[starship]) could be replaced by SOD[starsh Zp] without changing the

answer to the query.

ACM Transactions on Database Systems, Vol 19, No. 4, December 1994

Secure Relational Databases . 647

label 1) to an n-ary relation Q(1). We will write 1 I. z for the set of ordinary

database instances Ij = 1 such that j <1. To be secure, Q’s mapping must

not make use of information that is above the level of the issuer of Q.

Definition 4.3.1. Let S be a schema, 1 a security level, 1 and J database

interpretations over S, and Q a query over S posed by subjects at level 1. A

query language obeys mandatory security iff for all choices of S, 1, Q, I,

and J,

Q(l) = Q(J) whenever Il.l = Jl<l.

PROPOSITIONI 4.3.2. The secure relational algebra query language obeys

mandatory security.

Note that an implementation of a query language that satisfies Definition

4.3.1 might violate mandatory security, because the implementation might

allow covert channels or have other security-related bugs.

PROOF. Let E be a query expression over schema S to be evaluated at

level 1. Suppose that E does not contain any operations (project, select,

difference, union, level shift, product). Then IEl ~ is defined solely in terms of

11, that is, solely in terms of the interpretation at level 1. Therefore IEl ~ is the

same no matter what data are contained at higher levels.

Suppose now that E contains n >0 operations. IE I~ has an outermost

operation, either union, difference, product, selection, projection, or level

shift. Consider the case where the outermost operation is not level shift. The

argument(s) of the outermost operation each have n – 1 or fewer operations,

so by the inductive hypothesis, we can assume that their interpretations at

level 1 are defined solely in terms of the interpretations at level 1 and lower.

Thus IEl ~ is also defined solely in terms of those interpretations.

Suppose now that the outermost operation of E is a level shift: B[El] Ez.

Then by definition, IB[E11E21z = U ~lEz ltI, where 1’ = IEI n Anyonel~. Be-
cause Anyone contains only the labels <1, 1’ can only be the label of a

database interpretation at level 1 or lower. Further, by the inductive hypothe-

sis, we can assume that IEl I~ (i.e., the values that 1’ can assume) is the same

no matter what information is present at interpretations above level 1. By the

same hypothesis, we can assume that IEz 11, is the same no matter what

information is present at interpretations above level 1’. Since 1’ < 1, we have

that IEl ~ is the same no matter what the interpretations are of levels higher

than 1.

We conclude that the function represented by the query Q = B[1] E is

independent of the levels of the interpretation above 1, and therefore that

secure relational algebra obeys mandatory security. ❑

The proof of this proposition brings out an important point regarding the

composability of secure relational algebra. Suppose a query Q is to be

evaluated at level 1, and Q contains a subexpression E that is to be
evaluated at a level 1’ < 1. In other words, Q cent ains a level shift operation

that shifts the focus of the query to the database at a level other than that of

the issuer. In this case, the proof of the proposition shows us that IEl ~ is

ACM TransactIons on Database Systems, Vol 19, No 4, December 1994

648 . Marianne Wrnslett et al.

independent of information above level 1’. In other words, the innermost

clauses of E cannot refer to information at a level higher than 1’, even though

the query issuer is allowed to see level 1>1’. This property allows queries to

be evaluated in a manner that is not context sensitive, i.e., it is not necessary

to remember the level of the issuer, or levels previously visited, when

evaluating inner portions of a query.

Updates are usually omitted from discussions of formal query languages.

However, it is easy to see how to adapt a formal update language to the MLS

world: since, as we mentioned earlier, MLS subjects can only write to the

database at their own level, an update request received from a user can be

applied to the database at his or her level, using ordinary relational update

semantics. The presence of multiple levels does not affect the interpretation

of the update, except in choosing which tuples are to be updated, In the next

section we will show how this approach can be applied to SQL.

In a secure environment, it can be very useful to know what information in

a query answer can be passed on to a lower-level user. For example, suppose

an S subject asks a query Q, and then wants to communicate the results to a

U subject. How can the S user know what part of the answer to Q can be

shared with the U subject, without violating security? Under our approach,

such a decision is easy. The S subject should first ask the query B[U] Q,

which means, “What would a U subject get as the answer to my original

query Q?” and then communicate the answer to the U subject. From the

point of view of the query language, the S subject need not worry about

leaking secret information by mistake when this approach is used. Under

other proposed approaches to MLS queries, it is not clear how an S user

could safely communicate information in a query answer to a U user, except

by logging in again at the U level and reposing the query. Of course, even

with our formal query language, the system as a whole is only as secure as its

implementation, and achieving a leak-free implementation of any MLS sys-

tem is at best a daunting task.

Query languages are usually thought of as something to be applied to the

syntactic form of a database or knowledge base, producing a syntactic result.
Meaning is assigned to a query language by defining the result of a query in

terms of the interpretation of the database or knowledge base, as well as in

terms of the database or knowledge base syntax (and showing that the two

definitions are equivalent). In our case, this would mean defining a query

language for use with one or more of the proposals for MLS database syntax,

and then showing what the answers should be for queries in that language,
by defining their effect on the interpretation of the database. We have not

followed that approach in this section, because there are widely divergent

opinions regarding the appropriate syntax for an MLS database. Different

choices of syntax may, in our opinion, require different choices of query

language syntax. Thus we have bypassed the question of database syntax and

gone directly to the problem of interpreting queries, in order to present a
language with some universal utility. A query language designed for a

particular MLS synax can be given meaning by showing how it maps to one of

our formal languages.

ACM TransactIons cm Database Systems, Vol 19, No 4, December 1994

Secure Relational Databases . 649

4.4 Secure Relational Algebra: Identities

It is natural to ask what identities hold for the B operator in secure relational

algebra, for use in generating and optimizi~g query plans. Given query

expressions El and Ez, we write El = Ez if for every database interpretation

and level 1, IL’l 11= IEz [1. Proposition 4.4.1 lists the most important identities

that hold.

PROPOSITION 4..4.1. Let R be a constant relation (i.e., an explicit list of

kuples), and let A be an attribute of’ expression El. Then the following

identities hold:

BIEI](EZI AI,..., A.]) = (13[El]Ez)[Al,..., Anl

BIEl](E, [@]) = (BIEIIE,)[41

13[EI](EZ U~3) =BIEI]EZ uBIEl]E~

BIEI](EZ xE~) G13[EIIEZ x~[&l~3

BIEI](EZ –Es) Z13[EI]EZ –B[EI]E3

13[EI UE,]E~ =BIEl]Ee UB[E2]E3

BISelf]El = El

{

R
BIEI]R =

if El n Anyone is nonempty

{ } otherwise

= R K (R x (El nAnyone))

B[El](13[R]E:j) = B[R]E3

B[El](B[Anyone]Ez) = B[Anyone ~ la~,~ S ~, AEllEz

The proof of Proposition 4.4.1 appears in the Appendix.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Note that Proposition 4.4.1 does not include identities involving projection,

selection, difference, or cartesian product as top-level operations in the first

argument to the B operator. Since the first argument to B must always

evaluate to a unary relation, cartesian product should not appear as a

top-level operation in the first argument of B. Due to the unary requirement,

projection cannot be moved outside the first argument either. We do not know

of any means of moving the evaluation of a top-level selection operation or

difference outside the first argument of B.
Also note that Proposition 4.4.1 includes few identities involving nested B

operators. For example, one cannot in general simplify the expression

B[El](B[Ez] Es) to an expression involving only one B operator, because the

result of evaluating Ez at the level of the issuer of the query may be very

different from the result of evaluating Ez at the levels specified in El.

4.5 Other Secure Query Languages

At the beginning of this section, we promised to show how to use our

approach to extend any formal query language to work in a secure context.

Suppose that we have an ordinary (single-level) query language with a

ACM Transactions on Database Systems, Vol 19, No. 4, December 1994

650 . Marianne Wlnslett et al

well-defined semantics, such as relational algebra or calculus, or even a

formalized subset of SQL. We will assume that the semantics takes the form

of a mapping that takes a query expression and a database instance and

produces a relation. The secure version of this query language will be defined

inductively, as usual; but it will contain one additional operator not present

in the single-level version, the level shift operation. Let El and Ez be two

expressions over the query language, such that El will evaluate to a unary

relation. Then B[El] Ez is an expression in the secure version of the query

language. To assign meaning to the extended query language, the interpreta-

tion of a query expression at level 1 is defined as in the original query

language, except that (1) for operations other than the level shift, the

interpretation must be computed with respect to the database at level 1; and

(2) the interpretation of a level shift operation at level 1 is

which is the same interpretation of level shifts as we used for MLS relational

algebra.

Our modal query language is a bit of an odd duck in the modal logic world,

because we allow, in some sense, queries over modalities. Axiomatization of

our language might be an entertaining exercise for a theoretically minded

colleague. We do not intend to investigate the question of axiomatization, as a

model theory for the language is all we need for our purposes.

5. SECURE SQL

In this section, we present an extension of SQL to allow easy expression of

secure queries. From a theoretical perspective, such an exploration may seem

unnecessary, for two reasons. First, the previous section already showed how

to extend a query language by adding a B operator, so what more is there to

say? Second, under all MLS database syntax proposals, one can just use

ordinary SQL on the syntactic form of an MLS database. Now that we have

given some meaning to these databases, we could still allow the user to use

ordinary SQL, and we could reject those queries that could not be given an

unambiguous interpretation. Then the user would not need to learn any new

SQL constructs.

While these arguments are valid to some extent, an explicit extension to

SQL is needed for pragmatic considerations. It is too hard for a user to write
ordinary SQL queries that have an unambiguous interpretation. Also, the B
operation is not simple enough for users to grasp easily. Thus we present

what we hope to be a more palatable SQL syntax, called Secure SQL.

For simplicity, we will assume that our dialect of SQL allows constant

relations to appear in queries, so that connective like IN and > ANY, as well

as EXISTS, can appear with a constant relation as an argument, as well as a

subquery.

In the following notation, the rectangular brackets denote optional items,

and * denotes zero or more repetitions. We will not consider all of the

ACM TransactIons on Database Systems, Vol 19, No 4, December 1994

Secure Relational Databases . 651

constructs of SQL, but we think that the means of extension to all of SQL will

be clear to the reader.

5,1 Select

The SELECT statement has the following general form:

SELECT A, [, A]*
FROM Rk [,li~]’
[BELIEVED BY S]
WHERE P;

The SELECT, FROM, and WHERE clauses are ordinary SQL syntax with

the ordinary SQL syntactic restrictions. Nested SELECTS are allowed, as in

ordinary SQL, and may have BELIEVED BY clauses of their own. In the

BELIEVED BY clause, S is a nested query that must evaluate to a set of

security levels. If the level of the subject issuing the query does not dominate

some security level in the evaluated S, then that level is eliminated from the

result of evaluating S. If the BELIEVED BY clause is absent, S is set to the

level of the issuer of the query, so that the query accesses only those tuples

that the subject believes.

In order to provide a bit of syntactic sugar to keep BELIEVED BY clauses

short for the most common kinds of queries, we will also allow S to contain a

nonempty list of security levels and relation names, with the obvious mean-

ing. Examples appear after the discussion of Secure SQL semantics.

Intuitively, the result of the SELECT operation can be determined from the

database interpretation as follows. First, evaluate the (outermost) BE-

LIEVED BY clause at the database interpretation at the level of the issuer of

the query. Second, evaluate the WHERE clause separately at each level

mentioned in the result of evaluating the BELIEVED BY clause, The results

are unioned and presented to the issuer of the query.

More formally, let us suppose that we have a mapping that gives the

interpretation of ordinary SQL queries—i.e., given an ordinary database and

SQL query, this mapping determines the relation that is the answer to the

query. We will write this mapping as IIQll, when Q is an ordinary SQL query.
The awkward point in specifying IIQll is in handling nested subqueries that

share tuple variables with outer queries (“correlated queries”); correlated

queries are orthogonal to our interest in security, and for that reason we will

give a formal definition of interpretations only for noncorrelatedlg queries.

To make our task easier, if noncorrelated SQL query Q contains a nested

query Q’, we will assume that

IIQII = llQ.OQWl,

where Q.(I1Q’ 11)is the query obtained by textually substituting the relation

IIQ II for the subquery Q’ in Q. We will say that Q’ is immediately nested
inside of Q if no other query is nested between Q and Q’.

19The correlated case can be handled by defining the interpretation of a parameterized query,

and extending ordinary SQL to allow parameterized constant relations to appear in queries.

ACM Transactions on Database Systems, Vol. 19, No. 4, December 1994.

652 . Marianne Winslett et al.

[

,Sf; / ,./1 ;/) ()/) ;(’(’ll\(’ J/)f\lll)<lfi(~r/

I:rll(ll)ti.(I)lplollla(\ 1{011111111>

Fig 5 An interpretation of a SOD relation.

sol) 1[11([1)[(’1<1110[1 ,11 I{ ’\(,] (‘1

sol) 111[(,1 l)l(l,ltl(]ll ,11 lf\fl [:

Our task now is to extend the mapping IIQll to include our new BELIEVED

BY construct, which corresponds to the B operator discussed in the previous

section. We will write the extended mapping as IQ 1. Let us assume that all

syntactic sugar has been removed before interpretation. If a noncorrelated

Secure SQL query Q is issued by a subject at level 1, then IQI = lQlr, the

interpretation of Q at level 1. In turn, IQ I~ is defined as follows:

(1) If Q contains the immediately nested clause BELIEVED BY QI, then

where Any is short for ‘SELECT * FROM Anyone’, and Qz is formed from

Q by removing the BELIEVED BY clause. When IQ, 11n IAnyl ~ is the

empty set, i.e., there are no security labels that satisfy QI and are
dominated by 1, then IQ I is the empty relation, of the same arity as Qz.

(2) If Q does not contain an immediately nested BELIEVED BY clause, but
does contain the immediately nested subquery Q’, then IQI I = IQ.(1 Q’ II)11.

(3) If Q contains no immediately nested BELIEVED BY clauses or sub-

queries, then IQI 1 is IIQ II evaluated over the database interpretation at
level 1.

For example, consider Figure 5, assuming a hierarchy of four labels with U

at the bottom, C 1 and C2 dominating U and incomparable to one another,

ACM TransactIons on Database Systems, Vol 19, No 4, December 1994

Secure Relational Databases . 653

and S dominating all. To list the beliefs of all visible levels about the

destination of starship Enterprise, we use

SELECT Destination, Label
FROM SOD, Self
BELIEVED BY Anyone
WHERE Starship = ‘Enterprise’;

which returns {(Vulcan, U), (Romulus, Cl), {Romulus, S)} for a user

at level S, {(Vulcan, U)} for U and C2 subjects, and {(Vulcan, U), { Romu-

lus, Cl)} for Cl subjects.

Cross-level joins can be expressed by using a subquery with a BELIEVED

BY clause. Cross-level joins can be useful as metaqueries, i.e., queries that

compare what is believed at different levels. To make expression of these

queries a bit simpler, we define a view that returns all the level labels that

are strictly below the current level:

CREATE VIEW AnyoneBelowMe(Label) AS
SELECT Label
FROM Anyone
WHERE Label NOT IN

(SELECT *
FROM Self);

For example, suppose a C2 subject wishes to find out which starship

entities are believed in at the C2 level but not at any lower levels. The

appropriate query is

SELECT Starship
FROM SOD
WHERE Starship NOT IN

(SELECT Starship
FROM SOD
BELIEVED BY AnyoneBelowMe);

which evaluates to {(Nightkawh), (Blackjack)} for the database interpreta-

tion given in Figure 5. The same query would still be well defined if posed by

users from other levels, and would return the empty relation.

An S subject can also use a BELIEVED BY clause to gather information

that can safely be shared with a subject at a lower level. For example, the S

user can find out what starships are known at the U level, by asking,

‘SELECT Starship FROM SOD BELIEVED BY U’. Under other MLS propos-

als, especially those that rely on attribute-level labeling, it can be extremely

awkward to pose a complex query at level S whose answer is guaranteed to

be safe to share with a U subject, and it can be dangerous to rely on

“advisory” labels attached to query answers.
Suppose now that the S subject wishes to find out what starships are

believed in at lower levels but not at the S level. A first guess at the

appropriate query is

SELECT Starship
FROM SOD
BELIEVED BY Anyone

ACM Transactions on Database Systems, Vol 19, No. 4, December 1994

654 . Marianne Wlnslett et al,

WHERE Starship NOT IN
(SELECT
FROM
BELIEVED BY

Starship
SOD
Selfl;

but this query will not return the desired answer, because Self in the inner

query will be evaluated separately over each level visible to the S user,

rather than always evaluating to S as the user intended. In other words, the

scoping rules will prevent an inner query from referring to a level not visible

at the level of the outer query. This problem is an artifact of SQL, not of

BELIEVED BY; SQL forces certain types of queries to be expressed with a

certain form of nesting. One possible solution is to form a temporary relation

at the level of the query issuer, and break the query into two parts. Our

preferred way out of the difficulty, however, is to introduce INTERSECT and

MINUS operations that connect two queries, just like the UNION keyword in

ordinary SQL. Then the example above can be expressed as

(SELECT Starship
FROM Starships
BELIEVED BY Anyone)
MINUS
(SELECT Starship
FROM Starships
BELIEVED BY Self);

52 Insert

The secure SQL INSERT statement has the following general form.

INSERT
INTO R[(AJ , A,]*)]
VALUES (a([, aj]”);

In the inserted tuple, attribute A, is to be given the value a,. One can also

use an INSERT command with the subquery syntax allowed in ordinary SQL.

Under this approach, Q below is an ordinary Secure SQL query.

INSERT
INTO R[(AL[, A,]”)]
Q:

In either case, a set is formed of tuples to be inserted into the database

interpretation at the level of the requestor. If the VALUES clause is used, the

user has specified the tuples directly; if the subquery form is used, then the

set of tuples to be inserted is given by the interpretation of the subquery,

defined in the previous section. Although subqueries may of course contain

BELIEVED BY clauses, the INSERT command does not include such a clause

of its own, because a subject can only insert tuples into the interpretation at

the subject’s own level. Key attributes must be assigned nonnull values, else

the request is rejected, as is usual in SQL. Any omitted nonkey attributes of

R are assigned a null.

ACM TransactIons on Database Systems. Vol. 19, No, 4, December 1994

Secure Relational Databases . 655

For example, an S subject can assert agreemet with C2-level beliefs about

the Blackjack, using the following insertion.

INSERT
INTO SOD

SELECT *

FROM SOD
BELIEVED BY C2
VVHERE Starship = ‘Blackjack’;

A user’s INSERT request (or UPDATE, or DELETE) might possibly lead to

an integrity constraint violation, thus t~iggering actions of the enforcement

policy associated with the integrity constraint. For example, the INSERT

request might cause the triggering and execution of rules at the user’s level,

or at higher levels. In this paper, we assume that the execution of such rules

has been shown to guarantee mandatory security (e.g., through preanalysis

and run-time multilevel transactions [Costich and McDermott 1992]), and

focus our attention on the update requests themselves.

5.3 Update

The UPDATE statement has the following general form.

UPDATE R
SET (A, = a,[, A, = aJ]*)
WHERE P;

As is usual in SQL, the SET clause cannot contain key attributes. As with

INSERT, an UPDATE clause has no BELIEVED BY clause of its own,

although it may contain a subquery with a BELIEVED BY clause.

To interpret an UPDATE request, begin by replacing the UPDATE and

SET clauses by SELECT* FROM R, creating a query Q. The tuples in lQll

are the tuples of the interpretation at level 1 that will be updated. The

attribute values of those tuples are to be altered according to the SET clause,

setting attribute Ai = at.

If a subject would like to take a set of tuples from a lower level of the

database, modify them, and add them to the subject’s own database, then this

can be done by a transaction with two Secure SQL commands: an INSERT

followed by an UPDATE.

For example, consider relation SOD of Figure 5 again. If an S subject

issues the command

UPDATE SOD
SET Destination = ‘EartN
WHERE Starship IN

(SELECT Starship
FROM SOD
BELIEVED BY Anyone
WHERE Destination = ‘Vulcan’);

meaning “Every starship of mine that anyone (whose beliefs I can see)

believes is headed to Vulcan, I now believe is headed to Earth.” When issued

by an S subject, this update changes the destination of the Enterprise to

ACM TransactIons on Database Systems, Vol 19, No 4, December 1994.

656 . Marianne Wlnslett et al.

sol) Irltf, r’[)[(’l;ltioll at I(L(,l ,s’:

,s[a 1’./};/) ol)jc(ti~ c, IA,.I ill<t /i(jjl

l’liltcrl,ti.c I l)il,l(,III.I(y I llolllllllli!

Fig. 6. An interpretation of a SOD relation:

Rerouting to Earth.
Sol) Illi(’I’[)l’(,t iltloll ilt I(,V(>I (’2:

sol) IIlt(,l [)l(,t.ltl(]ll .I(lcv(’1 1 :

‘Earth’, because U subjects think that the Enterprise is headed to Vulcan.

The updated database is given in Figure 6; note that there are no polyinstan-

tiated tuples in the result.

Our semantics permits the scope of an update to be narrowed to a single

entity or relationship by specifying its key in the WHERE clause. This is a

semantic solution to the problem of tuple proliferation: when a key is speci-

fied in p, at most one tuple will be added to the interpretation of a database

at a level. For example, if an S subject issues the command

UPDATE SOD
SET Destination = ‘Earth’
WHERE Starship = ‘Enterprise’:

against Figure 5, the result is the same as in the previous update: no tuples

are added to the database, and only one tuple is altered.

5.4 Delete

The Secure SQL DELETE statement has the following general form.

DELETE
FROM R
WHERE P

A DELETE request says that the issuer no longer believes in the existence

of the entities or relationships qualified by P. Tuples are selected from the

ACM Transact~ons on Database Systems, Vol. 19, No 4, December 1994

Secure Relational Databases . 657

database interpretation at the level of the issuer, as in an ordinary MLS

query (i.e., replace DELETE by SELECT * and execute the resulting query).

Then the selected tuples are removed from the database interpretation at

that level. No BELIEVED BY clause is needed for DELETE because a subject

can only retract belief in entities and relationships that exist at the subject’s

own level. (Subqueries in the WHERE clause of a deletion may of course

contain BELIEVED BY clauses.) Beliefs held at other levels about the deleted

entity or relationship will persist.

For example, the following request will delete all starships that are not

believed in at any lower level. If issued by a C2 subject, the request would

delete the Blackjack from Figure 5.

DELETE
FROM SOD
WHERE Starship NOT IN

(SELECT Starship
FROM SOD
BELIEVED BY AnyoneBelowMe);

6. CONCLUSIONS

The goal of our research project is to provide a simple and natural semantics

for databases that contain cover stories. In this paper, we have presented a

general semantics for the simplest kind of these databases, MLS relational

databases, and explored the question of suitable MLS query languages. Our

semantics is based on Kripke-like database interpretations, which express

the beliefs held at different security levels about the state of the world.

Problems present in proposals for MLS relational model syntax, such as

ambiguous null values, meaningless queries, and tuple proliferation under

updates, can be resolved by supplying a semantics for those proposals, i.e., by

giving a mapping from the syntax of those proposals to our database interpre-

tations. We believe that our semantics is useful and general, and that it will

be a useful retrofit for other models with existing implementations [Qian

1994a].

We also define a modal relational algebra suitable for use with our seman-

tics, and show how to turn any formal query language into a well-defined

MLS query language. We then consider the problem of finding a good MLS

extension for SQL, and give definitions for Secure SQL SELECT, INSERT,

DELETE, and UPDATE, deriving the effect of each operation from its effect

on the semantic interpretation of the relations involved.

In our future work in this area, we plan to extend this work to the more

complex hierarchies that we expect to find in discretionary security. We are

also examining issues that arise when attempting to share data between

secure databases that have different security hierarchies or different MLS
models. Recently we have also been examining the question of integrity

constraints and secure enforcement mechanisms for integrity constraints,

with a goal of delineating families of safe integrity constraints, and their

possible enforcement policies.

ACM Transactions on Database Systems, Vol. 19, No. 4, December 1994

658 . Mananne Winslett et al,

APPENDIX

Proof of Proposition 4.4.1

We present the proofs ordered by formula number,

(1)

lB[E1](E2[A1,..., An])11

u lE2[A1,..., Anl11
(l’>~lE1n Anyoneli

u (lE21r[A1,..., Anl)
(/’) f+ EIn Any O~ell

‘(u)lE21r [A1,..., Anl
(f ’)=l E,n Anyonel~

(by commutativity of ordinary union and projection)

=l(BIEllE,)ll[A1,..., A~l

=l(B[E1]E2)[A1,..., An]11

(2) Same proof outline as for previous identity.

(3)

/B[E1](E2 U~3)11 = U Ilq u qr
(1’)= lE, nAnyonel,

—
u (1-qr u l-ql’)

(l’) elElnAnyonel/

—
u IEZI1 U u lE31r

(1’)= lElnAnyonell (l’) s/El nAnyone/l

(by associativity of union)

=IBIE, IE21[uIB[~l]~slt

=IB[E11E2 u B[E11E311

(4)

IB[E11(E2 x E,)lt = u I-E, x E31r
(l’’) slE, nAn.vonell

—
u (IE211’x llz~lu)

(1’)61E1n An.vonelj

~ u IEZI1 X u lEJr
(1’}61E1n Anyonell (l’> =lE1n An_von. \i

(because U,(R, x S,) L U,Rc x U, S,)

=lB[E,lE2t1 XI HEIIE,I1

~lB[E1]E,xB[131]E,ll

ACM Transactions on Database Systems, Vol. 19, No 4, December 1994

Secure Relational Databases . 659

(5) Same proof outline as for the previous identity.

(6)

lBIEIu E, IE,ll= u IEIzI
(2’)= l(E1u E2)nAnyone11

—
u lE~llI U u I-%111

(1’)= (l ElnAnyodt) (1’)= (lE2nAnyonelz)

=IBIE1]E, I, UIB[E11E311

=IB[E,IE3u B[E,]E,11

(7)

lBISelfl E,lt = u IEIIZI

(l’) G lSelfnAnyonell

= u lE,lr
1,=1

= IEIII

(8)

IBIE, IRIZ= IJ \Rll

(l’)= lE1n Anyonel/

—
UR

(l’)~l ElnAnyonell

-{

R if IEl (l Anyone Iz is nonempty—

{ } otherwise

=IR ~ (R x (El nAnyone))ll

(9)

IB[E1](B[R]E3)11 = U IMRIE311
(2’)= lE1n Anyonelt

—
u u IJ% z

(l’)= /E1n Anyonelt (l’’)slRnA~yO~ell

.
u u IEJtII

(1’)= lElnAnyonelt 1“1(1’’)=RA1’’s1’

u IE31z
1“131’(l’) GIE1n Anyonel~A (1’’) GRA1’’s1’

u lEJrI

(l’’) =lRltn(l Anyonelt~ t.~.ls~, Al~Ill)

—
u IEslv

(~”) =lRn(Anyone~ M,.lS k?,AE1h

ACM Transactions on Database Systems, Vol 19, No 4, December 1994.

660 . Marianne Winslett et al.

(10)

ACKNOWLEDGMENTS

The authors greatly appreciate the support of Sushil Jajodia. We are also

greatly indebted for discussions with Tom Garvey, Arthur Keller, Teresa

Lunt, and Bhavani Thuraisingham, and the comments of the anonymous

referees.

REFERENCES

k, S. AND DENNING, D 1987, Checking classification constraints for consistency and com-

pleteness. In Proceedings of the IEEE Computer Soczety S,vmposlum on Research zrL Security

and Pr~~~acy (Oakland, Cahf. April). IEEE Computer Society, Washington, D.C , 196–201.

BELL, D, E. AND LAPADUI.A, L. J. 1974. Secure computer systems: Mathematical foundations

and model. Tech. Rep. MITRE Corporation, McLean. Va.

BINNS. L. 1993. Inference and cover stories. In Database Securzty, VI Status and Prospects,

North-Holland, Amsterdam, 169-178,

BINNS, L. 1992a. Inference through polymstantlation In Reseurch Dtrecttons zn Database

Securzty, IV, R, Burns, Ed. Mitre Tech Rep. M92BOOO0 118, Sept 1992, 74-84.

BINNS, L. 1992b Inference through secondary path analysis. In Database Securzty, VI: Status

and Prospects. North-Holland, Amsterdam, 195–209.

BoN~TT’1, P , KRATJS,S., ANII SL1~RAHMANIAN, V. 1992, Declarative foundations of secure deduc-

tive databases. In the Internatmnal Conference on Database Theory. Sprmger-Verlag, Berlin

CERI, S, AND WIDOiU, J. 1990. Derlvmg production rules for constraint maintenance In Pro-

cwdz ngs of tb e 16th In ter-nutzonal Conference on Very Large Data Bases (August). Morgan

Kauffmann, Palo Alto, Calif., 566-577,

CH~LI.As, B. F. 1980. Modal Log{c. Cambridge Umversity Press, Cambridge, Mass

COSTICH, O. .ANII MCDERMOTT, J. 1992 A multdevel transaction problem for multilevel secure

database systems and its solution for the rephcated architecture. In Proceedings of the IEEE

Computer Society Symposium on Researc?l in Securzty and Przuacy (Oakland, May), IEEE

Computer Society, Washington, DC,, 192-203.

CUPPENS, F 1992 A modal logic framework to solve aggregation problems. In Database

Securzty V: Status and Prospects, C Landwehr and S. Jajodia, Eds. North-Holland, Amster-

dam, 315-332

ACM TransactIons on Database Systems, Vol 19, No 4, December 1994

Secure Relational Databases . 661

DENNING, D. 1976. A lattice model of secure information flow. Cornmun, ACM 19, 5, 236-243,

DENNING, D., LUNT, T., SCHELL) R., HECRMAN, M., AND SIIOCKLEY, W. 1987. A multilevel

relational data model. In Proceedings of the IEEE Symposium on Research in Security and

I%vuacy (Oakland, April). IEEE, New York, 220-234.

DEPARTMENT OF DEFENSE. 1985. Department of Defense Trusted Computer System Evaluation

Criteria. DOD 5200.28 -STD, National Computer Security Center, Washington, DC.

FRoscHW J. N. AND MEADOWS, C. 1989. Achieving a trusted database management system

using parallelism. In Database Security 11: Status and Prospects. North Holland, Amsterdam.

GLASGOW, J., MACEWEN, G., AND PANANGAI)EN, P. 1992. A logic for reasoning about security.

ACM Trans. Comput. Syst. 10, 3 (Aug.).

HMGH, J., OBRIEN, R., AND THOMSEN, D. 1991. The LDV secure relational DBMS model, In

Database Security, IV: Status and Prospects, S, Jajodia and C. Landwehr, Eds. North-Holland,

Amsterdam, 265-279.

JA.JOIJIA, S. AND SANDHU, R. 1991. Toward a multilevel secure relational data model. In

Proceedings: ACM SZGMOD (Denver, Colo,, May). ACM, New York, 50-59.

JAJODIA, S. ANrJ SANDHU, R. 1990, Polyinstan tiation integrity in multilevel relations. In Pro-

ceedings: IEEE Symposl unL on Research zn Secanty and Prz uucy (Oakland, May). IEEE, New

York, 104–115,

KORTH, H. F. AND S[L~ERSCHATZ, A. 1991. Database System Concepts. McGraw-Hall, New York.

IIWIELINSH, T. AND LIJ’SIU, W. 1984. Incomplete information in relational databases, J. ACM

31, 4 (Oct.),

LIU, K.-C. AND StINDERRAMAN, R, 1990 Indefinite and maybe reformation in relational

databases. ACM Trans. Database S.yst. 1.5, 1 (Mar.), 1-39.

QIAN, X. 1994a, A model-theoretic semantics of the multilevel secure relational model. In

Proceedings of the ITlternational Conference on E.~tending Database Technology (Cambridge,

UK, Mar.), Springer-Verlag, Berlin.

QMN, X. 1994b. Inference channel-free integrity constraints in multilevel relational databases.

In Proceedings of the IEEE S’ymposzum on Research [n Security and Prit,acy (Oakland, May).

IEEE, New York.

QIAN, X. ANIJ LUNT, T. 1992. Tuple-level vs element-level classification. In Proceedings of the

6th IFIP Working Conference on Database Secarit&y (Vancouver, BC, Aug.). IFIP, 311-324.

RABITTI, F., EJ~irrmo, E,, KJM, W., AND WOELK, D. 1991. A model of authorization for next-gen-

eration database systems. ACM Trans, Database Syst. 16, 1 (Mar.).

SANDHU, R. AND JAJODI~, S. 1992. Polyinstantlation for co%w- stories. In Proceedings of the

European Symposium on Research m Computer Security (Toulouse, Francej Nov.). Springer-

Verlag, Berlin, 307-328.

SK!HWWJAN, G. L,, DE JONGE, W., ,AND VAN rm RIET, R. P. 1983. Answering queries without

revealing secrets. ACM Trans. Database Syst. 8, 1 (Mar), 41–59.

SMITH, G. 1990 The modeling and representation of security semantics for database applica-

tions. Ph.D. thesis, George Mason Univ., Fairfax, Va,

SMITH, K. ANn WINsLErT, M. 1992a. Entity modeling in the MLS relational model. In Proceed-

ings of the 18th Internatmnal Conference on Very Large Data Bases, (August). VLDB Endow-

ment, 199–210.

SMITH, K, AND WINSLETT, M. 1992b, Multdevel secure rules: Integrating the multilevel secure

and active data models. In Proceedings of the 6th IFIP Working Conference on Database

Security (Vancouver, BC, Aug.). IFIP, 33-58.

STON~EJRAKER, M,, HANSON, E. N., AND POTAMIANOS, S. 1988. The POSTGRES rule manager.

IEEE Trans. Softw. Eng. 14, 7 (July), 897-907.

Su, T. AND OZSOY(JGLU, G. 1987. Data dependencies and inference control in multilevel rela-

tional database systems. In Proceedings of the IEEE Computer Soczety Symposium on Re-

search m Security and Priuacy (Oakland, May). IEEE Computer ,Society Press, Los Alamitos,

Calif, 202-211

TtHJRAMINGHAM, B, 1992. Handling security constraints during multdevel database design. In

Research Dlrectloas zn Database Security, IV, Rae Burns, Ed. Mitre Tech Rep. M92BOOO0 118,

Mitre Corp., McLean, Va.

TIN~, T., D~MCTRJ[AN, S., AND Hu, M. 1992. A specification methodology for user-role based

ACM Transactions on Database Systems, Vol 19, No, 4, December 1994

662 . Marianne Winslett et al,

security m an object-oriented design model: Experience with a health care application. In

Proceedings of the 6th IFIP Workshop on Database Securtty (Vancouver, BC, Canada). IFIP.

ULLM~N, J. D. 1988. Prlnclples of Database and Knou,ledge Base Systems. Vol 1. Computer

Science Press, Rockville, Md

WIDOM, J. AND FINKELSTEIN, S. J. 1990. A syntax and semantics for set-oriented production

rules in relational database systems In Proceedings of the ACM SIGMOD International

Conference on Management of Data (Atlantic City, N.J., May). ACM, New York, 259-270.

ZANIOLO, C. 1984. Database relations with null values. J. Cornput. Syst. Set. 1, 28 (Feb.),

142-166.

Received October 1993; revised Aprd 1994: accepted April 1994

ACM Transactions on Database Systems, Vol 19, No.4, December 1994

