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Let M be a finite-state machine, and let S be an implementation of M. The protocol-testing
problem is the problem of determining if S is a correct implementation of M. One known method

for solving this problem, called the W-method, has the disadvantage that it generates a relatively
large test set. In this paper, we describe three new versions of this method. We prove that these

versions all have the same fault detection capability as the W-method. In addition, we show that
in most cases all three generate a smaller number of tests than the W-method. Specifically,
suppose Ml and Mz are finite-state machines having n and m states, respectively, where Ml is
a specification (M), Mz is an implementation (S), and m > n. In addition, suppose they have
input alphabet X, where 1X1= k; let a be the total number of strings in a characterization set for
Ml, and let ~ be the total number of strings in a transition couer set for Ml. The W-method will
generate a test set consisting of afl(k M n+ 1 – I)/(k – 1) strings. In contrast, our first algo-

rithm will generate a test set containing at most B( a + km-n ) strings. For our second algorithm,
the number of strings will be ~kmaxt’- l>m-”j, and for the third, ~(kn - 1 + km-”), When m >> ~,

all three of our algorithms will produce fewer strings than the W-method. Finally, two of our

algorithms make use of a heuristic for minimizing the number of strings in a characterization
set. We show that the performance ratio for this heuristic has an upper bound of O(log n).

Categories and Subject Descriptors: C.2.2. [Computer-Communication Networks]: Network
Protocols—protocol verification; 0.2.4 [Software Engineering]: Testing and Debugging-test

data generators

General Terms: Algorithms, Reliability, Theory, Verification

Additional Key Words and Phrases: Heuristics

1. INTRODUCTION

The problem of testing software has been approached in a variety of ways.
Particular testing methods are typically categorized as either specification

based or program based [Howden 1987]. Alternatively, these are often re-
ferred to as black-box and white-box, respectively. Most are general-purpose
methods, in the sense that they are designed to work for just about any type
of software. On the other hand, some special-purpose testing techniques have
also been developed. These techniques try to exploit constraints on software
structure in an attempt to improve the effectiveness of the testing process.
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1.1 Protocol Testing

In this paper we focus on the problem of testing a specific class of software
system. Specifically, we focus on the problem of testing the control portion of
protocols. Generally speaking, we can say that a protocol specifies the rules
used by a collection of computer systems that are communicating on some
network. It has been shown by Chow [1978] that by restricting consideration
to this special case, we can generate test data that is guaranteed to detect
specific types of errors. Though Chow’s method will not detect all errors, it is
guaranteed to detect certain types of errors in all cases, regardless of how
many occur or in what combination.

The specification of the control portion of a protocol is often given in the
form of a finite-state machine that produces output. Such machines are often
called Mealy machines, and they differ from deterministic finite-state au-
tomata in that each transition is associated with an output symbol. The idea
is that when a transition occurs from one state to another, a symbol associ-
ated with the transition is generated as output. In a protocol specified by
such a machine, the output symbol typically corresponds to some command or
message. An example of such a machine is shown in Figure 1. For this
particular machine, an input of 01100 will produce abbba as output.

The protocol-testing problem can be stated as follows. Suppose that the
specification of a protocol is given in the form of a Mealy machine M. In
addition, suppose that S is an implementation of M.l The question we wish
to ask is whether or not S is a correct implementation of M. Protocol-testing
methods answer this question by prescribing a way to generate a set of tests
from the specification M, which is then used to test the implementation S.
Ideally, we would like to construct a test set D such that the output produced
by M on D is the same as the output produced by S on D, if and only if S
correctly implements M.

1.2 Previous Work

Problems such as the protocol-testing problem have been considered for some
time, and much of the current work has its roots in problems concerned with
state identification and fault detection for sequential circuits. Gill [1962] and
Hennie [1968] summarize much of the work in these areas, respectively.
Many of the ideas in these areas can be traced back to the seminal work of
Moore [1956]. The protocol-testing methods most often referred to are the
T-method [Naito and Tsunoyama 1981], the D-method [Gonenc 1970], the
U-method [Sabnani and Dhabura 1988], and the W-method [Chow 1978]. All
of these are similar in that they provide a method for generating a set of one
or more strings {sl, S2, ..., s~}, which is often referred to as a test suite. The
implementation is then tested using these strings to verify that it conforms to
the specification M. Among these methods, the T-method is usually consid-

1Note that the “implementation” could be in hardware, software, or some combination of the two,
For the purposes of this paper it is convenient to assume that the implementation is m software;
however, the results presented hold regardless of the exact implementanon medium
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Fig. 1. A minimal Mealy machine.
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ered to be unique, while the
similar. Specifically, the T-method is primarily concerned with checking the
transitions between states in a protocol, whereas the others will check both
states and transitions.

The different protocol-testing methods can be compared on a number of
different dimensions. The two most obvious are the size and fault detection
capability of the resulting test set. With regard to the size of the test set
produced, Sidhu and Leung [1989] have observed empirically that the T-
method will usually produce the smallest, while the W-method will usually
produce the largest. On the other hand, it is generally accepted that the
T-method has less fault detection capability than the other methods. Simi-
larly, the methods could be compared based on their underlying assumptions.
For example, the D, U, and W-methods all assume a reset capability whereas
the T-method does not. The methods developed in this paper also assume a
reset capability as well.

In addition, though it has not been proven formally, it is also generally
accepted that the D, U, and W-methods have equivalent fault detection
capabilities [Sabnani and Dhabura 1988]. The only exception to this, accord-
ing to the literature, is that the W-method can detect “additional states” in
the implementation, whereas the D and U-methods cannot. Furthermore, the
fault detection capability of the W-method, which is explained below, has
been formally proven by Chow [1978], whereas the same cannot be said for
the D or U-methods.

From a theoretical, worst-case perspective, another disadvantage of the D
and U-methods is that they require the construction of a distinguishing

entity of some kind, and constructing such an entity is often intractable. For
example, the D-method makes use of a string called a distinguishing string.2

Yannakakis and Lee [ 1988] have shown that determining if a given finite-state
machine has a distinguishing string is PSPACE-complete. Similarly, the
U-method makes use of a string called a unique input-output (UIO) string.

2The reader should note that the dlstinguzshing string referred to here is different from that
defined m SectIon 2.
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Yannakakis and Lee have also shown that determining if a given state in a
finite-state machine has a UIO string is PSPACE-complete. What these
results mean is that no polynomial-time algorithm exists for computing such
strings, unless PSPACE = P. Furthermore, such strings will not exist for
certain protocols, and even when they do exist, they can have exponential
length.

It must of course be recognized that the above results are worst case in
nature. In fact, in most cases UIO sequences are typically very short [Dhabura
et al. 1990]. It must also be recognized that the T and W-methods do not
require the computation of any such distinguishing entity. Though the W-
method does make use of a set of strings called a characterization set, such a
set will always exist, at least for a minimal finite-state automaton; the set
will have polynomial size; and it can always be computed in polynomial time
[Gill 1962].

The issue we wish to address in this paper is concerned with the primary
disadvantage of the W-method. Specifically, we would like to know if there is
a method that has all of the advantages of the W-method, yet generates a
smaller resulting test set. In this paper we present three algorithms that do
just this.

It should also be noted that a variety of improvements and modifications to
the above methods have been suggested in other papers. For examples of such
improvements, the interested reader is referred to papers by Fujiwara et al.
[ 1991], Chen et al. [ 1990], and Miller and Paul [ 1991]. Also, the basic idea of
the W-method is from Vasilevskii [1973].

1.3 Our Results

In this paper we present three modified versions of Chow’s [1978] W-method.
As stated above, the W-method has a number of advantages and disadvan-
tages compared with other methods. In particular, let Ml be a minimal
Mealy machine with n states, and let Mz be a minimal Mealy machine with
at most m states. In addition, suppose that Ml represents a specification and
M2 an implementation. Then the set S of inputs generated by the W-method
can be used to determine if M2 correctly implements Ml. In other words, the
output produced by Ml on the inputs in S will be identical to those produced
by M2 if and only if Ml and M2 is identical.

It should be noted that in no way are we claiming that the W-method is the
“best” method. In particular, relative to most other methods, the W-method
has the disadvantage that it generates extremely large test sets. On the other
hand, it has the advantage that it’s fault-tolerant capability can be precisely
defined and proven. The primary value of the modified versions of the
W-method presented here is that they have the advantages of the W-method
(their fault-tolerant capability can be precisely defined and proven), yet at the
same time, these versions of the W-method improve upon the main disadvan-
tage of the W-method. Specifically, the algorithms presented here have the
advantage that they will generate a much smaller number of tests in many
cases.
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Suppose Ml and Mz are minimal finite-state machines, as above. In
addition, suppose that Ml and Mz both have input alphabet E, where

El = k; let a be the total number of strings in a characterization set for Ml,
and let ~ be the total number of strings in a transition cover set for Ml. The
W-method will generate a test set consisting of a~(k’ - n+ 1 – I)/(k – 1)
strings. In contrast, our first algorithm will generate a test set containing at
most ~(a + k ~ -”) strings; the second will contain /3k ‘ax{’ -1 m ‘), and the
third ~(k’ -1 + k m ‘). When m >> n, all three of our algorithms produce
fewer strings than the W-method. Two of these algorithms make use of a
heuristic for minimizing the number of strings in a characterization set. We
show that the performance ratio for this heuristic has a logarithmic upper
bound.

1.4 Applications to Software Testing

Though the immediate topic of this paper is protocol testing, it is important
to note that the results described may be applicable to software testing as
well. Finite-state machines have been used in the analysis and design of
many different kinds of software systems, including compilers, real-time and
object-oriented systems. Exactly how they are used in the development of
different kinds of software tends to vary greatly. However, the possibility
does exist that finite-state models, developed during either analysis or de-
sign, could be used in the generation of test data. Of course, before test data
could be generated using protocol test generation methods one would first
have to define the types of finite-state machines that were being used, and
they would have to be developed and specified in a very precise manner. This
is typically not done when finite-state models are used during development,
but the approach is worthy of additional consideration.

2. DEFINITIONS

Throughout this paper we will make use of the following definitions. Let E be
a finite alphabet, and let X and Y be sets of strings over Z. The concatena-

tion of X and Y, denoted X. Y, is the set {w I x ● X, y ● Y and w = xy}. The
union of X and Y, denoted X u Y, is the set {w I w = X or w = Y}. The
cardinality of X, denoted IX 1, is the total number of strings in X. Let c
denote the empty string, and let X 0 = {~}. Then X’ is the set X,X’-’, and
X% is the set U ~=o X’. Note that since any alphabet Z is a set of strings, each
having length 1, the set E’ is the set of all strings over Z having length i, and
E* is the set of all strings over Z.

As mentioned in Section 1, the control portion of a protocol can be described
by a Mealy machine M = (Q, Z, r, 8, y, q), where Q is a finite set of states; Z
is a finite input alphabet; !2 is a finite output alphabet; 8: Q x E + Q is a
transition function; y: Q x E + r is an output function, and q ● Q is a
starting state. For example, the Mealy machine in Figure 1 has Q =

{qo, ql, qz, q~}, Z = {O, 1}, r = {a, b}, and q = qO. Note that if p,q ~ Q,s ~ L
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t = r, z7(p, s) = q, and Y(P, s) = t,then in Figure 1 we have shown an edge

from p to q labeled s/t. Such a transition will be denoted by p‘~ q.

The function 6 can be extended to a function on strings 8‘: Q X Z* - Q.
Specifically, if q E Q, a E E, y G X*, and w = ya, then define 6’(q, E) = q

and 6’(q, w) = z!i(~’(q, y), a). Similarly, y can also be extended to y’: Q X Z*
- r*. If q G Q, a G X, y E E*, and w = ya, then define y’(q, E) = E and
y’(q, W) = y’(q, y)y(~’(q, Y), a). Throughout this paper we will use ~ for 8’
and y for y’. In other words, if q E Q and w = Z*, then ~(q, w) is the state

that M will be in after processing the string w when starting in state q.
Similarly, Y( q, w ) will be the string produced as output when M processes w
when starting in state q. For example, for the machine in Figure 1,
C$(q O,00110) = ql and y(qO, OO1lO) = abbba. In addition, let w = WOWI ..
U)n ~ be a string, and let q be a state. Then the k successor of q (with respect
to w) is the state p = 8(q, wOw1 ““” w~-l), where k > 1.

Let p, q G Q and w G E*. Then w is said to distinguish between p and q

if y( p, w ) # y(q, w). In other words, if we consider two different computa-
tions of M on input w, one starting in state p and one starting in state q,

and if these computations produce different outputs, then w distinguishes p

and q. For example, for the machine shown in Figure 1, the string 110 will
distinguish ql from q2. A characterization set for M is a set S z Z* such
that for all q,, qj G Q, where i #j, there exists a string zu E S such that

Y(q,>w) # Y(qj, w). For example, for the machine shown in Figure 1,
{110, 010, 10} is a characterization set. If a machine M has a characterization
set W, then M is said to be minimal.

Let Ml = (Q1, Z,r, 61, yl, ql) and M2 = (Q2, E,r, 62, y2, p1) be Mealy ma-
chines; let q, 6 Ql, pj c Q2, and let S c E“. If yl(q,, w) = y2(pJ, w), for all
w E S, then q, and p] are S-equivalent. If q, and p, are S-equivalent for all
S c E*, then q, and p] are equivalent. If q. and PO are S-equivalent then
Ml and M2 are S-equivalent. If qO and p. are equivalent then Ml and M2

are equivalent. Let f: QI ~ Qz be a one-to-one and onto function such that

(1) f(ql) =Pl and

(2) ql”’~qj if and only if f(ql)x:f(ql), for all q,, q] E Ql, x G Z, and y = r.

Then f is said to be an isomorph ism from Ml to M2. Finally, if there is an
isomorphism from Ml to M2, then Ml and M2 are isomorphic.

The reader should note that the above definition of a characterization set

differs from that sometimes encountered in the literature. For example,
Sidhu and Leung [1989] define a characterization set W for a Mealy machine
M to be a set of strings such that the last output symbols observed from the
application of these strings are different at each state of M. On the other
hand, Chow [ 1978] and Fujiwara et al. [ 1991] define a characterization set to
be a set of input sequences that can distinguish between the behaviors of
every pair of states in S (not necessarily on the last output symbols). For this
paper, we use the definition given above. Though it is stated slightly dif-
ferently, the above definition is equivalent to the one given by Chow and
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Fujiwara. We require this definition in order to apply the minimization
heuristic in Section 5.

3. THE IMPROVED W-METHOD

The W-method solves a formal version of the protocol-testing problem that we
call the Mealy machine equivalence problem. In this problem we are given
two Mealy machines Ml = (QI, E, r, 81, 71, ql) and M2 = (Q2, x, r, h> Y2,
PI), where Ml is referred to as the specification, and M2 is referred to as the
implementation. It is assumed that Ml is minimal and strongly connected,
i.e., that given any two states p and q in Ml, there is always a path from p

to q. It is also assumed that IQII = n and IQ21 = m, where m > n.

The test set generated by the W-method will result from the concatenation
of two sets of strings P and Z. The set P, called a transition cover set, is any
set of input sequences such that e = P and for all p, q G Q and x ● Z, where
S(p, x) = q, there exist w, wx ● P such that ti(ql, w) = p. In other words,
the set P is any set of strings such that for any transition from a state p to
another state q on input symbol x, there will exist input strings w and wx in
P such that w causes Ml to enter state p from the starting state ql. Thus,
the string wx will result in a computation that starts at ql, proceeds to p,

and then traverses the transition to q. An algorithm for constructing a
transition cover set is easy to design. Such an algorithm is presented by Chow
[1978].

The set Z will be constructed as follows. Given that Ml has a minimal
number of states, a string w can always be constructed that distinguishes
between any two given states in Ml. An algorithm for constructing such a
string is given by Algorithm 4.1 by Gill [1962]. It is also shown that such a
string will consist of at most n – 1 symbols. Thus, a characterization set W
for Ml can be formed by constructing a distinguishing string for every pair of
states in Ml. Thus, the resulting set will contain n(n – 1)/2 strings.3
Finally, Z is defined to be the set U ~;n Z’ . W:

z=wuxl” wuz2”wu”””u r-n “w (1)
The fault detection capability of the W-method is summarized by the follow-
ing theorem due to Chow [1978].

THEOREM 3.1. Let Ml be a minimal Mealy machine with n states, and let

M2 be a minimal Mealy machine with at most m states. In addition, suppose

that they both have input alphabet E. Let P be a transition cover set for Ml.

Let W be a characterization set for Ml, and let Z = U ~.jn E’ . W. Then Ml

and Mz are equivalent if and only if Ml and M2 are P. Z-equivalent.

Recall that in the original protocol-testing problem, as stated in Section 1.1,
we are given a Mealy machine Ml and an implementation S of Ml. Assum-
ing that S implements some Mealy machine M2 with at most m > n states,

Theorem 3.1 provides a method to determine if S correctly implements Ml.

Specifically, the set P . Z is constructed, and then the outputs produced by

3In Section 5 we will describe a heuristic for minimizing the number of strings in the set W.
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Ml and S are compared on every string in P . Z. Assuming that S imple-
ments some Mealy machine with m > n states, then from Theorem 3.1, S
correctly implements Ml if and only if they produce the same output on every
string in P . Z.

In practice, it is unlikely that we will have an upper bound value for m.

Consequently, one way to apply Theorem 3.1 in the testing process is to rule
out larger and larger Mealy machines successively that S may actually
implement. In other words, first test S under the assumption that m = n, in
which case we use the set P . Z, where Z = I.J~=~” Z’ . W and m – n = O. If
Ml and S produce equivalent outputs on all of these strings, then this rules
out the possibility that S implements some Mealy machine Mz that is not
equivalent to Ml, but has the same number of states. Next, we test S using
the set P . Z, where Z = U fi~n Z’ . W and m – n = 1.If Ml and S produce
equivalent outputs on all of these strings, then this rules out the possibility
that S implements some Mealy machine Mz that is not equivalent to Ml, but
has one more state than Ml. Next, we test S using the set P . Z, where
Z = (J fi~n Z’ . W and m – n = 2, etc. Thus, we rule out larger and larger
possible machines for S, until we are satisfied.

One of our improvements to the W-method results from an alternative set
Z. Specifically, in our method we construct a test set by concatenating two
sets P and Z, where P is defined just as in the W-method, but where

z= Wuzm-n. (2)

Using the above definitions of P and Z, we can prove the following theorem.

THEOREM 3.2. Let Ml be a minimal Mealy machine with n states, and let

Mz be a minimal Mealy machine with at most m states. In addition, suppose

that they both have input alphabet E. Let P be a transition cover set for Ml.

Let W be a characterization set for Ml, and let Z = W U z“ -‘. Then Ml and

Mz are equivalent if and only if Ml and Mz are P . Z-equivalent.

PROOF. We refer the interested reader to Corollary A.9 in the Appendix.
❑

In fact, we can prove the following theorem.

THEOREM 3.3. Let Ml be a minimal Mealy machine with n states, and let

Mz be a minimal Mealy machine with at most m states. In addition, suppose

that they both have input alphabet E. Let P be a transition cover set for Ml.

Let W be a characterization set for Ml, and let Z = W u Em -‘. Then Ml and

Mz are isomorphic if and only if Ml and Mz are P . Z-equivalent.

PROOF. We refer the interested reader to Theorem A.8 in the Appendix.
❑

The above improvement results from the fact that the set Z given in (1)
will in most cases be larger than the set Z given in (2). This is particularly
true when m is larger than n. Specifically, suppose that Ml and Mz have n

and m states, respectively, where m > n. In addition, let the input alphabet
for Ml and Mz be Z, where 1X1= k. Then the W-method will generate a test
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set consisting of IP I /W \(k’ - n + 1 – I)/(k – 1) strings. In contrast, using the
definition of Z as in (2) will result in a test set with IP 1(1WI + k ~ -‘) strings.
Thus, given a Mealy machine M and an implementation S, we can repeat-
edly test S using successively larger values of m. In other words, we can test
Susing P” Z,where Z= WUX~-”=O, Z= WUX~-’=l, Z= WUZm-n=2,
etc., until we are satisfied. Practically speaking, by using the set Z as defined
in (2), we will be able to continue this process much longer than if we used
the set Z as defined in (l).

One thing that follows from Theorem 3.3 is that if m = n then Z = W U

Zm - n = W U {e}. In addition, it is also worth noting that if a single distin-
guishing string s does actually exist, i.e., a string that distinguishes all pairs
of states, then {s} U Zm - n is sufficient for the set Z. Finally, if a single
distinguishing string s does exist and m = n then {s} u {e} is sufficient for Z.

4. AN ALTERNATIVE CHARACTERIZATION SET

As described in Section 3, our first version of the W-method makes use of a
characterization set W, which is computed from a given Mealy machine M.

By definition, such a set will contain a string that distinguishes any two
states in M. In addition, based on the assumption that the specification
machine M has a minimal number of states, say n, it can be shown that any
two states have a distinguishing string of length at most n – 1 [Gill 1962].
Thus, we can prove the following lemma.

LEMMA 4.1. Let M be a Mealy machine with a minimal number of states n.

Then U ~:~ X’ is a characterization set for M.

PROOF. This result follows from the fact that LJ;I; E’ contains all strings
of length at least 1 and at most n – 1,and since any two states in a minimal
state machine can be distinguished by a string of length at most n – 1. ❑

l.iEMMA 4.2. Let M be a Mealy machine with n states and input alphabet X.

In addition, suppose that M contains a minimal number of states. Then Z’” ~

is a characterization set for M.

PROOF. Lemma 4.1 states that LJ~1~ Xi is a characterization set for M.

Suppose that some string w c Xk distinguishes between states p and q in
M, where 1< k < n – 1. Then since w is the prefix of some string x ● Z’- 1
it follows that x distinguishes p and q as well. Thus, only strings in Z“ -1 are
needed to distinguish all pairs of states in M. ❑

THEOREM 4.3. Let Ml be a minimal Mealy machine with n states, and let

Mz be a minimal Mealy machine with at most m states. In addition, suppose

that they both have input alphabet E. Let P be a transition cover set for Ml,
and let z = ~maz(n – ~,m n). Then Ml and M2 are equivalent if and 07dY if Ml

and Mz are P “ Z-equivalent.

PROOF. From Lemma 4.2, Z’- 1 is a characterization set for Ml. It follows
that Theorem 3.2 holds when Z = E’- 1 U Em-‘. Now consider P” Z = P -

1’-1 u P . Em-n, and first suppose that max(n – 1, m – n) = n – 1. It fol-
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lows that every string w G P . X m-n is the prefix of some string in x ● P .

X’- 1. Thus, Ml and Mz are equivalent with respect to P “ X’- 1 u P . En-n if
and only if they are equivalent with respect to P . 1“ -1. On the other hand, if
max(n – 1, m – n) = m – n then every string w = P . E’- 1 is the prefix of
some string in x ~ P . X“-”. Thus, Ml and Mz are equivalent with respect to
P. E“- 1 u P. Xn - n if and only if they are equivalent with respect to P “ ~~-’.

Note that Theorem 4.3 suggests another method for generating a test set
for solving the Mealy machine equivalence problem. Specifically, we can
construct the set Z = Zmax(n– 1,m–~), which is then used in the set P . Z.

5. MINIMIZING CHARACTERIZATION SETS

In many of the known protocol-testing procedures, an additional minimiza-
tion algorithm is applied to a given test set. Often times, these minimization
procedures are based on the observation that if a test set contains two
strings, one of which is a prefix of the other, then only the longer string is
required, and the shorter string can be removed from the set. Examples of
such minimization procedures are given by Sabnani and Dahbura [1988], and
by Sidhu and Leung [1989]. Similarly, we made use of this idea in Theorem
4.3. In this section, we present a minimization heuristic that is not based on
eliminating redundant prefixes. This procedure provides another method for
minimizing the size of test sets.

Let ill = (Q, Z, r, 8, y, ql) be a Mealy machine containing a minimal num-
ber of states n = IQ1. As stated in Section 3, given two states q,, qj G Q, a

string w = Z* can be computed that distinguishes q, and qj. In addition,
such a string can be computed in polynomial time and will have length at
most n – 1. Thus, a characterization set W for M can be constructed in
polynomial time by constructing such a string for every pair of states.

Let W be a characterization set for M. Though it is not necessary, for the
sake of discussion we will assume that W was constructed as described
above. Another method to minimize the set P . Z is based on the observation
that any particular string w ● W may distinguish between more than one
pair of states in Q. For example, consider the Mealy machine shown in Figure
1. Note that the string 110 distinguishes not only q. from ql, but it also
distinguishes ql from qz. Thus, if 110 is placed in a characterization set for
the purpose of distinguishing q. from qlin M, then no additional string is
required to distinguish ql from q~. Stated another way, given any characteri-
zation set (for example, as constructed by the above procedure), that set may
contain redundant strings. The question we wish to address in this section is
whether or not there are efficient algorithms for removing such strings.

More formally, we can define the following problem called the characteriza-

tion set minimization problem, abbreviated CSM, as follows.

INSTANCE: Mealy machine M = (Q, Z, r, 6, y, ql), characterization set
w c X*.

PROBLEM: Construct a set W‘ G W such that both W‘ is also a charac-
terization set for M and IW‘ I is minimized.
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In the following we will present a polynomial-time heuristic for this prob-
lem. Though the heuristic is not guaranteed to solve the problem optimally,
we can provide an upper bound on the performance ratio for the heuristic. In
doing so we shall make use of the following definitions.4

Let M and W be an instance of CSM. Then a feasible solution for M and W
is a subset W‘ c W such that W‘ is a characterization set for M. An optimal

solution for M and W is a feasible solution W’ such that for any other
feasible solution W“, IW’ I s W“. Now let P be a heuristic for CSM. The
performance ratio for P is defined as RP(M, W) = P(M, W)\ OPT(M, W),
where P( M, W ) is the total number of strings resulting when heuristic P is

applied to M and W,in the worst case, and where OPT( M, W ) is the total
number of strings in an optimal solution [Garey and Johnson 1979]. Gener-
ally, we would like to identify a heuristic whose performance ratio can be
bounded from above by a slowly growing function, and ideally, by a small
constant factor. Such an upper bound would indicate how close the heuristics
solution would be to an optimal solution.

In this section we will present a heuristic P for CSM such that RP(M, W )

< O(log k). In doing so we will make use of the following problem called set

couer (SC) [Johnson 1974].

INSTANCE: Collection C of subsets of a finite set A.
PROBLEM: Construct a subcollection C‘ g C such that every element

of A belongs to at least one member of C‘ and such that
IC’I is minimized.

In other words, we would like to obtain a subcollection C‘ of the sets in C,
such that C‘ contains as few sets as possible and such that C‘ covers A. Such
a subcollection is referred to as a minimal cover for C. For example, let
A = {al, az, as, a4, a5, a6 } and C = {{al, a,}, {a3, a4}, {a,, a6), {al, as, as},

} {az, a4, a6}} would be minimum cover{a,, a,, a,}}. Then C’ = {{al, a,, a, ,

for C.

Fact. SC is NP-hard [Garey and Johnson 1979].

Now consider the heuristic for SC, called hl, shown in Figure 2.

Fact. R~l(S, C) is O(log k) [Johnson 1974].

Using this result we can now show how to construct a heuristic h2 for the
CSM problem that has a similar upper bound.

THEOREM 5.1. Rkz(M, W) is O(logk).

PROOF. First we will show how to transform, in polynomial time, any
given instance of CSM to an instance of SC. The transformation and the
heuristic hl together form the heuristic h2. We will then show that this

4Note that we leave open the problem of whether or not this problem is NP-Hard. As we shall
show, this problem can be transformed to the set-cover problem, which is known to be NP-hard.
However, this does not show that CSM is NP-hard. To do so would require that the reduction be
performed in the other direction.
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procedure HI(C = {SI, SZ, . . .. SN}).

input : collection C’ of N sets

output : a subcollection c’ ~ C such that

UsEc s = (J.sEcs and IC’I is minimized.
begin

Sub:=O;
UnCov:=US6C S;
N:= IC’I;

Set[i]:=S,, 1< i < N;
while (UnCov# 0) do

j = max{l Set[j]\ such that 1 <j < N};

Sub:= Sub(_J{Sj};
UnCov:=UnCov-Set [j]:
for i := 1 to N do

Set[i]:=Set[i]-Set[j];
end;

end;
return Sub;

end;

Fig 2. An algorithm for constructing an approximation of a mimmum cover,

transformation is approximation preserving. In other words, we will show
that since Rhl(S) < O(log k ), it follows that R~z(M, W ) < O(log k ).

Let M = (Q, E, r, 8, y, ql) be a Mealy machine, and let W c Z“ be a finite
characterization set for M, where W = {w ~,w ~, . . . . WP}. The idea of the
conversion is to construct a set A and a collection C of subsets of the
elements in A. First, for each pair of states q,, qj G Q, an element a, ~ is
placed in A. The idea is that each element in A will correspond to one pair of
states in Q. In addition, for each string w, E W we will construct a corre-
sponding set of elements {al, l, az, z,... , a~,t } to be placed in C. The idea is that
each element in the set {a,,l, a,, z, . . . . a,, t } represents a pair of states that are
distinguished by the string w,. Thus, the set corresponding to w, will contain
all of those elements that correspond to pairs of states distinguished by w,.
Note that the set of elements corresponding to each string W, can be com-
puted easily in polynomial time from W and M, simply by determining which
pairs of states are distinguished by w,. In addition, it can easily be verified
that a minimum cover for C and A corresponds to a minimum cardinality
subset of W that is a characterization set for M. Consequently, given an
approximate minimum cover C‘ c C constructed by the heuristic h 1, the
corresponding characterization set W‘ G W can be reconstructed directly.

We must now show that this transformation is approximation preserving.
As stated above, it is easy to verify that a minimum solution to the CSM
problem corresponds to a minimum solution to the SC problem. However, we
must also show that if hl comes to within a logarithmic factor of the
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optimum, then so does h2. To do this, let 1 be an instance of CSM consisting
of Mealy machine M and characterization set W, where k 1 is the total
number of states in M and k ~ is the total number of strings in W. In
addition, let 1’ be the corresponding instance resulting from the above
transformation. As stated above, it is easy to verify that OPT(M, W ) =
OPT(A, C). In addition, by construction h2[M, W ) = hl( A, C). It follows that

Rh2(M, W) = R~l(A, C). (3)

As stated above, R~l(A, C) is O(log k ) which, by definition, means that

Rfil(A, C) < clogk (4)

for some positive constant c, where k represents the input length of the SC
instance consisting of A and C, Now let the total length of the instance 1 be
1. Since an element is placed in A for each pair of states in M, it follows that
A will contain at most k ~ X k ~ elements. In addition, since each set in C will
contain at most k ~ x k ~ elements from A, it follows that the size of all the
sets in C combined will be at most ICI X kl X kl = kz X kl X kl. It folIows
that the length k of the instance 1’ is at most (kl X kl) + (kz X kl X kl).

Since k ~, k ~ <1, it follows that k <213. Hence,

clogk s clog(213) (5)

= 3C log(21) (6)

< C’log 1 (7)

for some positive constant c‘. From (3), (4), and (7) it follows that Rh2(M, w)

is O(log 1). 0

The idea used in Theorem 5.1 has actually a more general application in
the context of software testing. Often times one has a set of requirements
R={rl, rz,. ... r~} that some software S must satisfy. To verify that S
satisfies the requirements, a set of tests T = {tl, tz, ..., tl} is devised such
that each requirement in R is tested, or rather “covered,” by at least one of
the tests in T. As with a characterization set, it may be the case that any
particular test covers more than one requirement. Consequently, the set T

could be redundant, in the sense that there may exist a subset T‘ c T such
that the tests in T‘ cover all the requirements in R. As in Theorem 5.1, the
sets R and T can be converted to the set ccwer problem, and the heuristic hl

can be applied to minimize the total number of tests.
The minimization heuristic h2, combined with the results from Sections

3 and 4, suggest three different ways to generate a test set, as shown in
Figure 3. Let Ml and Mz be Mealy machines that have n and m states,
respectively, where m > n. In addition, let Ml and i142 have input
alphabet Z, where El = k. Let a be ttle total number of strings in a
characterization set for Ml, and let D be the total number of strings in a
transition cover set for Ml. Then the W-method will generate a test set
consisting of a~(k’’”n+l – I)/(k – 1) strings. In contrast, our first algo-
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procedure gcneratel(M,m);
input : minimal Mealy machine M with n states

and input alphabet ~, upper bound m z n;

output : a set of strings over ~;

begin
W:=(7;
for each pair q,, qj E ~ do

construct a distinguishing string r for q, and qj;

W:=wu{.z};
end;

minimize W using h2! to get }$”;
construct a transition CW,CI set P for M;

return P . (J4’’U~~-n);

end:

procedure gen.erate2(M,m);

input : minimzd Mealy machine M with n states
and input alphabet ~, upper bound m > n:

output : a set of strings over ~;
begin

construct a transition cover set P for M;

return P . ~ max(~–l,m–n).

end;

procedure generate3(M,m);
input : minimal Mealy machine M with n states

and input alphabet ~, upper bound m ~ n;

output : a set of strings over ~;
begin

w:=~”-l;
minimize W using h2 to get W’;

construct a transition cover set P for M;

return P o(1$” u~~-n);

end;

Fig. 3. Algorithms for constructing a test set for Mealy machme M

rithm will generate a test set consisting of at most 9( a + k n- n ) strings. Om-
second algorithm will generate a test set consisting of ~k ‘ax( n -1> m -” ) strings,
and our third, at most @(k n-1 + k m - ‘). When m >> n, all three of our
algorithms will produce fewer strings than the W-method.

6. CONCLUSIONS

In this paper we have considered the protocol-testing problem. Several meth-
ods for solving this problem have been presented in the literature. In this
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paper we have presented three new versions of the W-method due to Chow
[ 1978]. We have shown that these algorithms all have the same fault detec-
tion capability as the W-method. However, in most cases our algorithms will
generate a far shorter test set. Two of these algorithms make use of a
heuristic for minimizing the number of strings in a characterization set. We
have shown that the performance ratio for this heuristic has an upper bound
of O(log k).

Though our improvements are encouraging, much work still remains to be
done. Specifically, we have left open the issue of which of the three methods
generates a smaller set. This would of course depend on several factors, such
as the size of m and n. Experimentation would probably be helpful in this
regard. In addition, though the set of strings constructed by our methods is
smaller than that constructed by the W-method, our methods still construct
test sets that contain an exponential number of symbols, This leaves open the
possibility that there may be a method for constructing a test set that
consists of a polynomial number of symbols, while at the same time having
the same fault detection capability. Finally, insight would also be gained by
an empirical comparison of our algorithms to each other, as well as to Chow’s.

APPENDIX

OBSERVATION Al. Let M = (Q, Z, r, 8, y, ql) be a Mealy machine. Let

P, q E Q, w, z E ~“, where w is a prefix of z, and SUPPOSe that w distin-
guishes p and q. Then z will distinguish p and q.

LEMMA A.2. Let M = (Q, Z, r, 8, y, ql) be a minimal Mealy machine, and

let S c Z* be a set of strings that partitions the states of M into at least a

equivalence classes, where O < a < m = IQ1. Then S U Z’ partitions Q into at

least a + i equivalence classes, for all O S i < m – a.

PROOF. By induction on i.

Basis. i = O. Since S c Z’ partitions the states of M into at least a
equivalence classes, it follows directly that S u Z’ = S u { .s} partitions the
states of M into at least a + i = a equivalence classes.

Inductive Hypothesis. Suppose there exists a k, where O < k s m – a – 1,

such that S U Zk partitions Q into at least a + k equivalence classes.

Inductive Step. We will show that S U Zk + 1 partitions Q into at least
a + k + 1 equivalence classes. First, by the inductive hypothesis S U Xk

partitions Q into at least a + k equivalence classes. In fact, it may be the
case that S U Ek partitions Q into at least a + k + 1 equivalence classes in
which case, by Observation A. 1, it follows that S U Xk + 1 also partitions Q

into at least a + k + 1 equivalence classes. So suppose that S U Zk does not
partition Q into at least a + k + 1 equivalence classes. It follows, by the
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inductive hypothesis, that S U Zk partitions Q into exactly a + k equiva-
lence classes. In addition, since O < k < m – a – 1, it follows that the total
number of equivalence classes is a + k < m – 1, which is less than the
number of states m in Q. It then follows that there must be two states
q,, qj G Q that are not distinguished by any string in S U Zk. However, since
M is minimal, it follows that qi and qJ are distinguished by some string.
Suppose that the shortest such string is of length t > k. Thus q, and qj are
distinguished by a string of length t but not by any string of length t – 1 or
less. In other words q, and qj are distinguished by some string in E’ but by
no string in Zt -1. Let w be a string in Et that distinguishes q, and qj, and
consider the states q;, q; G Q that are the (t– k – 1)successors of q, and qj,

respectively, when processing w. Then qj and q; must be distinguished by a
string of length k + 1 but by no string of length k. Otherwise, qi and qj

would be distinguished by a string of length t – 1.It follows that qj and q;

are distinguished by Ek + 1 but not by Z~. Hence, S U Zk + 1 partitions the
states in Q into at least a + k + 1 equivalence classes. ❑

LEMMA A.3. Let Ml = (QI,2, r, 81, Yl, ql) and Mz = (Q2,x, r, 82,YZ,P1)

be Mealy machines, where n = IQII, m = IQ21, and m > n. Let P be a transi-

tion cover set for Ml, and let W be a characterization set for Ml. If Ml and Mz

are P W-equivalent then for every q, G QI there exists at least one p] E Q2

such that q, and pJ are W-equivalent. In addition, for no other qk E Q1, where

k + i, is it the case that qk and pj are also W-equivalent.

PROOF. Suppose that Ml and M2 are P . W-equivalent. By definition of P,

for every q, ~ Q1 there exists a w = P such that ~l(ql, W) = q,. Let ilz(pl, W)

= pJ. Since ill ~ and M2 cannot be distinguished by any string in P” W, it

follows that q, and pj cannot be distinguished by a string in W. Thus q, and
pj are W-equivalent.

Now suppose there exists another state qk c QI such that k # i, and such
that qk and p, are also W-equivalent. It would then follow that q, and qk

would be W-equivalent, a contradiction to the fact that W is a characteriza-
tion set for Ml. ❑

LEMMA A.4. Let Ml = (Ql, Z, r, til, Yl, ql) and M2 = (Qz, E, r, 62, Yz, Pl)

be Mealy machines, where n = lQlj, m = IQZ 1, and m ~ n. Let P be a transi-

tion couer set for Ml. Let W be a characterization set for Ml, and let

Z = W U Em-’. If Ml and M, are P . W-equivalent then Z will partition the

states Q2 into m = /Q2 [ classes.

PROOF. From Lemma A.3 it follows that each state in QI is W-equivalent
to a unique state in Q2. Thus W-equivalence partitions the states in Qz into
at least n = IQI I classes. The result then follows from Lemma A.2. ❑

LEMMA A.5. Let Ml = (Ql, Z, 81, yl, ql) and M2 = (Qz, X, 82, y2, pl) be

Mealy machines, where n = IQII, m = IQ21, and m > n. Let W be a characteri-

zation set for Ml. Let W be a characterization set for Ml. Let q,, qj E QI,
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x/Y
x c X and y E r, where q, -+ q], and let Z = W U Zm–n. If Ml and Mz are

P “ Z-equivalent then there exist states ph, pl E Qz such that ph and pl are

Z-equivalent to q, and qj, respectively, and pk ‘@pl.

PROOF. Suppose that q,, qj G Ql, x G X, and y c r, where q,’~ qj. By
definition of P there exists a w ● E* and z = r“ such that w, wx = P and

w/z
ql ~ q,x~qj. Let Pk, Pl G Q2, z’ G r*, and y‘ = r be such that

P 1‘~ pk’~ P1- since MI and J4z are p” z-equivalent, and in Particular

{w} . Z-equivalent and {WX} . Z-equivalent, it follows that qi and qj are Z-
equivalent to pk and pl, respectively, and y = y‘. ❑

LEMMA A.6. Let Ml = (Ql, Z, r, al, Yl, ql) and Mz = (Q2,Z, r, 82,Y2,PI)

be Mealy machines, where n = IQI 1, m = IQ21, and m > n. Let P be a transi-

tion cover set for Ml. Let W be a characterization set for Ml, and let

Z = W U Em-’. If Ml and M2 are P . Z-equivalent, then Z-equivalence is an

isomorphism from Ml to Mz.

PROOF. We will prove this in several steps. First we will show that

Z-equivalence defines a function from the states in Ml to those in Ma. We
will then show that this function is one-to-one and onto. Finally, we will show
that both conditions in the definition of isclmorphism are satisfied.

(a) Z-equivalence defines a function from QI to Qz.

Since Ml and Mz are P oZ-equivalent,, it follows from Lemma A.3 that
Z-equivalence maps each state in QI to at least one state in Qz. In addition,
it must also be the case that each state in QI is mapped to at most one state
in Qz. Otherwise, if Z-equivalence mappecl some state in QI to two states in

Qz, say p, and PJ, then those two states would be Z-equivalent, which would
contradict Lemma A.4. Thus, Z-equivalence defines a function from QI to Qz.

(b) Z-equivalence defines a one-to-one funci-ion from Q1 to Q2.

Suppose that the function defined by Z-equivalence from QI to Qz was not
one-to-one, and suppose that states q,, qj G Q1 mapped to the same state in
Qz. It would then follow that qi and qj wc,uld be Z-equivalent. Since W c Z,
it would follow that q; and qj were also W-equivalent, which would contra-
dict the fact that W is a characterization set for Ml.

(c) Z-equivalence defines an onto function j?om Q1 to Q2.

Suppose that that Z-equivalence did not map any state in QI to some state
p] G Qz. Since pj is reachable in Qz, there is a path from p ~ to p] in Mz.

Assume without loss of generality that pj is the only state along this path
that is not mapped to from any state in QI by Z-equivalence. (Otherwise, use
the first such state along the path in the following.) Now consider the state

P, ● Q2 preceding PJ on this path, and s~~ppose that P, ‘~pj, where x G ~
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and y ● r. In addition, let q} be the state in Q, that Z-equivalence maps to
x/y’

P,, and suppose that qk ~ q~, for some Y‘ E r and ql E Q1.such a state ql
must exist since the transition function 8 is a function. Now suppose that
Z-equivalence maps ql to some state p, where s #j. Such a state p, must
exist since, from part (b), Z-equivalence defines a one-to-one function. Since

Ml and Mz are P . Z-equivalent, it follows from Lemma A.5 that p,’~ p,, for
some y‘ ~ 17,in which case there are two transitions from p, on input symbol

x, one to p, and one to p.. But then Mz is not a deterministic Mealy
machine, a contradiction.

Note that from (a) to (c) it follows that Z-equivalence defines a one-to-one
and onto function from Q ~ to Qz. In the following, we will refer to this
function as f. We will now show that this function is an isomorphism.

(d) Z-equivalence maps ql to pl, i.e., f(ql) = PI.

Since Ml and Mz are P . Z-equivalent, and since e ~ P, it follows that ql

and p ~ are Z-equivalent. Thus Z-equivalence maps q ~ to p ~.

(e) qlXLyqJ if and only if f(q, )x~f(qj), for all q,, qj E Ql, x E X, and y G I’.

(if’) Suppose that f(q, )x~f(q, ), for some q,, q, = Ql, x = E, and y ● 17.We
x/Y x/Y ‘

will show that q, + qJ. Suppose to the contrary that qz + qk, for some
y‘ E r, but that q] # qk. Since Ml and Mz are P - Z-equivalent, by Lemma

A.5 it follows that f( q, )‘3 f(qk ). Furthermore, it must be the case that

f( qk ) # f( qj ); otherwise Z-equivalence would not define a one-to-one function
from QI to Qz. But then we have two transitions from f(ql ) on input symbol
x, one to f(qj ) and one to f( qk ). It follows that Mz is not deterministic, a
contradiction.

Now suppose that q,’~ qj, but that y # y‘. By definition there exists a
string w E P such that ~l(ql, w) = q, and i32(p1, w) = f(q, ). It follows that

the string wx E P distinguishes q, and f( q, ). Since wx = P . Z, this contra-
dicts the fact that Ml and Mz are P . Z-equivalent.

(only if) Now suppose that q,’: qj for some q,, q] G Ql, x E Z, and y G r.
Since Ml and Mz are P . Z-equivalent, by Lemma A.5 it follows that

f(%) ’~ f(%).
From (d)”and (e) it follows that Z-equivalence defines an isomorphism from

Ml to Mz. ❑

LEMMA A.7. Let Ml and Mj be Mealy machines. If Ml and Mz are

isomorphic then Ml and Mz are equivalent.

PROOF. This proof is omitted since it is a well-known result. See for
example Hopcroft and Unman [1979]. ❑

THEOREM A.8. Let Ml and Mz be Mealy machines. Let P be a transition

cover set for Ml. Let W be a characterization set for Ml, and let Z = W u Em”’.

Then Ml and Mz are isomorphic if and only ifMl and Mz are P . Z-equivalent.
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PROOF.

(if) From Lemma A.6 it follows that Z-equivalence is an isomorphism from
Ml to Mz. By definition it follows that Ml and Mz are isomorphic.

(only if) Suppose that Ml and Mz are isomorphic. By Lemma A.7 it follows
that Ml and Mz are also equivalent. Hence, Ml and Mz are P . Z-equivalent.
❑

COROLLARY A.9. Let Ml and Mz be Mealy machines. Let P be a transition

cover set for Ml. Let W be a characterization set for Ml, and let Z = W U Em -‘.

Then Ml and Mz are equivalent if and only if Ml and Mz are P . Z-equivalent.

PROOF.

(only if) Suppose that Ml and Mz are equivalent. Then by definition Ml
and Mz are S-equivalent for any set S. Hence, Ml and Mz are P . Z-

equivalent.

(if) Suppose that Ml and Mz are P . Z-equivalent. From Theorem A.8 it
follows that Ml and Mz are isomorphic, which by Lemma A.7 implies that
Ml and Mz are equivalent. ❑
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