Assembling 2D Blocks into 3D Chips

Johann Knechtel', Igor L. Markovt and Jens Lienig*
tUniversity of Michigan, EECS Department, Ann Arbor USA
iDresden University of Technology, EE and IT Department, Dresden Germany
johann.knechtel@ifte.de, imarkov@eecs.umich.edu, jens.lienig@ifte.de

ABSTRACT

Three-dimensional ICs promise to significantly extend the scale of
system integration and facilitate new-generation electronics. How-
ever, progress in commercial 3D ICs has been slow. In addition
to technology-related difficulties, industry experts cite the lack of
a commercial 3D EDA tool-chain and design standards, high risk
associated with a new technology, and high cost of transition from
2D to 3D ICs. To streamline the transition, we explore design styles
that reuse existing 2D Intellectual Property (IP) blocks. Currently,
these design styles severely limit the placement of Through-Silicon
Vias (TSVs) and constrain the reuse of existing 2D IP blocks in
3D ICs. To overcome this problem, we develop a methodology for
using TSV islands and novel techniques for clustering nets to con-
nect 2D IP blocks through TSV islands. Our empirical validation
demonstrates 3D integration of traditional 2D circuit blocks with-
out modifying their layout for this context.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids — Layout

General Terms
Algorithms, Design

Keywords
3D integration, IP blocks, design styles, TSV islands

1. INTRODUCTION

Modern System-on-Chip (SoC) design faces numerous challenges,
as steadily increasing demands on functionality and performance
push against the limits of semiconductor manufacturing and EDA
tools. Recent process-technology advances promise shorter inter-
connect and greater device density by means of three-dimensional
integration — stacking multiple dies and implementing vertical in-
terconnections with Through-Silicon Vias (TSVs). Such 3D ICs
can significantly extend the scale of system integration and facil-
itate new-generation electronics. While progress in commercial

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISPD’11, March 27-30, 2011, Santa Barbara, California, USA.

Copyright 2011 ACM 978-1-4503-0550-1/11/03 ...$10.00.

3D ICs has been slow, memory-on-logic stacking has reached the
market.! Several major design and manufacturability issues with
3D ICs currently remain unsolved [13], and a definitive commit-
ment to 3D integration typically requires favorable cost consider-
ations, as well as the availability of 3D EDA tools, industry stan-
dards and design methodologies. Industry experts are additionally
concerned about the high risk associated with such a new technol-
ogy, and potentially-prohibitive cost of transition from 2D to 3D
ICs. To streamline this transition, we propose to focus on design
styles that reuse existing 2D Intellectual Property (IP) blocks. As is
well-known, modern chip designs are dominated by 2D IP blocks,
proven in applications and considered reliable. Thus, we advocate
3D integration of legacy 2D IP blocks to circumvent many of the
obstacles that currently impede wide adoption of 3D ICs.

In this paper, we make the following contributions. First, we de-
scribe and compare several possible design styles for 3D integration
of 2D blocks, in particular the Legacy 2D (L2D) style which inte-
grates existing IP blocks not designed for 3D integration. Second,
we introduce a new design style for 3D integration of 2D blocks,
called L2Di, where TSVs are clustered into TSV islands to reduce
area overhead and provide post-silicon self-repair (similar to that
in DRAM). Third, we propose novel algorithms and methodolo-
gies for net clustering, TSV-island insertion, deadspace alignment,
and related tasks. The overall approach promises faster industry
acceptance of 3D integration of legacy 2D IP blocks. Fourth, we
empirically validate our methodology, demonstrating 3D integra-
tion of legacy 2D IP blocks without modifying their layout.

The remainder of this paper is structured as follows. In Section 2
we review important TSV characteristics and resulting integration
challenges. In Section 3 we contrast possible design styles for 3D
integration and discuss clustering of TSVs into TSV islands. We
provide the problem formulation for the L2Di-style 3D integration
in Section 4. Next, we describe our methodology in Section 5. In
Section 6 we provide an empirical validation and in Section 7 we
give our conclusions.

2. BACKGROUND

Since adjacent dies are connected by TSVs, TSVs are critical to 3D
integration. TSVs can be manufactured in two ways: via-first and
via-last. Via-first TSVs are 1-5um in diameter and fabricated be-
fore the final metallization process; via-last TSVs are 5-20um and
fabricated after final metallization [15]. Furthermore, manufactura-
bility demands landing pads and keep-out zones [31] which further
increase TSV area footprint. At the 45nm technology node, the area

'"For example, the recently released Apple A4 SoC contains an
ARM core die and two memory dies. However, the vertical in-
terconnections are realized using wire-bonding, not TSVs.

(a) (b)

(c) (d)

Figure 1: TSV positioning in design styles for 3D integration. (a) Gate-level and Redesigned 2D (R2D) styles place TSVs (small boxes)
within the block footprint. (b) Legacy 2D (L.2D) style places scattered TSVs between blocks, (c) L2D style with TSV islands (L2Di)
groups TSV to blocks. (d) TSV islands can incorporate scan chains for TSV test and multiplex spare TSVs for redundancy.

footprint of a 10pum x 10pm TSV is comparable to that of about
50 gates [16]. Hence, 10,000 TSVs can displace half a million
gates. Previous work in physical design often neglects design con-
straints and overhead associated with TSVs, especially their area
footprint [3, 11,21-23, 28, 32]. Some studies explicitly consider
thermal TSV insertion but not signal TSVs [20,22,23,29]. Other
studies incorporate signal and power TSVs in their flow, but some-
times ignore footprints of signal TSVs [18, 19].

Wirelength impact of TSVs. While the usage of TSVs is gener-
ally expected to reduce total wirelength, Kim et al. [16] observe
that wirelength reduction varies depending on the number of TSVs
and their characteristics. They show that TSV insertion in general
and the impact of TSV footprint area in particular may increase sil-
icon area and/or routing congestion, thereby making wires longer.
Consequently, Kim et al. propose a new wirelength distribution
model to estimate wirelength reduction while considering the im-
pact of TSVs on wirelength. Case studies in [16] show that exces-
sive usage of TSVs can undermine their potential advantages, and
that this trade-off is controlled by the granularity of inter-die par-
titioning. The wirelength typically decreases for moderate (blocks
with 20-100 modules) and coarse (block-level partitioning) granu-
larities, but increases for fine (gate-level partitioning) granularities.

Another study by Kim et al. [15] suggests limiting the number of
TSVs — otherwise, wirelength reduction can be undermined. Their
study also reveals that using four to six dies offers most benefit for
wirelength reduction. However, die stacking also raises mechanical
issues, such as material stress and accurate TSV alignment [24,31],
and may increase the overhead of test structures [17], exacerbate
thermal problems [2], and increase the impact of intra-die varia-
tion [7]. Due to these major complications, practical 3D integra-
tion begins with only two active layers, as illustrated by a recently
taped-out memory-on-processor design [9].

TSVs as layout obstacles. Via-first TSVs occupy the device layer,
resulting in placement obstacles, while via-last TSVs occupy both
the device and metal layers, resulting in placement and routing
obstacles [16]. Hence, TSVs must be accounted for during floor-
planning and/or placement. A study by Kim et al. [15] compares
placing TSVs on a grid (regular placement) to placing scattered
TSVs (irregular placement). The study reveals that irregular place-
ment performs better in terms of wirelength reduction and design
runtime. Since the TSVs are placed near the blocks they are con-
nected to, there is no need for a separate TSV pin assignment pro-
cess. However, regular placement helps manufacturing reliable
TSVs [9, 10]. This also applies to TSV islands.

3. 3D IC DESIGN STYLES

3D integration originated with package-level integration, which con-
nects multiple 2D chips through bonding pads, as illustrated by the
quad-core variant of the Intel Core 2 processor (two cores per die,
two dies in one package). Finer granularity of 3D integration is en-
abled by connecting dies with TSVs, which results in 3D ICs [5]. In
this section, we first discuss gate-level and block-level integration
styles for 3D ICs. Gate-level integration faces multiple challenges
and currently appears less practical than block-level integration.
Second, we introduce a promising approach to 3D block-level in-
tegration, the Legacy 2D (L2D) style. It vertically integrates exist-
ing 2D blocks that were not originally designed for 3D integration.
Third, we explain how 2D blocks are connected through TSVs.

3.1 Gate-Level Integration

One approach to 3D integration is to partition standard cells be-
tween multiple dies in a 3D assembly and use TSVs in routes that
connect cells spread among active layers. This integration style
promises significant wirelength reduction and great flexibility [2].
Its adverse effects include the massive number of necessary TSVs
for random logic, as discussed in Section 2. The study by Kim et
al. [16] reveals that partitioning gates between multiple dies may
undermine wirelength reduction unless circuit modules of certain
minimal size are preserved. In addition, partitioning a design block
across multiple dies means it cannot be fully tested before die stack-
ing. Moreover, after die stacking (post-bond testing), a single failed
die can render several good dies unusable, thus undermining yield.
Fine-grain partitioning between active layers also amplifies the im-
pact of process variation, especially inter-die variation, on critical
paths [7]. Monte Carlo SPICE simulations in [7] show that a 3D de-
sign is less likely to meet timing constraints than a comparable 2D
design. Furthermore, gate-level 3D integration requires redesign of
all blocks since existing IP blocks and EDA tools do not provision
for 3D integration. However, 3D place-and-route tools are not yet
available on the market, and IP providers have heavily invested in
legacy 2D IP blocks.

3.2 Block-Level Integration

Design blocks subsume most of the netlist connectivity and are
linked by a smaller number of global wires. Therefore, block-level
integration reduces TSV overhead. The assignment of entire blocks
to separate dies can be performed in two ways (Figure 1).
e Redesigned 2D (R2D) style: 2D blocks designed for 3D in-
tegration (TSVs included within the block footprints)
e Legacy 2D (L2D) style: 2D blocks not designed for 3D inte-
gration (TSVs placed between blocks)

Figure 2: Deadspace alignment. Gray lines indicate (deadspace) channels and their mirror images on the adjacent die (gray dashed
lines). (a) Floorplans that are small and/or regular usually contain little deadspace. Given insufficient aligned deaspace, vertical
interconects (TSVs, wire-bonding) are placed at the boundary of the chip. (b) Floorplans with numerous blocks usually contain
more deadspace and thus allow TSV-island insertion. Each TSV (island) requires adequate deadspace at two layers, with vertical
alignment. (c) Poor alignment results in deadspace unusable for TSV insertion. A design example is shown in Figure 8.

These block-level integration styles promise the best trade-off be-
tween necessary TSV usage and wirelength reduction (Section 2).
Several other important benefits of block-level integration are de-
scribed next. Existing IP blocks are already equipped with Design
for Testability (DFT) structures and can be tested before individual
dies are stacked (pre-bond testing) [17].2 With block-level integra-
tion, critical paths are mostly located within 2D blocks — they do
not traverse multiple active layers, which limits the impact of TSV
and inter-die variation on manufacturing yield. In [4], the authors
propose optimal matching of slow and fast dies, based on accu-
rate delay models with process variations considered. However, we
note that this approach assumes that dies can be delay-tested before
3D stacking — a strong argument for block-level 3D integration.

Another aspect of block-level integration styles deals with design
effort. The R2D style implies redesigning existing IP blocks, de-
spite their successful track record in applications. This may require
new EDA tools for physical design and verification, increasing risks
of design failures and being late to market. Therefore, one hopes
to avoid redesigning the broad spectrum of available functional-
ity. It is more convenient to use legacy 2D IP blocks and to place
the mandatory TSVs in the deadspace between the blocks, as pro-
visioned by the L2D style. An extreme form of design IP reuse
possible with the L2D style is block-level mask reuse with changes
only required for global routes at high metal layers — TSVs placed
in deadspace do not modify silicon layers of the blocks.

3.3 Connecting 2D Blocks by TSVs

The L2D style admits both scattered TSVs (Figure 1(b)) and TSV
clusters (Figures 1(c,d)) In both cases, IP blocks are connected to
TSVs with dedicated routes. TSV clusters require longer connec-
tions to block pins, but improve manufacturability by increasing
exposure quality during optical lithography [10].

Clustering TSVs into TSV islands is helpful for multiple reasons.
First, TSVs introduce stress in surrounding silicon which affects
nearby transistors [31], but TSV islands do not need to include logic
gates. The layout of TSV islands can be optimized in advance by
experienced engineers. Second, clustering TSVs facilitates TSV-
redundancy architectures [10, 24], where failed TSVs are shifted

*Test pins can be provisioned on each die and multiplexed/shared
with other pins for pre- and post-bond testing [14].

within a chain structure or dynamically rerouted to spare TSVs.
For example, Figure 1(d) illustrates islands with four TSVs, one of
wich is spare. For the L2D style with TSV islands (L2Di), TSV
islands can be placed in the deadspace between blocks.

Deadspace alignment. In some chip floorplans, the deadspace be-
tween blocks is too small to accommodate the necessary number of
TSVs. In such cases, vertical interconnects can be realized by wire-
bonding pads at the chip periphery or by injecting additional dead-
space at the cost of a larger die footprint (Figure 2(a)). For larger
designs with many diverse blocks, it is easier to find deadspace for
TSV-island insertion. However, given a region of deadspace on a
particular die, a TSV island also requires another region of dead-
space on a neighboring die, with adequate alignment between the
two regions.> Figure 2(b) illustrates a feasible TSV-island place-
ment thanks to proper deadspace alignment while Figure 2(c) illus-
trates an infeasible TSV-island placement — blocks may need to
be shifted to create sufficient aligned deadspace. In some cases, die
area may need to be increased to accommodate TSV islands.

TSV placement and routing. TSV islands must be placed in
aligned deadspace to facilitate short inter-layer routes that connect
block pins through TSVs. A given net may be routed through one
or several TSVs (islands). 2D routes may use high metal layers
and/or channels between 2D blocks. The work in [30] dedicates an
entire chip level to interconnect fabric.

4. PROBLEM FORMULATION

The L2Di style for 3D integration assumes the following input.

(i) Active layers, denoted as set £. Each layer [€ L has di-
mensions (h;, w;) such that every block assigned to [can fit in the
outline without incurring overlap. Note that the outlines may differ
and thus allow layers to be shifted to improve deadspace alignment.

(i7) Rectangular IP blocks, denoted as set 3. Each block b € B
has dimensions (hy,ws) and pins, denoted as set PP. Each pin
p € P’ of block b is defined by its offset (52, 5¥) with respect to
the block’s geometric center (origin).

3 Alignment can be achieved by shifting blocks within each die, and
also by displacing the dies, if the 3D chip package allows.

P3 P2

LT,/

Figure 3: Net clustering and TSV-island insertion. (a) Inter-layer nets n1 = {p1,ps}, no = {p2,pa}, and n3 = {ps, ps} need to
be connected through TSVs. (b) Pins are mapped to a virtual die and net bounding boxes are created. Intersections of bounding
boxes mark cluster regions c1, c2, and c3. The cluster region c3 represents desired locations for a TSV island, which would facilitate
shortest routes for all nets. (c¢) This particular cluster region is not obstructed by blocks and provides sufficient area, thus allowing

TSV-island insertion without block shifting.

(727) Netlist, denoted as set V. A netn € N describes a connection
between two or more pins.

(iv) TSV-island types, denoted as set 7. Each type ¢ € 7 has di-
mensions (h¢, w;) and capacity k. Since pre-designed TS V-island
types may incorporate spare TSVs, x; defines the number of nets
that can be routed through ¢. While a simple formulation may deal
with one type only, we believe that using pre-designed types of dif-
ferent shapes is essential to facilitate TS V-island insertion.

(v) 3D floorplan, denoted as set F. Each block b is assigned a
location (zs, ys, lp) such that no blocks overlap. (z»,ys) denotes
the coordinate of the block’s origin, I, denotes the assigned layer.

3D integration with the L2Di style seeks to cluster inter-layer nets
into TSV islands, and to insert TSV islands into aligned deadspace
around floorplan blocks. If TSV-island insertion is impossible due
to lack of aligned deadspace, blocks can be shifted from their initial
locations, but their relative positions must be preserved. Figures
2(b,c) illustrate such block shifting. If TS V-island insertion is still
impossible, additional deadspace can be inserted.

S. OUR METHODOLOGY

To connect blocks on different dies following the L2Di style, we
need the locations of TSV islands. However, these locations must
account for routes, so as to avoid unnecessary detours. In order
to solve this chicken-and-egg problem, our techniques (7) clusters
nets to estimate global routing demand, and (%) uses these clusters
to iteratively insert TSV islands. Details of our techniques are dis-
cussed in the following subsections, the overall flow is illustrated
in Figure 4. For clarity of exposition, this section illustrates 3D
integration in the case of only two dies. However, our techniques
can be extended to more than two dies as well. In the following
discussion, we refer to inter-layer nets as just nets.

Global iterations. Our clustering algorithm relies on a uniform
grid. Grid-tile sizes influence per-tile net count. For example, quar-
tering grid-tile size in Figure 5(b) would decrease the maximum
per-tile net count from four to two. Having fewer nets per tile re-
duces the cluster size, increasing chances of TSV-island insertion.
Therefore, we wrap our clustering and TSV-island insertion algo-
rithm into an outer loop, which iteratively decreases grid-tile size
from an upper bound f,q. to a lower bound fy,in (Table 1).

5.1 Net Clustering

The rationale for clustering nets is that placing TSV islands within
net bounding boxes facilitates shortest-path connections. Also, as-

signing nets to clusters helps to select the type and capacity of each
TSV island. Figure 3(c) illustrates a cluster of three nets routed
through a TSV island.

To formalize the clustering process, we consider a virtual die —
the minimum rectangle containing projections of active-layer out-
lines. The pins of each net are projected onto the virtual die (Figure
3(b)). Intersections of net bounding boxes in the virtual die suggest
possible locations of TSV islands (Figure 3(c)).

Relevant results from graph theory. Imai and Asano [12] con-
ducted a study on intersections of axis-aligned rectangles in the
plane. First, Imai and Asano proved that n axis-aligned rectan-
gles (e.g., bounding boxes) have a single non-empty n-way inter-
section iff each pair of these rectangles overlap. Thus, rather than
check all subsets of overlapping bounding boxes, we may search

3D floorplan
w/o TSV islands

« | Phase 4
Phase 1 #=| Sorting nets by
Initializing virtual die, deadspace
Initializing grids H ¢
o0 B
5]
* “g’ l—g Phase 5
Phase 2 E B Assigning nets -
Analyzing tiles, o > ® cFustegrs B
Determining cluster ° g
2 >
o
¥ 2 Y
Phasae 3 « | Phase 6
Determining | Inserting TSV island
deadspace for clusters for a largest cluster

Smaller cluster
available?

3D floorplan
w/TSVislands

Figure 4: Flow of net clustering and TS V-island insertion. Our
techniques first localize global routing while determining possi-
ble cluster regions, described by intersections of net bounding
boxes. Second, TSV-islands insertion into cluster regions is it-
eratively attempted, based on dynamic scores. Depending on
success of TSV-island insertion, our techniques provide a 3D
floorplan with suitable placed TSV islands.

TSVisland inserted?

All nets connected?

.
(©3) i 03)
=::::
(0.2) gl IR o
1
0,1) ibS 0,1)
Evmn oY B
D200
©9% o lo44 j073 [1.0 i ©9

(0,0) (10) (200 (3.0 (0,00 (1,00 (200 (3.0

(a) (b)

Figure 5: Uniform clustering grid G on virtual die. (a) Pro-
jected blocks from all active layers. We calculate the per-tile
ratio of aligned deadspace, illustrated in the last row. (b) Pro-
jected net bounding boxes. According to their bounding boxes,
we link nets to covered tiles. The intersection of net bound-
ing boxes must be explicitly checked during clustering. In tile
(1,2), e.g., net bounding boxes bb,,, , bb,,, and bb,,,, bb,,, do not
overlap pairwise, but all four nets are linked to the tile.

for cliques in a suitably defined intersection graph. This graph rep-
resents bounding boxes by vertices and connects overlapping boxes
by edges. Second, they provided an O(n log n)-time algorithm for
finding the maximum clique in intersection graphs with n vertices,
even though this problem is NP-hard for general graphs [26]. In our
context, however, a single clique is insufficient — we seek to par-
tition the edges in the intersection graph into a small set of cliques,
which is the NP-complete clique cover problem [6] (for interval
graphs, this problem can be solved in polynomial time [8]).

Results by Imai and Asano imply that the largest possible net clus-
ters correspond to maximum cliques in the intersection graph. How-
ever, in our context, large cliques may exceed the capacity of the
largest available TSV island. Several TSV islands can be com-
bined to implement such a clique, but this increases routing con-
gestion and mechanical stress, and aggravates signal integrity prob-
lems [7,31]. Another problem with using large cliques is that cor-
responding (small) intersections of net bounding boxes may not
include any aligned deadspace, preventing the insertion of a TSV
island. On the other hand, a smaller clique would imply fewer
bounding boxes and a larger intersection that is more likely to admit
TSV-island insertion. Thus, we need to develop our own algorithm
for identifying clique covers. Our algorithm is presented next.

Infrastructure used by our clustering algorithm. Initially, all
blocks are projected onto the virtual die. In order to identify clus-
ters (cliques) of appropriate size, a uniform clustering grid G is con-
structed on the virtual die (Figure 5). A clustering grid links each
net n to each tile 2= € G covered by its net bounding box bb,, and
thus results in size-limited (appropriate) clusters. Cluster regions
must be close to aligned deadspace, otherwise TSV islands cannot
be inserted. To calculate the amount of aligned deadspace, a non-
uniform grid is constructed. Grid lines are drawn through the four
edges of each block. Grid tiles not covered by blocks define dead-
space. For m blocks overlapping with a particular tile =, deadspace
detection runs in (’)(m2) time [29], which is not prohibitively ex-
pensive because typically m < 50. In the uniform clustering grid,
tiles with insufficient aligned deadspace (< =4 .,) are marked as
obstructed. Key parameters used in our algorithm are defined in
Table 1 along with their values.

Our clustering algorithm is illustrated in Figure 6, referenced
phases are also illustrated in Figure 4. In Phase 1, the virtual die
and the grid structures are constructed. Then, each net is linked
to each grid tile within the net’s projected bounding box (Figure

CLUSTER_NETS(L, N, B, F)

1 // Phase I: initialize virtual die and clustering grid
2 INITIALIZE_VIRTUAL_DIE(L)

3 G = INITIALIZE_CLUSTERING_GRID(N/, B, F)

4 // Phase 1: link nets to grid tiles

5 foreachnetn € N

6 bb, = DETERMINE_BOUNDING_BoOX(n, B, F)

7 foreach grid tile = € G where = is covered by bb,,

8 append n to =. nets

9 // Phase 2: determine possible clusters
10 foreach grid tile = € G where =. obstructed == FALSE
11 ¢ = DETERMINE_CLUSTER(ZE, Qumin,; Onets, Olink)

12 ifcg C

13 insert ¢ into C

14 foreach net n € c. nets

15 n. clustered = TRUE

16 elseif |c. nets| > 0

17 UPDATE_CLUSTER_REGION(c,)

18 // Phase 2: handle yet unclustered nets
19 progress = TRUE
20 while progress == TRUE

21 RESET(unclustered_nets)

22 foreach net n € N where n. clustered == FALSE
23 append n to unclustered_nets

24 ¢ = DETERMINE_CLUSTER(unclustered_nets)
25 progress = (¢ & C)

26 if progress == TRUE

27 insert ¢ into C

28 foreach net n € c. nets

29 n. clustered = TRUE

30 // Phase 3: determine available deadspace

31 foreach cluster c € C

32 foreach grid tile = € G where = is covered by c. bb

33 c. deadspace += INTERSECTION(c. bb, E) X E. deadspace

Figure 6: Our clustering algorithm. Input data are described in
Section 4. Grid tiles where aligned deadspace is below a thresh-
old =¢ ., are pre-marked as obstructed.

5(b)). In Phase 2, for each unobstructed grid tile the largest cluster
is determined — each linked net is considered as long as the result-
ing intersection of net bounding boxes is non-empty. Moreover, we
impose a lower bound 2,4, on the overlap area between the inter-
section and tiles, in order to assure the intersection is covering the
unobstructed tile to some minimal degree. We note that intersec-
tions in general can overlap more than one tile, depending on the
net bounding boxes. An upper bound Opts of nets clustered within
each cluster ¢ must not be exceeded. Also, an upper bound Oy;nk
for clustering each net n to clusters must not be exceeded. Next,
we attempt to cluster yet-unclustered nets by relaxing the imposed
bounds. Since this step allows one-net clusters, all nets are guar-
anteed to be clustered afterwards. In Phase 3, available aligned
deadspace is determined for each cluster region.

5.2 'TSV-Island Insertion

After running our clustering algorithm, we determined possible
cluster regions (per net) where TSV islands can be inserted. How-
ever, not all clusters need to have TSV islands inserted to allow
routing all nets through TSVs — according to the bound Oyiny,
each net can be included in several clusters. Depending on the
order of selecting clusters for TS V-island insertion, some clusters
may become infeasible as TSV-island sites. Available deadspace
accounted for a particular cluster may be occupied by another clus-
ter. Furthermore, clusters containing nets which have not been clus-
tered within unobstructed tiles need to consider nearby deadspace.
This may also result in TSV islands blocking each other.

Our TSV-island insertion algorithm, illustrated in Figures 7 and
4, accounts for aligned deadspace while iteratively assigning nets
to clusters and inserting TSV islands. In the following discussion,
we refer to nets yet unassigned to a TSV island as non-inserted

INSERT_TSV_ISLANDS(C, N, T')

1 // Phase 4: sort nets

2 SORT_NETS_BY_AREA_SUPPLY(N, C)

3 progress = TRUE

4 while progress == TRUE

5 // Phase 5: assign nets to clusters

6 foreach net n € A where n. inserted == FALSE
7 ¢ = FIND_HIGHEST_SCORED_CLUSTER (7, C, n%,;)
8

ASSIGN_NETS_TO_CLUSTER(c. nets, ¢, Opink)

9 // Phase 6: iteratively insert TSV island for a largest cluster
10 (¢, t) = INSERT_TSV_ISLAND(C, 7))

11 progress = (c!=NULL)

12 // Phase 6: mark & unlink handled nets from clusters

13 if progress == TRUE

14 foreach net m € c. nets

15 m. inserted = TRUE

16 m. TSV _island =t

17 REMOVE_NET_FROM_CLUSTERS(m, C \ ¢)
18 // Phase 6: remove all assignments of nets to clusters
19 REMOVE_ASSIGNMENTS_FROM_CLUSTERS(C \ ¢)
20 elseif 71 n € N where n. inserted == FALSE
21 TERMINATE(success)
22 else TERMINATE(fasl)

Figure 7: Our TSV-island insertion algorithm. Input data are
described in Section 4.

nets, and to nets yet unassigned to a cluster as unassigned nets.
In Phase 4, our algorithm sorts all nets by their total aligned dead-
space of related clusters. Nets included in clusters with little avail-
able deadspace are considered first, since corresponding TSV is-
lands are difficult to insert. In Phase 5, each unassigned net is an-
alyzed for its associated clusters. The highest-scored cluster with
respect to a dynamic cluster score Y (available deadspace of clus-
ter region divided by number of assigned nets) is chosen. Calcula-
tion and assignment of Y for each cluster is performed dynamically
within procedure FIND_HIGHEST_SCORED_CLUSTER, depend-
ing on previously assigned nets. In order to facilitate TSV-island
insertion, the cluster to be chosen must provide a minimal amount
of deadspace n ;. for each net to be assigned to it. Then, each
net of the highest-scored cluster is assigned to the cluster, subject
to Oyink. In Phase 6, TSV-island insertion for a largest cluster
(in terms of assigned nets divided by T) is iteratively attempted —
TSV-island insertion for clusters with many assigned nets and little
available deadspace is difficult, thus these clusters are considered
first. A local search (in procedure INSERT_TSV_ISLAND) over
the cluster regions identifies contiguous regions with appropriate
shapes to insert a TSV island with sufficient capacity.” Initially,
aligned deadspace within the cluster regions only is considered. If
no contiguous regions of deadspace can be found, a second iteration
expands the cluster regions by factors ¢, 2., (in terms of die di-
mensions) to widen the search. If no contiguous regions are found
again for any cluster, block shifting is performed to increase aligned
deadspace (Section 5.3). Therefore, the cluster providing maximal
amount of aligned deadspace is chosen first to minimize the total
amount of shifting. After successful TSV-island insertion, all nets
are unlinked from remaining clusters — according to Y, each net
may be assigned to different clusters now. Iterations continue with
Phase 5 until all nets are inserted. If TSV-island insertion fails for
all available clusters, our algorithm terminates with no solution.

5.3 Block Shifting using Floorplan Slacks

TSV-island insertion can fail because aligned deadspace is unavail-
able where it is needed. To address these failures, we propose to
redistribute deadspace by shifting blocks in x- and/or y-directions

“The local search and TSV-island insertion are not described in
detail due to page limitations.

without changing the floorplan outline or block ordering. We uti-
lize the well-known concept of floorplan slack [1], which describes
maximal displacement of a block within the floorplan. When blocks
do not overlap, slacks are > 0. We determine slacks for each
layer separately and use standard linear-time traversals of floor-
plan constraint graphs, not unlike those in Static Timing Analy-
sis [27]. Floorplan modifications based on constraint graphs are
discussed in detail in [25]. To calculate x-slacks, we () pack blocks
to the left boundary, and (i¢) pack blocks to the right boundary. x-
slack for each block is computed as the difference of the block’s
x-coordinates in these two packings. y-slack is calculated in the
same way.

When TSV-island insertion requires redistributing deadspace by
block shifting, we identify individual clusters in need of aligned
deadspace. Within each cluster region, we determine the largest
region Ry of aligned deadspace (if no aligned deadspace is found,
we nominally consider the center of the cluster region as Rg). We
then seek to consolidate additional aligned deadspace around Rg4
by shifting away the blocks adjacent to R4. The distance by which
each block is shifted cannot exceed its slack in the respective di-
rection. Furthermore, the sum of such displacements in each direc-
tion cannot exceed the floorplan slack (the largest slack of any one
block). Therefore, we shift blocks incrementally by small amounts
S0 as to increase 124 until it reaches the size required to accommo-
date a TSV island with sufficient capacity.

Shifting a block may require shifting its abutting neighbors and
other blocks. To this end, we maintain the floorplan configuration
using constraint graphs and implement block shifting as follows.
First, block dimension is inflated by the amount of displacement,
and then standard path-tracing algorithms are applied to the con-
straint graph to find new block locations. To speed up this pro-
cedure, path-tracing can be performed incrementally, not unlike in
incremental Static Timing Analysis.

If R4 cannot be increased sufficiently, we choose another region of
aligned deadspace within the cluster region.

6. EMPIRICAL VALIDATION

We obtain 3D floorplans by running state-of-the-art software for
3D floorplanning.’ The GSRC and MCNC benchmarks included
in this infrastructure do not provide pin offsets, therefore we as-
sume net bounding boxes to be defined by the bounding boxes of
incident blocks. Two sets of floorplans are obtained, configuring
the floorplanner for 10% and 15% deadspace respectively. We con-
struct two sets of rectangular TSV islands with TSV footprints of
2um? and 4pm? respectively. Each set contains TSV islands with
capacities for 2-30 nets; TSV islands are designed by packing sin-
gle TSVs while considering keep-out-zone distances of 1um.

Experimental configurations. We consider two design configura-
tions; one with guaranteed channels, one without channels. (Tra-
ditional floorplanners usually pack blocks without channels; how-
ever, many industry chips include channels between blocks to facil-
itate routing.) To insert channels between the blocks without mod-
ifying the floorplanner, every block was inflated before floorplan-
ning and contracted to the original size after floorplanning. How-
ever, this increases floorplan size. An alternative is to pack blocks
without channels, but carefully redistribute deadspace to facilitate
TSV-island insertion. While more complex, this approach produces
much more compact floorplans.

SWe thank the authors of [32] and Yuankai Chen for sharing their
infrastructure for 3D floorplanning.

Infrastructure for empirical validation. We implemented our al-
gorithms using C++/STL, compiled them with g++ 4.4.4, and ran
on a 64-bit Linux system with a 3.0GHz Intel Core 2 processor and
8GB RAM. Parameters discussed in Section 5 are configured ac-
cording to Table 1; Eﬁﬂn, Qunin, Onets, and Oyjn i control the clus-
tering algorithm, while ¢%,; and ¢?,, control the deadspace search
for TS V-island insertion, and 4maz, fmaz, tmin, and fmin control
the global iterations. Experimental results on representative GSRC
and MCNC benchmarks are reported in Table 2. In cases where our
algorithm terminates with no solution, results are marked as fail.

TSV-island insertion and estimated wirelength. We analyze the
impact of available TSV-island types, considering their capacity
and dimensions. As expected, smaller TSVs increase chances of
TSV-island insertion. However, wirelength overhead varies only
marginally for the TSV-island dimensions that we tried. Being able
to adjust the shape of TSV islands is beneficial for TSV-island in-
sertion, while using square islands hinders insertion.

The overhead of TSV islands can be estimated by comparing actual
net lengths to shortest paths (see HPWL ratio in Table 2), which
would correspond to greedy insertion of single TSVs within net
bounding boxes. Here we do not account for the increased foot-
print of single TSVs (due to increased keep-out-zones in compari-
son to packed TSV arrays) and have no way to quantify the loss of
redundancy offered by TSV islands. Furthermore, this comparison
would only apply to block-level interconnect, whereas most of the
design’s nets are subsumed within blocks. Wirelength overhead is
13.3-17.2% for the configuration without guaranteed channels, and
1.1-7.1% for the configuration with guaranteed channels. Such a
moderate overhead in global interconnect, especially for the config-
uration with guaranteed channels, is expected and can be tolerated
because 3D integration offers greater benefits [13].

Block shifting vs. guaranteed channels. Recall that inserting
channels increases floorplan’s deadspace. In contrast, redistribut-
ing available deadspace to facilitate TSV-island insertion supports
more compact floorplans. However, we observe that floorplan slack
required for block shifting is often insufficient, especially for blocks
surrounding and/or covering cluster regions. Floorplans obtained
with increased-deadspace configuration do not necessarily increase
aligned deadspace because the infrastructure of [32] does not ac-
count for. For successful TSV-island insertion, our algorithms must

Metric Meaning Value
Efnm Min aligned deadspace per clustering-grid tile 0.9
(tile size)

Qmin Min overlap area between cluster region 0.25
and grid tile (tile size)

Onets Max nets per cluster 30

Olink Max clusters per net 5

nfmn Min aligned deadspace per net in a cluster 1.05

(TSV footprint)
e ey Factors for extending cluster region 0.05
to search for nearby deadspace (die dimensions)

bbmin Area of the smallest net bounding box floorplan specific

Tmaz Global iterations for decreasing tile size 5
from frax 0 bbmin

fmax Max tile size (bbyin) 1.05

Tmin Global iterations for decreasing tile size 35
from bbymin 0 frmin

fmin Min tile size (bb.in) 0.6

Table 1: Parameters for net clustering and TSV-island inser-
tion algorithms, along with their values.

Deadspace Design configuration

& Metrics w/o guaranteed channels | w/ guaranteed channels
TSV area nl00 | n200 | n300 | nl100 | n200 | n300
10% HPWL ratio | 1.134 | 1.167 1.172 | 1.011 | 1.044 | 1.059

2pm? | Channel size | - - - 8% | 13% | 8%

Runtime (s) | 22.73 | 147.38 | 392.54 | 4.61 | 40.67 | 102.04
15% HPWL ratio | 1.147 | 1.153 | 1.159 | 1.011 | 1.037 | 1.048

2pum? | Channel size | - - - 13% | 12% | 11%
Runtime (s) | 20.60 | 108.17 | 450.80 | 4.63 | 40.31 | 106.77
10% HPWL ratio | 1.133 | fail fail | 1.027 | 1.071 | 1.070

4;mz2 Channel size - - - 10% | 14% 12%
Runtime (s) | 13.45 | fail fail | 5.10 | 53.51 | 111.62

15% HPWL ratio | fail fail fail 1.011 | 1.066 | 1.062
4,1nn2 Channel size - - - 10% | 14% 12%
Runtime (s) fail fail fail 4.75 | 63.19 | 120.78

Table 2: L2Di integration without and with guaranteed chan-
nels. To add channels, every block was inflated before floor-
planning and contracted to the original size after floorplanning,
increasing floorplan outline. Binary search was used to find so-
lutions with minimal wirelength overhead. We report channel
size as the inflation factor. HPWL ratio divides wirelength of
connections through TSVs by shortest-path wirelengths.

use aligned deadspace further from their cluster regions, thus in-
creasing wirelength overhead.

Inserting deadspace channels not only reduces wirelength overhead
and runtime, but also helps L2Di integration succeed where it oth-
erwise fails. We performed a binary search for channel insertion
with block inflations ranging from 6% to 14%. Considering the
trade-off between floorplan increase and wirelength overhead, our
results represent lowest wirelength overheads. Figures 8(a,b) illus-
trate L2Di integration of n300 without and with guaranteed chan-
nels respectively. Some TSV islands are placed outside cluster re-
gions due to deadspace limitations within cluster regions, introduc-
ing wirelength overhead. Cluster regions differ for the two design
configurations. Without guaranteed channels, less aligned dead-
space is available in general. Since our clustering algorithm ac-
counts for available deadspace, cluster regions are more likely to
intersect in this configuration.

7. CONCLUSION

Our work seeks to streamline the transition from existing practice
in chip design to 3D integration. In addition to manufacturing and
cost considerations, this transition is hampered by the lack of rel-
evant standards and commercial EDA tools. A key insight in our
work is that many of the benefits of 3D integration can be obtained
while reusing existing 2D blocks. Therefore, we analyzed different
design styles for 3D integration of 2D blocks. We conclude that, in
the near future, the most promising and least risky design style for
3D integration is the L2Di style.

To enable the L2Di style, we contribute novel techniques for clus-
tering of nets and inserting TSV islands. We provide an empirical
validation of our techniques, demonstrating the possibility for 3D
integration of 2D blocks without modifying their layout. We ob-
serve that the use of TSV islands may increase wirelengths beyond
shortest paths, depending on the given floorplan. However, this ef-
fect can be mitigated by using a larger number of (smaller) TSV
islands and by inserting deadspace channels between blocks.

Acknowledgements. We are thankful to Jin Hu for proofreading
drafts of this paper.

8.
il

[2]
[3]
[4]

[5

[6]
[7]
[8]
[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

S. N. Adya, I. L. Markov. Consistent placement of macro-blocks using
floorplanning and standard-cell placement. ISPD "02, pp. 12—-17.

J. Cong, Y. Ma. Thermal-aware 3D floorplan. Three Dimensional Integrated
Circuit Design, pp. 63—102. Springer US, 2010.

J. Cong, J. Wei, Y. Zhang. A thermal-driven floorplanning algorithm for 3D
ICs. ICCAD ’04, pp. 306-313.

C. Ferri, S. Reda, R. L. Bahar. Strategies for improving the parametric yield and
profits of 3D ICs. ICCAD 07, pp. 220-226.

R. Fischbach, J. Lienig, T. Meister. From 3D circuit technologies and data
structures to interconnect prediction. SLIP "09, pp. 77-84.

R. J. Fowler, M. S. Paterson, S. L. Tanimoto. Optimal packing and covering in
the plane are NP-complete. /PL, 12(3):133-137, 1981.

S. Garg, D. Marculescu. 3D-GCP: An analytical model for the impact of
process variations on the critical path delay distribution of 3D ICs. ISQED ’09,
pp. 147-155.

M. C. Golumbic. Algorithmic graph theory and perfect graphs. Elsevier, 2004.
M. B. Healy et al. Design and analysis of 3D-MAPS: A many-core 3D
processor with stacked memory. CICC ’10.

A.-C. Hsieh et al. TSV redundancy: Architecture and design issues in 3D IC.
DATE 10, pp. 166-171.

W.-L. Hung et al. Interconnect and thermal-aware floorplanning for 3D
microprocessors. ISQED 06, pp. 98—-104.

H. Imai, T. Asano. Finding the connected components and a maximum clique of
an intersection graph of rectangles in the plane. J. Algorithms, 4(4):310-323,
1983.

International technology roadmap for semiconductors.
http://www.itrs.net/Links/2009ITRS/Home2009.htm.

L. Jiang, Q. Xu, K. Chakrabarty, T. M. Mak. Layout-driven test-architecture
design and optimization for 3D SoCs under pre-bond test-pin-count constraint.
ICCAD ’09, pp. 191-196.

D. H. Kim, K. Athikulwongse, S. K. Lim. A study of through-silicon-via impact
on the 3D stacked IC layout. ICCAD ’09, pp. 674—-680.

D. H. Kim, S. Mukhopadhyay, S. K. Lim. Through-silicon-via aware inter-

n300 - Layer 1

17
(18]
[19]
[20]
[21]
22]
(23]
[24]
[25]
[26]

[27]
[28]

[29]
[30]
[31]

[32]

connect prediction and optimization for 3D stacked ICs. SLIP 09, pp. 85-92.
H.-H. S. Lee, K. Chakrabarty. Test challenges for 3D integrated circuits. IEEE
Design & Test of Computers, 26(5):26-35, 2009.

Y.-J. Lee, R. Goel, S. K. Lim. Multi-functional interconnect co-optimization for
fast and reliable 3D stacked ICs. ICCAD 09, pp. 645-651.

Y.-J. Lee, M. Healy, S. K. Lim. Co-design of reliable signal and power
interconnects in 3D stacked ICs. IITC "09, pp. 56-58.

X. Li et al. LP based white space redistribution for thermal via planning and
performance optimization in 3D ICs. ASP-DAC 08, pp. 209-212.

X. Li, Y. Ma, X. Hong. A novel thermal optimization flow using incremental
floorplanning for 3D ICs. ASP-DAC 09, pp. 347-352.

Z. Li et al. Integrating dynamic thermal via planning with 3D floorplanning
algorithm. ISPD ’06, pp. 178-185.

Z. Li et al. Efficient thermal-oriented 3D floorplanning and thermal via
planning for two-stacked-die integration. TODAES, 11(2):325-345, 2006.

I. Loi et al. A low-overhead fault tolerance scheme for TSV-based 3D network
on chip links. ICCAD 08, pp. 598-602.

M. D. Moffitt, J. A. Roy, I. L. Markov, M. E. Pollack. Constraint-driven
floorplan repair. TODAES, 13(4):1-13, 2008.

C. H. Papadimitriou, K. Steiglitz. Combinatorial Optimization : Algorithms and
Complexity. Dover Publications, 1998.

S. S. Sapatnekar. Timing. Kluwer, 2004.

S. Sridharan et al. A criticality-driven microarchitectural three dimensional
(3D) floorplanner. ASP-DAC 09, pp. 763-768.

E. Wong, S. K. Lim. Whitespace redistribution for thermal via insertion in 3D
stacked ICs. ICCD ’07, pp. 267 -272.

X. Wu et al. Cost-driven 3D integration with interconnect layers. DAC ’10, pp.
150-155.

J.-S. Yang et al. TSV stress aware timing analysis with applications to 3D-IC
layout optimization. DAC ’10, pp. 803-806.

P. Zhou et al. 3D-STAF: scalable temperature and leakage aware floorplanning
for three-dimensional integrated circuits. /ICCAD '07, pp. 590-597.

n300 - Layer 1

Figure 8: L2Di-style integration of 7300, (a) without guaranteed channels and (b) with guaranteed channels. Grey rectangles rep-
resent blocks, red (black) rectangles TSV islands (up to 30 TSVs per island). Cluster regions are shown in brown (dark grey) on
Layer 1, while aligned deadspace is shown in beige (light grey) on Layer 2. Channel insertion in (b) increased die size by 21%.

